rf_reconstruct.c revision 1.15 1 /* $NetBSD: rf_reconstruct.c,v 1.15 2000/02/13 04:53:57 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403
404 lp = raidPtr->Layout.map;
405 if (lp->SubmitReconBuffer) {
406 /*
407 * The current infrastructure only supports reconstructing one
408 * disk at a time for each array.
409 */
410 RF_LOCK_MUTEX(raidPtr->mutex);
411 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
412 (raidPtr->numFailures > 0)) {
413 /* XXX 0 above shouldn't be constant!!! */
414 /* some component other than this has failed.
415 Let's not make things worse than they already
416 are... */
417 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
418 printf(" Row: %d Col: %d Too many failures.\n",
419 row, col);
420 RF_UNLOCK_MUTEX(raidPtr->mutex);
421 return (EINVAL);
422 }
423 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
424 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
425 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
426
427 RF_UNLOCK_MUTEX(raidPtr->mutex);
428 return (EINVAL);
429 }
430
431
432 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
433 /* "It's gone..." */
434 raidPtr->numFailures++;
435 raidPtr->Disks[row][col].status = rf_ds_failed;
436 raidPtr->status[row] = rf_rs_degraded;
437 }
438
439 while (raidPtr->reconInProgress) {
440 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
441 }
442
443 raidPtr->reconInProgress++;
444
445
446 /* first look for a spare drive onto which to reconstruct
447 the data. spare disk descriptors are stored in row 0.
448 This may have to change eventually */
449
450 /* Actually, we don't care if it's failed or not...
451 On a RAID set with correct parity, this function
452 should be callable on any component without ill affects. */
453 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
454 */
455
456 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
457 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
458
459 raidPtr->reconInProgress--;
460 RF_UNLOCK_MUTEX(raidPtr->mutex);
461 return (EINVAL);
462 }
463
464 /* XXX need goop here to see if the disk is alive,
465 and, if not, make it so... */
466
467
468
469 badDisk = &raidPtr->Disks[row][col];
470
471 proc = raidPtr->engine_thread;
472
473 /* This device may have been opened successfully the
474 first time. Close it before trying to open it again.. */
475
476 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
477 printf("Closed the open device: %s\n",
478 raidPtr->Disks[row][col].devname);
479 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
480 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
481 FREAD | FWRITE, proc->p_ucred, proc);
482 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
483 }
484 printf("About to (re-)open the device for rebuilding: %s\n",
485 raidPtr->Disks[row][col].devname);
486
487 retcode = raidlookup(raidPtr->Disks[row][col].devname,
488 proc, &vp);
489
490 if (retcode) {
491 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
492 raidPtr->Disks[row][col].devname, retcode);
493
494 /* XXX the component isn't responding properly...
495 must be still dead :-( */
496 raidPtr->reconInProgress--;
497 RF_UNLOCK_MUTEX(raidPtr->mutex);
498 return(retcode);
499
500 } else {
501
502 /* Ok, so we can at least do a lookup...
503 How about actually getting a vp for it? */
504
505 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
506 proc)) != 0) {
507 raidPtr->reconInProgress--;
508 RF_UNLOCK_MUTEX(raidPtr->mutex);
509 return(retcode);
510 }
511 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
512 FREAD, proc->p_ucred, proc);
513 if (retcode) {
514 raidPtr->reconInProgress--;
515 RF_UNLOCK_MUTEX(raidPtr->mutex);
516 return(retcode);
517 }
518 raidPtr->Disks[row][col].blockSize =
519 dpart.disklab->d_secsize;
520
521 raidPtr->Disks[row][col].numBlocks =
522 dpart.part->p_size - rf_protectedSectors;
523
524 raidPtr->raid_cinfo[row][col].ci_vp = vp;
525 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
526
527 raidPtr->Disks[row][col].dev = va.va_rdev;
528
529 /* we allow the user to specify that only a
530 fraction of the disks should be used this is
531 just for debug: it speeds up
532 * the parity scan */
533 raidPtr->Disks[row][col].numBlocks =
534 raidPtr->Disks[row][col].numBlocks *
535 rf_sizePercentage / 100;
536 }
537
538
539
540 spareDiskPtr = &raidPtr->Disks[row][col];
541 spareDiskPtr->status = rf_ds_used_spare;
542
543 printf("RECON: initiating in-place reconstruction on\n");
544 printf(" row %d col %d -> spare at row %d col %d\n",
545 row, col, row, col);
546
547 RF_UNLOCK_MUTEX(raidPtr->mutex);
548
549 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
550 spareDiskPtr, numDisksDone,
551 row, col);
552 raidPtr->reconDesc = (void *) reconDesc;
553 #if RF_RECON_STATS > 0
554 reconDesc->hsStallCount = 0;
555 reconDesc->numReconExecDelays = 0;
556 reconDesc->numReconEventWaits = 0;
557 #endif /* RF_RECON_STATS > 0 */
558 reconDesc->reconExecTimerRunning = 0;
559 reconDesc->reconExecTicks = 0;
560 reconDesc->maxReconExecTicks = 0;
561 rc = rf_ContinueReconstructFailedDisk(reconDesc);
562
563 RF_LOCK_MUTEX(raidPtr->mutex);
564 raidPtr->reconInProgress--;
565 RF_UNLOCK_MUTEX(raidPtr->mutex);
566
567 } else {
568 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
569 lp->parityConfig);
570 rc = EIO;
571 }
572 RF_LOCK_MUTEX(raidPtr->mutex);
573
574 if (!rc) {
575 /* Need to set these here, as at this point it'll be claiming
576 that the disk is in rf_ds_spared! But we know better :-) */
577
578 raidPtr->Disks[row][col].status = rf_ds_optimal;
579 raidPtr->status[row] = rf_rs_optimal;
580
581 /* fix up the component label */
582 /* Don't actually need the read here.. */
583 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
584 raidPtr->raid_cinfo[row][col].ci_vp,
585 &c_label);
586
587 c_label.version = RF_COMPONENT_LABEL_VERSION;
588 c_label.mod_counter = raidPtr->mod_counter;
589 c_label.serial_number = raidPtr->serial_number;
590 c_label.row = row;
591 c_label.column = col;
592 c_label.num_rows = raidPtr->numRow;
593 c_label.num_columns = raidPtr->numCol;
594 c_label.clean = RF_RAID_DIRTY;
595 c_label.status = rf_ds_optimal;
596
597 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
598 raidPtr->raid_cinfo[row][col].ci_vp,
599 &c_label);
600
601 }
602 RF_UNLOCK_MUTEX(raidPtr->mutex);
603 RF_SIGNAL_COND(raidPtr->waitForReconCond);
604 wakeup(&raidPtr->waitForReconCond);
605 return (rc);
606 }
607
608
609 int
610 rf_ContinueReconstructFailedDisk(reconDesc)
611 RF_RaidReconDesc_t *reconDesc;
612 {
613 RF_Raid_t *raidPtr = reconDesc->raidPtr;
614 RF_RowCol_t row = reconDesc->row;
615 RF_RowCol_t col = reconDesc->col;
616 RF_RowCol_t srow = reconDesc->srow;
617 RF_RowCol_t scol = reconDesc->scol;
618 RF_ReconMap_t *mapPtr;
619
620 RF_ReconEvent_t *event;
621 struct timeval etime, elpsd;
622 unsigned long xor_s, xor_resid_us;
623 int retcode, i, ds;
624
625 switch (reconDesc->state) {
626
627
628 case 0:
629
630 raidPtr->accumXorTimeUs = 0;
631
632 /* create one trace record per physical disk */
633 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
634
635 /* quiesce the array prior to starting recon. this is needed
636 * to assure no nasty interactions with pending user writes.
637 * We need to do this before we change the disk or row status. */
638 reconDesc->state = 1;
639
640 Dprintf("RECON: begin request suspend\n");
641 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
642 Dprintf("RECON: end request suspend\n");
643 rf_StartUserStats(raidPtr); /* zero out the stats kept on
644 * user accs */
645
646 /* fall through to state 1 */
647
648 case 1:
649
650 RF_LOCK_MUTEX(raidPtr->mutex);
651
652 /* create the reconstruction control pointer and install it in
653 * the right slot */
654 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
655 mapPtr = raidPtr->reconControl[row]->reconMap;
656 raidPtr->status[row] = rf_rs_reconstructing;
657 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
658 raidPtr->Disks[row][col].spareRow = srow;
659 raidPtr->Disks[row][col].spareCol = scol;
660
661 RF_UNLOCK_MUTEX(raidPtr->mutex);
662
663 RF_GETTIME(raidPtr->reconControl[row]->starttime);
664
665 /* now start up the actual reconstruction: issue a read for
666 * each surviving disk */
667
668 reconDesc->numDisksDone = 0;
669 for (i = 0; i < raidPtr->numCol; i++) {
670 if (i != col) {
671 /* find and issue the next I/O on the
672 * indicated disk */
673 if (IssueNextReadRequest(raidPtr, row, i)) {
674 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
675 reconDesc->numDisksDone++;
676 }
677 }
678 }
679
680 case 2:
681 Dprintf("RECON: resume requests\n");
682 rf_ResumeNewRequests(raidPtr);
683
684
685 reconDesc->state = 3;
686
687 case 3:
688
689 /* process reconstruction events until all disks report that
690 * they've completed all work */
691 mapPtr = raidPtr->reconControl[row]->reconMap;
692
693
694
695 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
696
697 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
698 RF_ASSERT(event);
699
700 if (ProcessReconEvent(raidPtr, row, event))
701 reconDesc->numDisksDone++;
702 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
703 if (rf_prReconSched) {
704 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
705 }
706 }
707
708
709
710 reconDesc->state = 4;
711
712
713 case 4:
714 mapPtr = raidPtr->reconControl[row]->reconMap;
715 if (rf_reconDebug) {
716 printf("RECON: all reads completed\n");
717 }
718 /* at this point all the reads have completed. We now wait
719 * for any pending writes to complete, and then we're done */
720
721 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
722
723 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
724 RF_ASSERT(event);
725
726 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
727 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
728 if (rf_prReconSched) {
729 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
730 }
731 }
732 reconDesc->state = 5;
733
734 case 5:
735 /* Success: mark the dead disk as reconstructed. We quiesce
736 * the array here to assure no nasty interactions with pending
737 * user accesses when we free up the psstatus structure as
738 * part of FreeReconControl() */
739
740 reconDesc->state = 6;
741
742 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
743 rf_StopUserStats(raidPtr);
744 rf_PrintUserStats(raidPtr); /* print out the stats on user
745 * accs accumulated during
746 * recon */
747
748 /* fall through to state 6 */
749 case 6:
750
751
752
753 RF_LOCK_MUTEX(raidPtr->mutex);
754 raidPtr->numFailures--;
755 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
756 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
757 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
758 RF_UNLOCK_MUTEX(raidPtr->mutex);
759 RF_GETTIME(etime);
760 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
761
762 /* XXX -- why is state 7 different from state 6 if there is no
763 * return() here? -- XXX Note that I set elpsd above & use it
764 * below, so if you put a return here you'll have to fix this.
765 * (also, FreeReconControl is called below) */
766
767 case 7:
768
769 rf_ResumeNewRequests(raidPtr);
770
771 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col);
772 xor_s = raidPtr->accumXorTimeUs / 1000000;
773 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
774 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
775 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
776 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
777 (int) raidPtr->reconControl[row]->starttime.tv_sec,
778 (int) raidPtr->reconControl[row]->starttime.tv_usec,
779 (int) etime.tv_sec, (int) etime.tv_usec);
780
781 #if RF_RECON_STATS > 0
782 printf("Total head-sep stall count was %d\n",
783 (int) reconDesc->hsStallCount);
784 #endif /* RF_RECON_STATS > 0 */
785 rf_FreeReconControl(raidPtr, row);
786 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
787 FreeReconDesc(reconDesc);
788
789 }
790
791 SignalReconDone(raidPtr);
792 return (0);
793 }
794 /*****************************************************************************
795 * do the right thing upon each reconstruction event.
796 * returns nonzero if and only if there is nothing left unread on the
797 * indicated disk
798 *****************************************************************************/
799 static int
800 ProcessReconEvent(raidPtr, frow, event)
801 RF_Raid_t *raidPtr;
802 RF_RowCol_t frow;
803 RF_ReconEvent_t *event;
804 {
805 int retcode = 0, submitblocked;
806 RF_ReconBuffer_t *rbuf;
807 RF_SectorCount_t sectorsPerRU;
808
809 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
810 switch (event->type) {
811
812 /* a read I/O has completed */
813 case RF_REVENT_READDONE:
814 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
815 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
816 frow, event->col, rbuf->parityStripeID);
817 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
818 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
819 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
820 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
821 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
822 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
823 if (!submitblocked)
824 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
825 break;
826
827 /* a write I/O has completed */
828 case RF_REVENT_WRITEDONE:
829 if (rf_floatingRbufDebug) {
830 rf_CheckFloatingRbufCount(raidPtr, 1);
831 }
832 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
833 rbuf = (RF_ReconBuffer_t *) event->arg;
834 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
835 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
836 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
837 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
838 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
839 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
840
841 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
842 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
843 raidPtr->numFullReconBuffers--;
844 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
845 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
846 } else
847 if (rbuf->type == RF_RBUF_TYPE_FORCED)
848 rf_FreeReconBuffer(rbuf);
849 else
850 RF_ASSERT(0);
851 break;
852
853 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
854 * cleared */
855 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
856 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
857 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
858 * BUFCLEAR event if we
859 * couldn't submit */
860 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
861 break;
862
863 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
864 * blockage has been cleared */
865 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
866 retcode = TryToRead(raidPtr, frow, event->col);
867 break;
868
869 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
870 * reconstruction blockage has been
871 * cleared */
872 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
873 retcode = TryToRead(raidPtr, frow, event->col);
874 break;
875
876 /* a buffer has become ready to write */
877 case RF_REVENT_BUFREADY:
878 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
879 retcode = IssueNextWriteRequest(raidPtr, frow);
880 if (rf_floatingRbufDebug) {
881 rf_CheckFloatingRbufCount(raidPtr, 1);
882 }
883 break;
884
885 /* we need to skip the current RU entirely because it got
886 * recon'd while we were waiting for something else to happen */
887 case RF_REVENT_SKIP:
888 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
889 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
890 break;
891
892 /* a forced-reconstruction read access has completed. Just
893 * submit the buffer */
894 case RF_REVENT_FORCEDREADDONE:
895 rbuf = (RF_ReconBuffer_t *) event->arg;
896 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
897 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
898 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
899 RF_ASSERT(!submitblocked);
900 break;
901
902 default:
903 RF_PANIC();
904 }
905 rf_FreeReconEventDesc(event);
906 return (retcode);
907 }
908 /*****************************************************************************
909 *
910 * find the next thing that's needed on the indicated disk, and issue
911 * a read request for it. We assume that the reconstruction buffer
912 * associated with this process is free to receive the data. If
913 * reconstruction is blocked on the indicated RU, we issue a
914 * blockage-release request instead of a physical disk read request.
915 * If the current disk gets too far ahead of the others, we issue a
916 * head-separation wait request and return.
917 *
918 * ctrl->{ru_count, curPSID, diskOffset} and
919 * rbuf->failedDiskSectorOffset are maintained to point the the unit
920 * we're currently accessing. Note that this deviates from the
921 * standard C idiom of having counters point to the next thing to be
922 * accessed. This allows us to easily retry when we're blocked by
923 * head separation or reconstruction-blockage events.
924 *
925 * returns nonzero if and only if there is nothing left unread on the
926 * indicated disk
927 *
928 *****************************************************************************/
929 static int
930 IssueNextReadRequest(raidPtr, row, col)
931 RF_Raid_t *raidPtr;
932 RF_RowCol_t row;
933 RF_RowCol_t col;
934 {
935 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
936 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
937 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
938 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
939 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
940 int do_new_check = 0, retcode = 0, status;
941
942 /* if we are currently the slowest disk, mark that we have to do a new
943 * check */
944 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
945 do_new_check = 1;
946
947 while (1) {
948
949 ctrl->ru_count++;
950 if (ctrl->ru_count < RUsPerPU) {
951 ctrl->diskOffset += sectorsPerRU;
952 rbuf->failedDiskSectorOffset += sectorsPerRU;
953 } else {
954 ctrl->curPSID++;
955 ctrl->ru_count = 0;
956 /* code left over from when head-sep was based on
957 * parity stripe id */
958 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
959 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
960 return (1); /* finito! */
961 }
962 /* find the disk offsets of the start of the parity
963 * stripe on both the current disk and the failed
964 * disk. skip this entire parity stripe if either disk
965 * does not appear in the indicated PS */
966 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
967 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
968 if (status) {
969 ctrl->ru_count = RUsPerPU - 1;
970 continue;
971 }
972 }
973 rbuf->which_ru = ctrl->ru_count;
974
975 /* skip this RU if it's already been reconstructed */
976 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
977 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
978 continue;
979 }
980 break;
981 }
982 ctrl->headSepCounter++;
983 if (do_new_check)
984 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
985
986
987 /* at this point, we have definitely decided what to do, and we have
988 * only to see if we can actually do it now */
989 rbuf->parityStripeID = ctrl->curPSID;
990 rbuf->which_ru = ctrl->ru_count;
991 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
992 raidPtr->recon_tracerecs[col].reconacc = 1;
993 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
994 retcode = TryToRead(raidPtr, row, col);
995 return (retcode);
996 }
997
998 /*
999 * tries to issue the next read on the indicated disk. We may be
1000 * blocked by (a) the heads being too far apart, or (b) recon on the
1001 * indicated RU being blocked due to a write by a user thread. In
1002 * this case, we issue a head-sep or blockage wait request, which will
1003 * cause this same routine to be invoked again later when the blockage
1004 * has cleared.
1005 */
1006
1007 static int
1008 TryToRead(raidPtr, row, col)
1009 RF_Raid_t *raidPtr;
1010 RF_RowCol_t row;
1011 RF_RowCol_t col;
1012 {
1013 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1014 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1015 RF_StripeNum_t psid = ctrl->curPSID;
1016 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1017 RF_DiskQueueData_t *req;
1018 int status, created = 0;
1019 RF_ReconParityStripeStatus_t *pssPtr;
1020
1021 /* if the current disk is too far ahead of the others, issue a
1022 * head-separation wait and return */
1023 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1024 return (0);
1025 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1026 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1027
1028 /* if recon is blocked on the indicated parity stripe, issue a
1029 * block-wait request and return. this also must mark the indicated RU
1030 * in the stripe as under reconstruction if not blocked. */
1031 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1032 if (status == RF_PSS_RECON_BLOCKED) {
1033 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1034 goto out;
1035 } else
1036 if (status == RF_PSS_FORCED_ON_WRITE) {
1037 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1038 goto out;
1039 }
1040 /* make one last check to be sure that the indicated RU didn't get
1041 * reconstructed while we were waiting for something else to happen.
1042 * This is unfortunate in that it causes us to make this check twice
1043 * in the normal case. Might want to make some attempt to re-work
1044 * this so that we only do this check if we've definitely blocked on
1045 * one of the above checks. When this condition is detected, we may
1046 * have just created a bogus status entry, which we need to delete. */
1047 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1048 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1049 if (created)
1050 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1051 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1052 goto out;
1053 }
1054 /* found something to read. issue the I/O */
1055 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1056 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1057 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1058 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1059 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1060 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1061 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1062
1063 /* should be ok to use a NULL proc pointer here, all the bufs we use
1064 * should be in kernel space */
1065 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1066 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1067
1068 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1069
1070 ctrl->rbuf->arg = (void *) req;
1071 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1072 pssPtr->issued[col] = 1;
1073
1074 out:
1075 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1076 return (0);
1077 }
1078
1079
1080 /*
1081 * given a parity stripe ID, we want to find out whether both the
1082 * current disk and the failed disk exist in that parity stripe. If
1083 * not, we want to skip this whole PS. If so, we want to find the
1084 * disk offset of the start of the PS on both the current disk and the
1085 * failed disk.
1086 *
1087 * this works by getting a list of disks comprising the indicated
1088 * parity stripe, and searching the list for the current and failed
1089 * disks. Once we've decided they both exist in the parity stripe, we
1090 * need to decide whether each is data or parity, so that we'll know
1091 * which mapping function to call to get the corresponding disk
1092 * offsets.
1093 *
1094 * this is kind of unpleasant, but doing it this way allows the
1095 * reconstruction code to use parity stripe IDs rather than physical
1096 * disks address to march through the failed disk, which greatly
1097 * simplifies a lot of code, as well as eliminating the need for a
1098 * reverse-mapping function. I also think it will execute faster,
1099 * since the calls to the mapping module are kept to a minimum.
1100 *
1101 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1102 * THE STRIPE IN THE CORRECT ORDER */
1103
1104
1105 static int
1106 ComputePSDiskOffsets(
1107 RF_Raid_t * raidPtr, /* raid descriptor */
1108 RF_StripeNum_t psid, /* parity stripe identifier */
1109 RF_RowCol_t row, /* row and column of disk to find the offsets
1110 * for */
1111 RF_RowCol_t col,
1112 RF_SectorNum_t * outDiskOffset,
1113 RF_SectorNum_t * outFailedDiskSectorOffset,
1114 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1115 RF_RowCol_t * spCol,
1116 RF_SectorNum_t * spOffset)
1117 { /* OUT: offset into disk containing spare unit */
1118 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1119 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1120 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1121 RF_RowCol_t *diskids;
1122 u_int i, j, k, i_offset, j_offset;
1123 RF_RowCol_t prow, pcol;
1124 int testcol, testrow;
1125 RF_RowCol_t stripe;
1126 RF_SectorNum_t poffset;
1127 char i_is_parity = 0, j_is_parity = 0;
1128 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1129
1130 /* get a listing of the disks comprising that stripe */
1131 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1132 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1133 RF_ASSERT(diskids);
1134
1135 /* reject this entire parity stripe if it does not contain the
1136 * indicated disk or it does not contain the failed disk */
1137 if (row != stripe)
1138 goto skipit;
1139 for (i = 0; i < stripeWidth; i++) {
1140 if (col == diskids[i])
1141 break;
1142 }
1143 if (i == stripeWidth)
1144 goto skipit;
1145 for (j = 0; j < stripeWidth; j++) {
1146 if (fcol == diskids[j])
1147 break;
1148 }
1149 if (j == stripeWidth) {
1150 goto skipit;
1151 }
1152 /* find out which disk the parity is on */
1153 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1154
1155 /* find out if either the current RU or the failed RU is parity */
1156 /* also, if the parity occurs in this stripe prior to the data and/or
1157 * failed col, we need to decrement i and/or j */
1158 for (k = 0; k < stripeWidth; k++)
1159 if (diskids[k] == pcol)
1160 break;
1161 RF_ASSERT(k < stripeWidth);
1162 i_offset = i;
1163 j_offset = j;
1164 if (k < i)
1165 i_offset--;
1166 else
1167 if (k == i) {
1168 i_is_parity = 1;
1169 i_offset = 0;
1170 } /* set offsets to zero to disable multiply
1171 * below */
1172 if (k < j)
1173 j_offset--;
1174 else
1175 if (k == j) {
1176 j_is_parity = 1;
1177 j_offset = 0;
1178 }
1179 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1180 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1181 * tells us how far into the stripe the [current,failed] disk is. */
1182
1183 /* call the mapping routine to get the offset into the current disk,
1184 * repeat for failed disk. */
1185 if (i_is_parity)
1186 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1187 else
1188 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1189
1190 RF_ASSERT(row == testrow && col == testcol);
1191
1192 if (j_is_parity)
1193 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1194 else
1195 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1196 RF_ASSERT(row == testrow && fcol == testcol);
1197
1198 /* now locate the spare unit for the failed unit */
1199 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1200 if (j_is_parity)
1201 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1202 else
1203 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1204 } else {
1205 *spRow = raidPtr->reconControl[row]->spareRow;
1206 *spCol = raidPtr->reconControl[row]->spareCol;
1207 *spOffset = *outFailedDiskSectorOffset;
1208 }
1209
1210 return (0);
1211
1212 skipit:
1213 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1214 psid, row, col);
1215 return (1);
1216 }
1217 /* this is called when a buffer has become ready to write to the replacement disk */
1218 static int
1219 IssueNextWriteRequest(raidPtr, row)
1220 RF_Raid_t *raidPtr;
1221 RF_RowCol_t row;
1222 {
1223 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1224 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1225 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1226 RF_ReconBuffer_t *rbuf;
1227 RF_DiskQueueData_t *req;
1228
1229 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1230 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1231 * have gotten the event that sent us here */
1232 RF_ASSERT(rbuf->pssPtr);
1233
1234 rbuf->pssPtr->writeRbuf = rbuf;
1235 rbuf->pssPtr = NULL;
1236
1237 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1238 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1239 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1240 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1241 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1242 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1243
1244 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1245 * kernel space */
1246 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1247 sectorsPerRU, rbuf->buffer,
1248 rbuf->parityStripeID, rbuf->which_ru,
1249 ReconWriteDoneProc, (void *) rbuf, NULL,
1250 &raidPtr->recon_tracerecs[fcol],
1251 (void *) raidPtr, 0, NULL);
1252
1253 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1254
1255 rbuf->arg = (void *) req;
1256 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1257
1258 return (0);
1259 }
1260
1261 /*
1262 * this gets called upon the completion of a reconstruction read
1263 * operation the arg is a pointer to the per-disk reconstruction
1264 * control structure for the process that just finished a read.
1265 *
1266 * called at interrupt context in the kernel, so don't do anything
1267 * illegal here.
1268 */
1269 static int
1270 ReconReadDoneProc(arg, status)
1271 void *arg;
1272 int status;
1273 {
1274 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1275 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1276
1277 if (status) {
1278 /*
1279 * XXX
1280 */
1281 printf("Recon read failed!\n");
1282 RF_PANIC();
1283 }
1284 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1285 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1286 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1287 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1288 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1289
1290 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1291 return (0);
1292 }
1293 /* this gets called upon the completion of a reconstruction write operation.
1294 * the arg is a pointer to the rbuf that was just written
1295 *
1296 * called at interrupt context in the kernel, so don't do anything illegal here.
1297 */
1298 static int
1299 ReconWriteDoneProc(arg, status)
1300 void *arg;
1301 int status;
1302 {
1303 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1304
1305 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1306 if (status) {
1307 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1308 * write failed!\n"); */
1309 RF_PANIC();
1310 }
1311 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1312 return (0);
1313 }
1314
1315
1316 /*
1317 * computes a new minimum head sep, and wakes up anyone who needs to
1318 * be woken as a result
1319 */
1320 static void
1321 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1322 RF_Raid_t *raidPtr;
1323 RF_RowCol_t row;
1324 RF_HeadSepLimit_t hsCtr;
1325 {
1326 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1327 RF_HeadSepLimit_t new_min;
1328 RF_RowCol_t i;
1329 RF_CallbackDesc_t *p;
1330 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1331 * of a minimum */
1332
1333
1334 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1335
1336 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1337 for (i = 0; i < raidPtr->numCol; i++)
1338 if (i != reconCtrlPtr->fcol) {
1339 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1340 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1341 }
1342 /* set the new minimum and wake up anyone who can now run again */
1343 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1344 reconCtrlPtr->minHeadSepCounter = new_min;
1345 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1346 while (reconCtrlPtr->headSepCBList) {
1347 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1348 break;
1349 p = reconCtrlPtr->headSepCBList;
1350 reconCtrlPtr->headSepCBList = p->next;
1351 p->next = NULL;
1352 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1353 rf_FreeCallbackDesc(p);
1354 }
1355
1356 }
1357 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1358 }
1359
1360 /*
1361 * checks to see that the maximum head separation will not be violated
1362 * if we initiate a reconstruction I/O on the indicated disk.
1363 * Limiting the maximum head separation between two disks eliminates
1364 * the nasty buffer-stall conditions that occur when one disk races
1365 * ahead of the others and consumes all of the floating recon buffers.
1366 * This code is complex and unpleasant but it's necessary to avoid
1367 * some very nasty, albeit fairly rare, reconstruction behavior.
1368 *
1369 * returns non-zero if and only if we have to stop working on the
1370 * indicated disk due to a head-separation delay.
1371 */
1372 static int
1373 CheckHeadSeparation(
1374 RF_Raid_t * raidPtr,
1375 RF_PerDiskReconCtrl_t * ctrl,
1376 RF_RowCol_t row,
1377 RF_RowCol_t col,
1378 RF_HeadSepLimit_t hsCtr,
1379 RF_ReconUnitNum_t which_ru)
1380 {
1381 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1382 RF_CallbackDesc_t *cb, *p, *pt;
1383 int retval = 0;
1384
1385 /* if we're too far ahead of the slowest disk, stop working on this
1386 * disk until the slower ones catch up. We do this by scheduling a
1387 * wakeup callback for the time when the slowest disk has caught up.
1388 * We define "caught up" with 20% hysteresis, i.e. the head separation
1389 * must have fallen to at most 80% of the max allowable head
1390 * separation before we'll wake up.
1391 *
1392 */
1393 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1394 if ((raidPtr->headSepLimit >= 0) &&
1395 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1396 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1397 raidPtr->raidid, row, col, ctrl->headSepCounter,
1398 reconCtrlPtr->minHeadSepCounter,
1399 raidPtr->headSepLimit);
1400 cb = rf_AllocCallbackDesc();
1401 /* the minHeadSepCounter value we have to get to before we'll
1402 * wake up. build in 20% hysteresis. */
1403 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1404 cb->row = row;
1405 cb->col = col;
1406 cb->next = NULL;
1407
1408 /* insert this callback descriptor into the sorted list of
1409 * pending head-sep callbacks */
1410 p = reconCtrlPtr->headSepCBList;
1411 if (!p)
1412 reconCtrlPtr->headSepCBList = cb;
1413 else
1414 if (cb->callbackArg.v < p->callbackArg.v) {
1415 cb->next = reconCtrlPtr->headSepCBList;
1416 reconCtrlPtr->headSepCBList = cb;
1417 } else {
1418 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1419 cb->next = p;
1420 pt->next = cb;
1421 }
1422 retval = 1;
1423 #if RF_RECON_STATS > 0
1424 ctrl->reconCtrl->reconDesc->hsStallCount++;
1425 #endif /* RF_RECON_STATS > 0 */
1426 }
1427 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1428
1429 return (retval);
1430 }
1431 /*
1432 * checks to see if reconstruction has been either forced or blocked
1433 * by a user operation. if forced, we skip this RU entirely. else if
1434 * blocked, put ourselves on the wait list. else return 0.
1435 *
1436 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1437 */
1438 static int
1439 CheckForcedOrBlockedReconstruction(
1440 RF_Raid_t * raidPtr,
1441 RF_ReconParityStripeStatus_t * pssPtr,
1442 RF_PerDiskReconCtrl_t * ctrl,
1443 RF_RowCol_t row,
1444 RF_RowCol_t col,
1445 RF_StripeNum_t psid,
1446 RF_ReconUnitNum_t which_ru)
1447 {
1448 RF_CallbackDesc_t *cb;
1449 int retcode = 0;
1450
1451 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1452 retcode = RF_PSS_FORCED_ON_WRITE;
1453 else
1454 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1455 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1456 cb = rf_AllocCallbackDesc(); /* append ourselves to
1457 * the blockage-wait
1458 * list */
1459 cb->row = row;
1460 cb->col = col;
1461 cb->next = pssPtr->blockWaitList;
1462 pssPtr->blockWaitList = cb;
1463 retcode = RF_PSS_RECON_BLOCKED;
1464 }
1465 if (!retcode)
1466 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1467 * reconstruction */
1468
1469 return (retcode);
1470 }
1471 /*
1472 * if reconstruction is currently ongoing for the indicated stripeID,
1473 * reconstruction is forced to completion and we return non-zero to
1474 * indicate that the caller must wait. If not, then reconstruction is
1475 * blocked on the indicated stripe and the routine returns zero. If
1476 * and only if we return non-zero, we'll cause the cbFunc to get
1477 * invoked with the cbArg when the reconstruction has completed.
1478 */
1479 int
1480 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1481 RF_Raid_t *raidPtr;
1482 RF_AccessStripeMap_t *asmap;
1483 void (*cbFunc) (RF_Raid_t *, void *);
1484 void *cbArg;
1485 {
1486 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1487 * we're working on */
1488 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1489 * forcing recon on */
1490 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1491 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1492 * stripe status structure */
1493 RF_StripeNum_t psid; /* parity stripe id */
1494 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1495 * offset */
1496 RF_RowCol_t *diskids;
1497 RF_RowCol_t stripe;
1498 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1499 RF_RowCol_t fcol, diskno, i;
1500 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1501 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1502 RF_CallbackDesc_t *cb;
1503 int created = 0, nPromoted;
1504
1505 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1506
1507 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1508
1509 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1510
1511 /* if recon is not ongoing on this PS, just return */
1512 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1513 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1514 return (0);
1515 }
1516 /* otherwise, we have to wait for reconstruction to complete on this
1517 * RU. */
1518 /* In order to avoid waiting for a potentially large number of
1519 * low-priority accesses to complete, we force a normal-priority (i.e.
1520 * not low-priority) reconstruction on this RU. */
1521 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1522 DDprintf1("Forcing recon on psid %ld\n", psid);
1523 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1524 * forced recon */
1525 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1526 * that we just set */
1527 fcol = raidPtr->reconControl[row]->fcol;
1528
1529 /* get a listing of the disks comprising the indicated stripe */
1530 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1531 RF_ASSERT(row == stripe);
1532
1533 /* For previously issued reads, elevate them to normal
1534 * priority. If the I/O has already completed, it won't be
1535 * found in the queue, and hence this will be a no-op. For
1536 * unissued reads, allocate buffers and issue new reads. The
1537 * fact that we've set the FORCED bit means that the regular
1538 * recon procs will not re-issue these reqs */
1539 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1540 if ((diskno = diskids[i]) != fcol) {
1541 if (pssPtr->issued[diskno]) {
1542 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1543 if (rf_reconDebug && nPromoted)
1544 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1545 } else {
1546 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1547 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1548 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1549 * location */
1550 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1551 new_rbuf->which_ru = which_ru;
1552 new_rbuf->failedDiskSectorOffset = fd_offset;
1553 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1554
1555 /* use NULL b_proc b/c all addrs
1556 * should be in kernel space */
1557 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1558 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1559 NULL, (void *) raidPtr, 0, NULL);
1560
1561 RF_ASSERT(req); /* XXX -- fix this --
1562 * XXX */
1563
1564 new_rbuf->arg = req;
1565 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1566 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1567 }
1568 }
1569 /* if the write is sitting in the disk queue, elevate its
1570 * priority */
1571 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1572 printf("raid%d: promoted write to row %d col %d\n",
1573 raidPtr->raidid, row, fcol);
1574 }
1575 /* install a callback descriptor to be invoked when recon completes on
1576 * this parity stripe. */
1577 cb = rf_AllocCallbackDesc();
1578 /* XXX the following is bogus.. These functions don't really match!!
1579 * GO */
1580 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1581 cb->callbackArg.p = (void *) cbArg;
1582 cb->next = pssPtr->procWaitList;
1583 pssPtr->procWaitList = cb;
1584 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1585 raidPtr->raidid, psid);
1586
1587 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1588 return (1);
1589 }
1590 /* called upon the completion of a forced reconstruction read.
1591 * all we do is schedule the FORCEDREADONE event.
1592 * called at interrupt context in the kernel, so don't do anything illegal here.
1593 */
1594 static void
1595 ForceReconReadDoneProc(arg, status)
1596 void *arg;
1597 int status;
1598 {
1599 RF_ReconBuffer_t *rbuf = arg;
1600
1601 if (status) {
1602 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1603 * recon read
1604 * failed!\n"); */
1605 RF_PANIC();
1606 }
1607 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1608 }
1609 /* releases a block on the reconstruction of the indicated stripe */
1610 int
1611 rf_UnblockRecon(raidPtr, asmap)
1612 RF_Raid_t *raidPtr;
1613 RF_AccessStripeMap_t *asmap;
1614 {
1615 RF_RowCol_t row = asmap->origRow;
1616 RF_StripeNum_t stripeID = asmap->stripeID;
1617 RF_ReconParityStripeStatus_t *pssPtr;
1618 RF_ReconUnitNum_t which_ru;
1619 RF_StripeNum_t psid;
1620 int created = 0;
1621 RF_CallbackDesc_t *cb;
1622
1623 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1624 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1625 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1626
1627 /* When recon is forced, the pss desc can get deleted before we get
1628 * back to unblock recon. But, this can _only_ happen when recon is
1629 * forced. It would be good to put some kind of sanity check here, but
1630 * how to decide if recon was just forced or not? */
1631 if (!pssPtr) {
1632 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1633 * RU %d\n",psid,which_ru); */
1634 if (rf_reconDebug || rf_pssDebug)
1635 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1636 goto out;
1637 }
1638 pssPtr->blockCount--;
1639 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1640 raidPtr->raidid, psid, pssPtr->blockCount);
1641 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1642
1643 /* unblock recon before calling CauseReconEvent in case
1644 * CauseReconEvent causes us to try to issue a new read before
1645 * returning here. */
1646 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1647
1648
1649 while (pssPtr->blockWaitList) {
1650 /* spin through the block-wait list and
1651 release all the waiters */
1652 cb = pssPtr->blockWaitList;
1653 pssPtr->blockWaitList = cb->next;
1654 cb->next = NULL;
1655 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1656 rf_FreeCallbackDesc(cb);
1657 }
1658 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1659 /* if no recon was requested while recon was blocked */
1660 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1661 }
1662 }
1663 out:
1664 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1665 return (0);
1666 }
1667