rf_reconstruct.c revision 1.16 1 /* $NetBSD: rf_reconstruct.c,v 1.16 2000/02/23 02:03:03 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403
404 lp = raidPtr->Layout.map;
405 if (lp->SubmitReconBuffer) {
406 /*
407 * The current infrastructure only supports reconstructing one
408 * disk at a time for each array.
409 */
410 RF_LOCK_MUTEX(raidPtr->mutex);
411 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
412 (raidPtr->numFailures > 0)) {
413 /* XXX 0 above shouldn't be constant!!! */
414 /* some component other than this has failed.
415 Let's not make things worse than they already
416 are... */
417 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
418 printf(" Row: %d Col: %d Too many failures.\n",
419 row, col);
420 RF_UNLOCK_MUTEX(raidPtr->mutex);
421 return (EINVAL);
422 }
423 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
424 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
425 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
426
427 RF_UNLOCK_MUTEX(raidPtr->mutex);
428 return (EINVAL);
429 }
430
431
432 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
433 /* "It's gone..." */
434 raidPtr->numFailures++;
435 raidPtr->Disks[row][col].status = rf_ds_failed;
436 raidPtr->status[row] = rf_rs_degraded;
437 }
438
439 while (raidPtr->reconInProgress) {
440 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
441 }
442
443 raidPtr->reconInProgress++;
444
445
446 /* first look for a spare drive onto which to reconstruct
447 the data. spare disk descriptors are stored in row 0.
448 This may have to change eventually */
449
450 /* Actually, we don't care if it's failed or not...
451 On a RAID set with correct parity, this function
452 should be callable on any component without ill affects. */
453 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
454 */
455
456 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
457 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
458
459 raidPtr->reconInProgress--;
460 RF_UNLOCK_MUTEX(raidPtr->mutex);
461 return (EINVAL);
462 }
463
464 /* XXX need goop here to see if the disk is alive,
465 and, if not, make it so... */
466
467
468
469 badDisk = &raidPtr->Disks[row][col];
470
471 proc = raidPtr->engine_thread;
472
473 /* This device may have been opened successfully the
474 first time. Close it before trying to open it again.. */
475
476 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
477 printf("Closed the open device: %s\n",
478 raidPtr->Disks[row][col].devname);
479 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
480 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
481 FREAD | FWRITE, proc->p_ucred, proc);
482 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
483 }
484 printf("About to (re-)open the device for rebuilding: %s\n",
485 raidPtr->Disks[row][col].devname);
486
487 retcode = raidlookup(raidPtr->Disks[row][col].devname,
488 proc, &vp);
489
490 if (retcode) {
491 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
492 raidPtr->Disks[row][col].devname, retcode);
493
494 /* XXX the component isn't responding properly...
495 must be still dead :-( */
496 raidPtr->reconInProgress--;
497 RF_UNLOCK_MUTEX(raidPtr->mutex);
498 return(retcode);
499
500 } else {
501
502 /* Ok, so we can at least do a lookup...
503 How about actually getting a vp for it? */
504
505 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
506 proc)) != 0) {
507 raidPtr->reconInProgress--;
508 RF_UNLOCK_MUTEX(raidPtr->mutex);
509 return(retcode);
510 }
511 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
512 FREAD, proc->p_ucred, proc);
513 if (retcode) {
514 raidPtr->reconInProgress--;
515 RF_UNLOCK_MUTEX(raidPtr->mutex);
516 return(retcode);
517 }
518 raidPtr->Disks[row][col].blockSize =
519 dpart.disklab->d_secsize;
520
521 raidPtr->Disks[row][col].numBlocks =
522 dpart.part->p_size - rf_protectedSectors;
523
524 raidPtr->raid_cinfo[row][col].ci_vp = vp;
525 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
526
527 raidPtr->Disks[row][col].dev = va.va_rdev;
528
529 /* we allow the user to specify that only a
530 fraction of the disks should be used this is
531 just for debug: it speeds up
532 * the parity scan */
533 raidPtr->Disks[row][col].numBlocks =
534 raidPtr->Disks[row][col].numBlocks *
535 rf_sizePercentage / 100;
536 }
537
538
539
540 spareDiskPtr = &raidPtr->Disks[row][col];
541 spareDiskPtr->status = rf_ds_used_spare;
542
543 printf("RECON: initiating in-place reconstruction on\n");
544 printf(" row %d col %d -> spare at row %d col %d\n",
545 row, col, row, col);
546
547 RF_UNLOCK_MUTEX(raidPtr->mutex);
548
549 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
550 spareDiskPtr, numDisksDone,
551 row, col);
552 raidPtr->reconDesc = (void *) reconDesc;
553 #if RF_RECON_STATS > 0
554 reconDesc->hsStallCount = 0;
555 reconDesc->numReconExecDelays = 0;
556 reconDesc->numReconEventWaits = 0;
557 #endif /* RF_RECON_STATS > 0 */
558 reconDesc->reconExecTimerRunning = 0;
559 reconDesc->reconExecTicks = 0;
560 reconDesc->maxReconExecTicks = 0;
561 rc = rf_ContinueReconstructFailedDisk(reconDesc);
562
563 RF_LOCK_MUTEX(raidPtr->mutex);
564 raidPtr->reconInProgress--;
565 RF_UNLOCK_MUTEX(raidPtr->mutex);
566
567 } else {
568 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
569 lp->parityConfig);
570 rc = EIO;
571 }
572 RF_LOCK_MUTEX(raidPtr->mutex);
573
574 if (!rc) {
575 /* Need to set these here, as at this point it'll be claiming
576 that the disk is in rf_ds_spared! But we know better :-) */
577
578 raidPtr->Disks[row][col].status = rf_ds_optimal;
579 raidPtr->status[row] = rf_rs_optimal;
580
581 /* fix up the component label */
582 /* Don't actually need the read here.. */
583 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
584 raidPtr->raid_cinfo[row][col].ci_vp,
585 &c_label);
586
587 raid_init_component_label(raidPtr, &c_label);
588
589 c_label.row = row;
590 c_label.column = col;
591
592 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
593 raidPtr->raid_cinfo[row][col].ci_vp,
594 &c_label);
595
596 }
597 RF_UNLOCK_MUTEX(raidPtr->mutex);
598 RF_SIGNAL_COND(raidPtr->waitForReconCond);
599 wakeup(&raidPtr->waitForReconCond);
600 return (rc);
601 }
602
603
604 int
605 rf_ContinueReconstructFailedDisk(reconDesc)
606 RF_RaidReconDesc_t *reconDesc;
607 {
608 RF_Raid_t *raidPtr = reconDesc->raidPtr;
609 RF_RowCol_t row = reconDesc->row;
610 RF_RowCol_t col = reconDesc->col;
611 RF_RowCol_t srow = reconDesc->srow;
612 RF_RowCol_t scol = reconDesc->scol;
613 RF_ReconMap_t *mapPtr;
614
615 RF_ReconEvent_t *event;
616 struct timeval etime, elpsd;
617 unsigned long xor_s, xor_resid_us;
618 int retcode, i, ds;
619
620 switch (reconDesc->state) {
621
622
623 case 0:
624
625 raidPtr->accumXorTimeUs = 0;
626
627 /* create one trace record per physical disk */
628 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
629
630 /* quiesce the array prior to starting recon. this is needed
631 * to assure no nasty interactions with pending user writes.
632 * We need to do this before we change the disk or row status. */
633 reconDesc->state = 1;
634
635 Dprintf("RECON: begin request suspend\n");
636 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
637 Dprintf("RECON: end request suspend\n");
638 rf_StartUserStats(raidPtr); /* zero out the stats kept on
639 * user accs */
640
641 /* fall through to state 1 */
642
643 case 1:
644
645 RF_LOCK_MUTEX(raidPtr->mutex);
646
647 /* create the reconstruction control pointer and install it in
648 * the right slot */
649 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
650 mapPtr = raidPtr->reconControl[row]->reconMap;
651 raidPtr->status[row] = rf_rs_reconstructing;
652 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
653 raidPtr->Disks[row][col].spareRow = srow;
654 raidPtr->Disks[row][col].spareCol = scol;
655
656 RF_UNLOCK_MUTEX(raidPtr->mutex);
657
658 RF_GETTIME(raidPtr->reconControl[row]->starttime);
659
660 /* now start up the actual reconstruction: issue a read for
661 * each surviving disk */
662
663 reconDesc->numDisksDone = 0;
664 for (i = 0; i < raidPtr->numCol; i++) {
665 if (i != col) {
666 /* find and issue the next I/O on the
667 * indicated disk */
668 if (IssueNextReadRequest(raidPtr, row, i)) {
669 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
670 reconDesc->numDisksDone++;
671 }
672 }
673 }
674
675 case 2:
676 Dprintf("RECON: resume requests\n");
677 rf_ResumeNewRequests(raidPtr);
678
679
680 reconDesc->state = 3;
681
682 case 3:
683
684 /* process reconstruction events until all disks report that
685 * they've completed all work */
686 mapPtr = raidPtr->reconControl[row]->reconMap;
687
688
689
690 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
691
692 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
693 RF_ASSERT(event);
694
695 if (ProcessReconEvent(raidPtr, row, event))
696 reconDesc->numDisksDone++;
697 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
698 if (rf_prReconSched) {
699 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
700 }
701 }
702
703
704
705 reconDesc->state = 4;
706
707
708 case 4:
709 mapPtr = raidPtr->reconControl[row]->reconMap;
710 if (rf_reconDebug) {
711 printf("RECON: all reads completed\n");
712 }
713 /* at this point all the reads have completed. We now wait
714 * for any pending writes to complete, and then we're done */
715
716 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
717
718 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
719 RF_ASSERT(event);
720
721 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
722 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
723 if (rf_prReconSched) {
724 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
725 }
726 }
727 reconDesc->state = 5;
728
729 case 5:
730 /* Success: mark the dead disk as reconstructed. We quiesce
731 * the array here to assure no nasty interactions with pending
732 * user accesses when we free up the psstatus structure as
733 * part of FreeReconControl() */
734
735 reconDesc->state = 6;
736
737 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
738 rf_StopUserStats(raidPtr);
739 rf_PrintUserStats(raidPtr); /* print out the stats on user
740 * accs accumulated during
741 * recon */
742
743 /* fall through to state 6 */
744 case 6:
745
746
747
748 RF_LOCK_MUTEX(raidPtr->mutex);
749 raidPtr->numFailures--;
750 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
751 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
752 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
753 RF_UNLOCK_MUTEX(raidPtr->mutex);
754 RF_GETTIME(etime);
755 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
756
757 /* XXX -- why is state 7 different from state 6 if there is no
758 * return() here? -- XXX Note that I set elpsd above & use it
759 * below, so if you put a return here you'll have to fix this.
760 * (also, FreeReconControl is called below) */
761
762 case 7:
763
764 rf_ResumeNewRequests(raidPtr);
765
766 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col);
767 xor_s = raidPtr->accumXorTimeUs / 1000000;
768 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
769 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
770 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
771 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
772 (int) raidPtr->reconControl[row]->starttime.tv_sec,
773 (int) raidPtr->reconControl[row]->starttime.tv_usec,
774 (int) etime.tv_sec, (int) etime.tv_usec);
775
776 #if RF_RECON_STATS > 0
777 printf("Total head-sep stall count was %d\n",
778 (int) reconDesc->hsStallCount);
779 #endif /* RF_RECON_STATS > 0 */
780 rf_FreeReconControl(raidPtr, row);
781 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
782 FreeReconDesc(reconDesc);
783
784 }
785
786 SignalReconDone(raidPtr);
787 return (0);
788 }
789 /*****************************************************************************
790 * do the right thing upon each reconstruction event.
791 * returns nonzero if and only if there is nothing left unread on the
792 * indicated disk
793 *****************************************************************************/
794 static int
795 ProcessReconEvent(raidPtr, frow, event)
796 RF_Raid_t *raidPtr;
797 RF_RowCol_t frow;
798 RF_ReconEvent_t *event;
799 {
800 int retcode = 0, submitblocked;
801 RF_ReconBuffer_t *rbuf;
802 RF_SectorCount_t sectorsPerRU;
803
804 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
805 switch (event->type) {
806
807 /* a read I/O has completed */
808 case RF_REVENT_READDONE:
809 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
810 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
811 frow, event->col, rbuf->parityStripeID);
812 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
813 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
814 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
815 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
816 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
817 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
818 if (!submitblocked)
819 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
820 break;
821
822 /* a write I/O has completed */
823 case RF_REVENT_WRITEDONE:
824 if (rf_floatingRbufDebug) {
825 rf_CheckFloatingRbufCount(raidPtr, 1);
826 }
827 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
828 rbuf = (RF_ReconBuffer_t *) event->arg;
829 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
830 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
831 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
832 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
833 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
834 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
835
836 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
837 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
838 raidPtr->numFullReconBuffers--;
839 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
840 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
841 } else
842 if (rbuf->type == RF_RBUF_TYPE_FORCED)
843 rf_FreeReconBuffer(rbuf);
844 else
845 RF_ASSERT(0);
846 break;
847
848 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
849 * cleared */
850 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
851 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
852 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
853 * BUFCLEAR event if we
854 * couldn't submit */
855 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
856 break;
857
858 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
859 * blockage has been cleared */
860 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
861 retcode = TryToRead(raidPtr, frow, event->col);
862 break;
863
864 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
865 * reconstruction blockage has been
866 * cleared */
867 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
868 retcode = TryToRead(raidPtr, frow, event->col);
869 break;
870
871 /* a buffer has become ready to write */
872 case RF_REVENT_BUFREADY:
873 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
874 retcode = IssueNextWriteRequest(raidPtr, frow);
875 if (rf_floatingRbufDebug) {
876 rf_CheckFloatingRbufCount(raidPtr, 1);
877 }
878 break;
879
880 /* we need to skip the current RU entirely because it got
881 * recon'd while we were waiting for something else to happen */
882 case RF_REVENT_SKIP:
883 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
884 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
885 break;
886
887 /* a forced-reconstruction read access has completed. Just
888 * submit the buffer */
889 case RF_REVENT_FORCEDREADDONE:
890 rbuf = (RF_ReconBuffer_t *) event->arg;
891 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
892 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
893 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
894 RF_ASSERT(!submitblocked);
895 break;
896
897 default:
898 RF_PANIC();
899 }
900 rf_FreeReconEventDesc(event);
901 return (retcode);
902 }
903 /*****************************************************************************
904 *
905 * find the next thing that's needed on the indicated disk, and issue
906 * a read request for it. We assume that the reconstruction buffer
907 * associated with this process is free to receive the data. If
908 * reconstruction is blocked on the indicated RU, we issue a
909 * blockage-release request instead of a physical disk read request.
910 * If the current disk gets too far ahead of the others, we issue a
911 * head-separation wait request and return.
912 *
913 * ctrl->{ru_count, curPSID, diskOffset} and
914 * rbuf->failedDiskSectorOffset are maintained to point the the unit
915 * we're currently accessing. Note that this deviates from the
916 * standard C idiom of having counters point to the next thing to be
917 * accessed. This allows us to easily retry when we're blocked by
918 * head separation or reconstruction-blockage events.
919 *
920 * returns nonzero if and only if there is nothing left unread on the
921 * indicated disk
922 *
923 *****************************************************************************/
924 static int
925 IssueNextReadRequest(raidPtr, row, col)
926 RF_Raid_t *raidPtr;
927 RF_RowCol_t row;
928 RF_RowCol_t col;
929 {
930 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
931 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
932 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
933 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
934 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
935 int do_new_check = 0, retcode = 0, status;
936
937 /* if we are currently the slowest disk, mark that we have to do a new
938 * check */
939 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
940 do_new_check = 1;
941
942 while (1) {
943
944 ctrl->ru_count++;
945 if (ctrl->ru_count < RUsPerPU) {
946 ctrl->diskOffset += sectorsPerRU;
947 rbuf->failedDiskSectorOffset += sectorsPerRU;
948 } else {
949 ctrl->curPSID++;
950 ctrl->ru_count = 0;
951 /* code left over from when head-sep was based on
952 * parity stripe id */
953 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
954 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
955 return (1); /* finito! */
956 }
957 /* find the disk offsets of the start of the parity
958 * stripe on both the current disk and the failed
959 * disk. skip this entire parity stripe if either disk
960 * does not appear in the indicated PS */
961 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
962 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
963 if (status) {
964 ctrl->ru_count = RUsPerPU - 1;
965 continue;
966 }
967 }
968 rbuf->which_ru = ctrl->ru_count;
969
970 /* skip this RU if it's already been reconstructed */
971 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
972 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
973 continue;
974 }
975 break;
976 }
977 ctrl->headSepCounter++;
978 if (do_new_check)
979 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
980
981
982 /* at this point, we have definitely decided what to do, and we have
983 * only to see if we can actually do it now */
984 rbuf->parityStripeID = ctrl->curPSID;
985 rbuf->which_ru = ctrl->ru_count;
986 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
987 raidPtr->recon_tracerecs[col].reconacc = 1;
988 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
989 retcode = TryToRead(raidPtr, row, col);
990 return (retcode);
991 }
992
993 /*
994 * tries to issue the next read on the indicated disk. We may be
995 * blocked by (a) the heads being too far apart, or (b) recon on the
996 * indicated RU being blocked due to a write by a user thread. In
997 * this case, we issue a head-sep or blockage wait request, which will
998 * cause this same routine to be invoked again later when the blockage
999 * has cleared.
1000 */
1001
1002 static int
1003 TryToRead(raidPtr, row, col)
1004 RF_Raid_t *raidPtr;
1005 RF_RowCol_t row;
1006 RF_RowCol_t col;
1007 {
1008 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1009 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1010 RF_StripeNum_t psid = ctrl->curPSID;
1011 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1012 RF_DiskQueueData_t *req;
1013 int status, created = 0;
1014 RF_ReconParityStripeStatus_t *pssPtr;
1015
1016 /* if the current disk is too far ahead of the others, issue a
1017 * head-separation wait and return */
1018 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1019 return (0);
1020 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1021 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1022
1023 /* if recon is blocked on the indicated parity stripe, issue a
1024 * block-wait request and return. this also must mark the indicated RU
1025 * in the stripe as under reconstruction if not blocked. */
1026 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1027 if (status == RF_PSS_RECON_BLOCKED) {
1028 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1029 goto out;
1030 } else
1031 if (status == RF_PSS_FORCED_ON_WRITE) {
1032 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1033 goto out;
1034 }
1035 /* make one last check to be sure that the indicated RU didn't get
1036 * reconstructed while we were waiting for something else to happen.
1037 * This is unfortunate in that it causes us to make this check twice
1038 * in the normal case. Might want to make some attempt to re-work
1039 * this so that we only do this check if we've definitely blocked on
1040 * one of the above checks. When this condition is detected, we may
1041 * have just created a bogus status entry, which we need to delete. */
1042 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1043 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1044 if (created)
1045 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1046 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1047 goto out;
1048 }
1049 /* found something to read. issue the I/O */
1050 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1051 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1052 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1053 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1054 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1055 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1056 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1057
1058 /* should be ok to use a NULL proc pointer here, all the bufs we use
1059 * should be in kernel space */
1060 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1061 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1062
1063 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1064
1065 ctrl->rbuf->arg = (void *) req;
1066 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1067 pssPtr->issued[col] = 1;
1068
1069 out:
1070 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1071 return (0);
1072 }
1073
1074
1075 /*
1076 * given a parity stripe ID, we want to find out whether both the
1077 * current disk and the failed disk exist in that parity stripe. If
1078 * not, we want to skip this whole PS. If so, we want to find the
1079 * disk offset of the start of the PS on both the current disk and the
1080 * failed disk.
1081 *
1082 * this works by getting a list of disks comprising the indicated
1083 * parity stripe, and searching the list for the current and failed
1084 * disks. Once we've decided they both exist in the parity stripe, we
1085 * need to decide whether each is data or parity, so that we'll know
1086 * which mapping function to call to get the corresponding disk
1087 * offsets.
1088 *
1089 * this is kind of unpleasant, but doing it this way allows the
1090 * reconstruction code to use parity stripe IDs rather than physical
1091 * disks address to march through the failed disk, which greatly
1092 * simplifies a lot of code, as well as eliminating the need for a
1093 * reverse-mapping function. I also think it will execute faster,
1094 * since the calls to the mapping module are kept to a minimum.
1095 *
1096 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1097 * THE STRIPE IN THE CORRECT ORDER */
1098
1099
1100 static int
1101 ComputePSDiskOffsets(
1102 RF_Raid_t * raidPtr, /* raid descriptor */
1103 RF_StripeNum_t psid, /* parity stripe identifier */
1104 RF_RowCol_t row, /* row and column of disk to find the offsets
1105 * for */
1106 RF_RowCol_t col,
1107 RF_SectorNum_t * outDiskOffset,
1108 RF_SectorNum_t * outFailedDiskSectorOffset,
1109 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1110 RF_RowCol_t * spCol,
1111 RF_SectorNum_t * spOffset)
1112 { /* OUT: offset into disk containing spare unit */
1113 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1114 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1115 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1116 RF_RowCol_t *diskids;
1117 u_int i, j, k, i_offset, j_offset;
1118 RF_RowCol_t prow, pcol;
1119 int testcol, testrow;
1120 RF_RowCol_t stripe;
1121 RF_SectorNum_t poffset;
1122 char i_is_parity = 0, j_is_parity = 0;
1123 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1124
1125 /* get a listing of the disks comprising that stripe */
1126 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1127 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1128 RF_ASSERT(diskids);
1129
1130 /* reject this entire parity stripe if it does not contain the
1131 * indicated disk or it does not contain the failed disk */
1132 if (row != stripe)
1133 goto skipit;
1134 for (i = 0; i < stripeWidth; i++) {
1135 if (col == diskids[i])
1136 break;
1137 }
1138 if (i == stripeWidth)
1139 goto skipit;
1140 for (j = 0; j < stripeWidth; j++) {
1141 if (fcol == diskids[j])
1142 break;
1143 }
1144 if (j == stripeWidth) {
1145 goto skipit;
1146 }
1147 /* find out which disk the parity is on */
1148 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1149
1150 /* find out if either the current RU or the failed RU is parity */
1151 /* also, if the parity occurs in this stripe prior to the data and/or
1152 * failed col, we need to decrement i and/or j */
1153 for (k = 0; k < stripeWidth; k++)
1154 if (diskids[k] == pcol)
1155 break;
1156 RF_ASSERT(k < stripeWidth);
1157 i_offset = i;
1158 j_offset = j;
1159 if (k < i)
1160 i_offset--;
1161 else
1162 if (k == i) {
1163 i_is_parity = 1;
1164 i_offset = 0;
1165 } /* set offsets to zero to disable multiply
1166 * below */
1167 if (k < j)
1168 j_offset--;
1169 else
1170 if (k == j) {
1171 j_is_parity = 1;
1172 j_offset = 0;
1173 }
1174 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1175 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1176 * tells us how far into the stripe the [current,failed] disk is. */
1177
1178 /* call the mapping routine to get the offset into the current disk,
1179 * repeat for failed disk. */
1180 if (i_is_parity)
1181 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1182 else
1183 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1184
1185 RF_ASSERT(row == testrow && col == testcol);
1186
1187 if (j_is_parity)
1188 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1189 else
1190 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1191 RF_ASSERT(row == testrow && fcol == testcol);
1192
1193 /* now locate the spare unit for the failed unit */
1194 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1195 if (j_is_parity)
1196 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1197 else
1198 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1199 } else {
1200 *spRow = raidPtr->reconControl[row]->spareRow;
1201 *spCol = raidPtr->reconControl[row]->spareCol;
1202 *spOffset = *outFailedDiskSectorOffset;
1203 }
1204
1205 return (0);
1206
1207 skipit:
1208 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1209 psid, row, col);
1210 return (1);
1211 }
1212 /* this is called when a buffer has become ready to write to the replacement disk */
1213 static int
1214 IssueNextWriteRequest(raidPtr, row)
1215 RF_Raid_t *raidPtr;
1216 RF_RowCol_t row;
1217 {
1218 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1219 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1220 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1221 RF_ReconBuffer_t *rbuf;
1222 RF_DiskQueueData_t *req;
1223
1224 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1225 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1226 * have gotten the event that sent us here */
1227 RF_ASSERT(rbuf->pssPtr);
1228
1229 rbuf->pssPtr->writeRbuf = rbuf;
1230 rbuf->pssPtr = NULL;
1231
1232 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1233 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1234 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1235 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1236 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1237 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1238
1239 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1240 * kernel space */
1241 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1242 sectorsPerRU, rbuf->buffer,
1243 rbuf->parityStripeID, rbuf->which_ru,
1244 ReconWriteDoneProc, (void *) rbuf, NULL,
1245 &raidPtr->recon_tracerecs[fcol],
1246 (void *) raidPtr, 0, NULL);
1247
1248 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1249
1250 rbuf->arg = (void *) req;
1251 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1252
1253 return (0);
1254 }
1255
1256 /*
1257 * this gets called upon the completion of a reconstruction read
1258 * operation the arg is a pointer to the per-disk reconstruction
1259 * control structure for the process that just finished a read.
1260 *
1261 * called at interrupt context in the kernel, so don't do anything
1262 * illegal here.
1263 */
1264 static int
1265 ReconReadDoneProc(arg, status)
1266 void *arg;
1267 int status;
1268 {
1269 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1270 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1271
1272 if (status) {
1273 /*
1274 * XXX
1275 */
1276 printf("Recon read failed!\n");
1277 RF_PANIC();
1278 }
1279 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1280 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1281 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1282 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1283 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1284
1285 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1286 return (0);
1287 }
1288 /* this gets called upon the completion of a reconstruction write operation.
1289 * the arg is a pointer to the rbuf that was just written
1290 *
1291 * called at interrupt context in the kernel, so don't do anything illegal here.
1292 */
1293 static int
1294 ReconWriteDoneProc(arg, status)
1295 void *arg;
1296 int status;
1297 {
1298 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1299
1300 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1301 if (status) {
1302 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1303 * write failed!\n"); */
1304 RF_PANIC();
1305 }
1306 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1307 return (0);
1308 }
1309
1310
1311 /*
1312 * computes a new minimum head sep, and wakes up anyone who needs to
1313 * be woken as a result
1314 */
1315 static void
1316 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1317 RF_Raid_t *raidPtr;
1318 RF_RowCol_t row;
1319 RF_HeadSepLimit_t hsCtr;
1320 {
1321 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1322 RF_HeadSepLimit_t new_min;
1323 RF_RowCol_t i;
1324 RF_CallbackDesc_t *p;
1325 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1326 * of a minimum */
1327
1328
1329 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1330
1331 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1332 for (i = 0; i < raidPtr->numCol; i++)
1333 if (i != reconCtrlPtr->fcol) {
1334 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1335 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1336 }
1337 /* set the new minimum and wake up anyone who can now run again */
1338 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1339 reconCtrlPtr->minHeadSepCounter = new_min;
1340 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1341 while (reconCtrlPtr->headSepCBList) {
1342 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1343 break;
1344 p = reconCtrlPtr->headSepCBList;
1345 reconCtrlPtr->headSepCBList = p->next;
1346 p->next = NULL;
1347 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1348 rf_FreeCallbackDesc(p);
1349 }
1350
1351 }
1352 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1353 }
1354
1355 /*
1356 * checks to see that the maximum head separation will not be violated
1357 * if we initiate a reconstruction I/O on the indicated disk.
1358 * Limiting the maximum head separation between two disks eliminates
1359 * the nasty buffer-stall conditions that occur when one disk races
1360 * ahead of the others and consumes all of the floating recon buffers.
1361 * This code is complex and unpleasant but it's necessary to avoid
1362 * some very nasty, albeit fairly rare, reconstruction behavior.
1363 *
1364 * returns non-zero if and only if we have to stop working on the
1365 * indicated disk due to a head-separation delay.
1366 */
1367 static int
1368 CheckHeadSeparation(
1369 RF_Raid_t * raidPtr,
1370 RF_PerDiskReconCtrl_t * ctrl,
1371 RF_RowCol_t row,
1372 RF_RowCol_t col,
1373 RF_HeadSepLimit_t hsCtr,
1374 RF_ReconUnitNum_t which_ru)
1375 {
1376 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1377 RF_CallbackDesc_t *cb, *p, *pt;
1378 int retval = 0;
1379
1380 /* if we're too far ahead of the slowest disk, stop working on this
1381 * disk until the slower ones catch up. We do this by scheduling a
1382 * wakeup callback for the time when the slowest disk has caught up.
1383 * We define "caught up" with 20% hysteresis, i.e. the head separation
1384 * must have fallen to at most 80% of the max allowable head
1385 * separation before we'll wake up.
1386 *
1387 */
1388 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1389 if ((raidPtr->headSepLimit >= 0) &&
1390 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1391 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1392 raidPtr->raidid, row, col, ctrl->headSepCounter,
1393 reconCtrlPtr->minHeadSepCounter,
1394 raidPtr->headSepLimit);
1395 cb = rf_AllocCallbackDesc();
1396 /* the minHeadSepCounter value we have to get to before we'll
1397 * wake up. build in 20% hysteresis. */
1398 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1399 cb->row = row;
1400 cb->col = col;
1401 cb->next = NULL;
1402
1403 /* insert this callback descriptor into the sorted list of
1404 * pending head-sep callbacks */
1405 p = reconCtrlPtr->headSepCBList;
1406 if (!p)
1407 reconCtrlPtr->headSepCBList = cb;
1408 else
1409 if (cb->callbackArg.v < p->callbackArg.v) {
1410 cb->next = reconCtrlPtr->headSepCBList;
1411 reconCtrlPtr->headSepCBList = cb;
1412 } else {
1413 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1414 cb->next = p;
1415 pt->next = cb;
1416 }
1417 retval = 1;
1418 #if RF_RECON_STATS > 0
1419 ctrl->reconCtrl->reconDesc->hsStallCount++;
1420 #endif /* RF_RECON_STATS > 0 */
1421 }
1422 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1423
1424 return (retval);
1425 }
1426 /*
1427 * checks to see if reconstruction has been either forced or blocked
1428 * by a user operation. if forced, we skip this RU entirely. else if
1429 * blocked, put ourselves on the wait list. else return 0.
1430 *
1431 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1432 */
1433 static int
1434 CheckForcedOrBlockedReconstruction(
1435 RF_Raid_t * raidPtr,
1436 RF_ReconParityStripeStatus_t * pssPtr,
1437 RF_PerDiskReconCtrl_t * ctrl,
1438 RF_RowCol_t row,
1439 RF_RowCol_t col,
1440 RF_StripeNum_t psid,
1441 RF_ReconUnitNum_t which_ru)
1442 {
1443 RF_CallbackDesc_t *cb;
1444 int retcode = 0;
1445
1446 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1447 retcode = RF_PSS_FORCED_ON_WRITE;
1448 else
1449 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1450 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1451 cb = rf_AllocCallbackDesc(); /* append ourselves to
1452 * the blockage-wait
1453 * list */
1454 cb->row = row;
1455 cb->col = col;
1456 cb->next = pssPtr->blockWaitList;
1457 pssPtr->blockWaitList = cb;
1458 retcode = RF_PSS_RECON_BLOCKED;
1459 }
1460 if (!retcode)
1461 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1462 * reconstruction */
1463
1464 return (retcode);
1465 }
1466 /*
1467 * if reconstruction is currently ongoing for the indicated stripeID,
1468 * reconstruction is forced to completion and we return non-zero to
1469 * indicate that the caller must wait. If not, then reconstruction is
1470 * blocked on the indicated stripe and the routine returns zero. If
1471 * and only if we return non-zero, we'll cause the cbFunc to get
1472 * invoked with the cbArg when the reconstruction has completed.
1473 */
1474 int
1475 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1476 RF_Raid_t *raidPtr;
1477 RF_AccessStripeMap_t *asmap;
1478 void (*cbFunc) (RF_Raid_t *, void *);
1479 void *cbArg;
1480 {
1481 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1482 * we're working on */
1483 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1484 * forcing recon on */
1485 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1486 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1487 * stripe status structure */
1488 RF_StripeNum_t psid; /* parity stripe id */
1489 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1490 * offset */
1491 RF_RowCol_t *diskids;
1492 RF_RowCol_t stripe;
1493 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1494 RF_RowCol_t fcol, diskno, i;
1495 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1496 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1497 RF_CallbackDesc_t *cb;
1498 int created = 0, nPromoted;
1499
1500 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1501
1502 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1503
1504 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1505
1506 /* if recon is not ongoing on this PS, just return */
1507 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1508 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1509 return (0);
1510 }
1511 /* otherwise, we have to wait for reconstruction to complete on this
1512 * RU. */
1513 /* In order to avoid waiting for a potentially large number of
1514 * low-priority accesses to complete, we force a normal-priority (i.e.
1515 * not low-priority) reconstruction on this RU. */
1516 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1517 DDprintf1("Forcing recon on psid %ld\n", psid);
1518 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1519 * forced recon */
1520 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1521 * that we just set */
1522 fcol = raidPtr->reconControl[row]->fcol;
1523
1524 /* get a listing of the disks comprising the indicated stripe */
1525 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1526 RF_ASSERT(row == stripe);
1527
1528 /* For previously issued reads, elevate them to normal
1529 * priority. If the I/O has already completed, it won't be
1530 * found in the queue, and hence this will be a no-op. For
1531 * unissued reads, allocate buffers and issue new reads. The
1532 * fact that we've set the FORCED bit means that the regular
1533 * recon procs will not re-issue these reqs */
1534 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1535 if ((diskno = diskids[i]) != fcol) {
1536 if (pssPtr->issued[diskno]) {
1537 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1538 if (rf_reconDebug && nPromoted)
1539 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1540 } else {
1541 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1542 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1543 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1544 * location */
1545 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1546 new_rbuf->which_ru = which_ru;
1547 new_rbuf->failedDiskSectorOffset = fd_offset;
1548 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1549
1550 /* use NULL b_proc b/c all addrs
1551 * should be in kernel space */
1552 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1553 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1554 NULL, (void *) raidPtr, 0, NULL);
1555
1556 RF_ASSERT(req); /* XXX -- fix this --
1557 * XXX */
1558
1559 new_rbuf->arg = req;
1560 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1561 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1562 }
1563 }
1564 /* if the write is sitting in the disk queue, elevate its
1565 * priority */
1566 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1567 printf("raid%d: promoted write to row %d col %d\n",
1568 raidPtr->raidid, row, fcol);
1569 }
1570 /* install a callback descriptor to be invoked when recon completes on
1571 * this parity stripe. */
1572 cb = rf_AllocCallbackDesc();
1573 /* XXX the following is bogus.. These functions don't really match!!
1574 * GO */
1575 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1576 cb->callbackArg.p = (void *) cbArg;
1577 cb->next = pssPtr->procWaitList;
1578 pssPtr->procWaitList = cb;
1579 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1580 raidPtr->raidid, psid);
1581
1582 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1583 return (1);
1584 }
1585 /* called upon the completion of a forced reconstruction read.
1586 * all we do is schedule the FORCEDREADONE event.
1587 * called at interrupt context in the kernel, so don't do anything illegal here.
1588 */
1589 static void
1590 ForceReconReadDoneProc(arg, status)
1591 void *arg;
1592 int status;
1593 {
1594 RF_ReconBuffer_t *rbuf = arg;
1595
1596 if (status) {
1597 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1598 * recon read
1599 * failed!\n"); */
1600 RF_PANIC();
1601 }
1602 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1603 }
1604 /* releases a block on the reconstruction of the indicated stripe */
1605 int
1606 rf_UnblockRecon(raidPtr, asmap)
1607 RF_Raid_t *raidPtr;
1608 RF_AccessStripeMap_t *asmap;
1609 {
1610 RF_RowCol_t row = asmap->origRow;
1611 RF_StripeNum_t stripeID = asmap->stripeID;
1612 RF_ReconParityStripeStatus_t *pssPtr;
1613 RF_ReconUnitNum_t which_ru;
1614 RF_StripeNum_t psid;
1615 int created = 0;
1616 RF_CallbackDesc_t *cb;
1617
1618 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1619 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1620 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1621
1622 /* When recon is forced, the pss desc can get deleted before we get
1623 * back to unblock recon. But, this can _only_ happen when recon is
1624 * forced. It would be good to put some kind of sanity check here, but
1625 * how to decide if recon was just forced or not? */
1626 if (!pssPtr) {
1627 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1628 * RU %d\n",psid,which_ru); */
1629 if (rf_reconDebug || rf_pssDebug)
1630 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1631 goto out;
1632 }
1633 pssPtr->blockCount--;
1634 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1635 raidPtr->raidid, psid, pssPtr->blockCount);
1636 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1637
1638 /* unblock recon before calling CauseReconEvent in case
1639 * CauseReconEvent causes us to try to issue a new read before
1640 * returning here. */
1641 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1642
1643
1644 while (pssPtr->blockWaitList) {
1645 /* spin through the block-wait list and
1646 release all the waiters */
1647 cb = pssPtr->blockWaitList;
1648 pssPtr->blockWaitList = cb->next;
1649 cb->next = NULL;
1650 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1651 rf_FreeCallbackDesc(cb);
1652 }
1653 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1654 /* if no recon was requested while recon was blocked */
1655 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1656 }
1657 }
1658 out:
1659 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1660 return (0);
1661 }
1662