rf_reconstruct.c revision 1.17 1 /* $NetBSD: rf_reconstruct.c,v 1.17 2000/02/23 03:44:03 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403
404 lp = raidPtr->Layout.map;
405 if (lp->SubmitReconBuffer) {
406 /*
407 * The current infrastructure only supports reconstructing one
408 * disk at a time for each array.
409 */
410 RF_LOCK_MUTEX(raidPtr->mutex);
411 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
412 (raidPtr->numFailures > 0)) {
413 /* XXX 0 above shouldn't be constant!!! */
414 /* some component other than this has failed.
415 Let's not make things worse than they already
416 are... */
417 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
418 printf(" Row: %d Col: %d Too many failures.\n",
419 row, col);
420 RF_UNLOCK_MUTEX(raidPtr->mutex);
421 return (EINVAL);
422 }
423 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
424 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
425 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
426
427 RF_UNLOCK_MUTEX(raidPtr->mutex);
428 return (EINVAL);
429 }
430
431
432 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
433 /* "It's gone..." */
434 raidPtr->numFailures++;
435 raidPtr->Disks[row][col].status = rf_ds_failed;
436 raidPtr->status[row] = rf_rs_degraded;
437 rf_update_component_labels(raidPtr);
438 }
439
440 while (raidPtr->reconInProgress) {
441 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
442 }
443
444 raidPtr->reconInProgress++;
445
446
447 /* first look for a spare drive onto which to reconstruct
448 the data. spare disk descriptors are stored in row 0.
449 This may have to change eventually */
450
451 /* Actually, we don't care if it's failed or not...
452 On a RAID set with correct parity, this function
453 should be callable on any component without ill affects. */
454 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
455 */
456
457 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
458 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
459
460 raidPtr->reconInProgress--;
461 RF_UNLOCK_MUTEX(raidPtr->mutex);
462 return (EINVAL);
463 }
464
465 /* XXX need goop here to see if the disk is alive,
466 and, if not, make it so... */
467
468
469
470 badDisk = &raidPtr->Disks[row][col];
471
472 proc = raidPtr->engine_thread;
473
474 /* This device may have been opened successfully the
475 first time. Close it before trying to open it again.. */
476
477 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
478 printf("Closed the open device: %s\n",
479 raidPtr->Disks[row][col].devname);
480 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
481 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
482 FREAD | FWRITE, proc->p_ucred, proc);
483 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
484 }
485 printf("About to (re-)open the device for rebuilding: %s\n",
486 raidPtr->Disks[row][col].devname);
487
488 retcode = raidlookup(raidPtr->Disks[row][col].devname,
489 proc, &vp);
490
491 if (retcode) {
492 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
493 raidPtr->Disks[row][col].devname, retcode);
494
495 /* XXX the component isn't responding properly...
496 must be still dead :-( */
497 raidPtr->reconInProgress--;
498 RF_UNLOCK_MUTEX(raidPtr->mutex);
499 return(retcode);
500
501 } else {
502
503 /* Ok, so we can at least do a lookup...
504 How about actually getting a vp for it? */
505
506 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
507 proc)) != 0) {
508 raidPtr->reconInProgress--;
509 RF_UNLOCK_MUTEX(raidPtr->mutex);
510 return(retcode);
511 }
512 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
513 FREAD, proc->p_ucred, proc);
514 if (retcode) {
515 raidPtr->reconInProgress--;
516 RF_UNLOCK_MUTEX(raidPtr->mutex);
517 return(retcode);
518 }
519 raidPtr->Disks[row][col].blockSize =
520 dpart.disklab->d_secsize;
521
522 raidPtr->Disks[row][col].numBlocks =
523 dpart.part->p_size - rf_protectedSectors;
524
525 raidPtr->raid_cinfo[row][col].ci_vp = vp;
526 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
527
528 raidPtr->Disks[row][col].dev = va.va_rdev;
529
530 /* we allow the user to specify that only a
531 fraction of the disks should be used this is
532 just for debug: it speeds up
533 * the parity scan */
534 raidPtr->Disks[row][col].numBlocks =
535 raidPtr->Disks[row][col].numBlocks *
536 rf_sizePercentage / 100;
537 }
538
539
540
541 spareDiskPtr = &raidPtr->Disks[row][col];
542 spareDiskPtr->status = rf_ds_used_spare;
543
544 printf("RECON: initiating in-place reconstruction on\n");
545 printf(" row %d col %d -> spare at row %d col %d\n",
546 row, col, row, col);
547
548 RF_UNLOCK_MUTEX(raidPtr->mutex);
549
550 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
551 spareDiskPtr, numDisksDone,
552 row, col);
553 raidPtr->reconDesc = (void *) reconDesc;
554 #if RF_RECON_STATS > 0
555 reconDesc->hsStallCount = 0;
556 reconDesc->numReconExecDelays = 0;
557 reconDesc->numReconEventWaits = 0;
558 #endif /* RF_RECON_STATS > 0 */
559 reconDesc->reconExecTimerRunning = 0;
560 reconDesc->reconExecTicks = 0;
561 reconDesc->maxReconExecTicks = 0;
562 rc = rf_ContinueReconstructFailedDisk(reconDesc);
563
564 RF_LOCK_MUTEX(raidPtr->mutex);
565 raidPtr->reconInProgress--;
566 RF_UNLOCK_MUTEX(raidPtr->mutex);
567
568 } else {
569 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
570 lp->parityConfig);
571 rc = EIO;
572 }
573 RF_LOCK_MUTEX(raidPtr->mutex);
574
575 if (!rc) {
576 /* Need to set these here, as at this point it'll be claiming
577 that the disk is in rf_ds_spared! But we know better :-) */
578
579 raidPtr->Disks[row][col].status = rf_ds_optimal;
580 raidPtr->status[row] = rf_rs_optimal;
581
582 /* fix up the component label */
583 /* Don't actually need the read here.. */
584 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
585 raidPtr->raid_cinfo[row][col].ci_vp,
586 &c_label);
587
588 raid_init_component_label(raidPtr, &c_label);
589
590 c_label.row = row;
591 c_label.column = col;
592
593 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
594 raidPtr->raid_cinfo[row][col].ci_vp,
595 &c_label);
596
597 }
598 RF_UNLOCK_MUTEX(raidPtr->mutex);
599 RF_SIGNAL_COND(raidPtr->waitForReconCond);
600 wakeup(&raidPtr->waitForReconCond);
601 return (rc);
602 }
603
604
605 int
606 rf_ContinueReconstructFailedDisk(reconDesc)
607 RF_RaidReconDesc_t *reconDesc;
608 {
609 RF_Raid_t *raidPtr = reconDesc->raidPtr;
610 RF_RowCol_t row = reconDesc->row;
611 RF_RowCol_t col = reconDesc->col;
612 RF_RowCol_t srow = reconDesc->srow;
613 RF_RowCol_t scol = reconDesc->scol;
614 RF_ReconMap_t *mapPtr;
615
616 RF_ReconEvent_t *event;
617 struct timeval etime, elpsd;
618 unsigned long xor_s, xor_resid_us;
619 int retcode, i, ds;
620
621 switch (reconDesc->state) {
622
623
624 case 0:
625
626 raidPtr->accumXorTimeUs = 0;
627
628 /* create one trace record per physical disk */
629 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
630
631 /* quiesce the array prior to starting recon. this is needed
632 * to assure no nasty interactions with pending user writes.
633 * We need to do this before we change the disk or row status. */
634 reconDesc->state = 1;
635
636 Dprintf("RECON: begin request suspend\n");
637 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
638 Dprintf("RECON: end request suspend\n");
639 rf_StartUserStats(raidPtr); /* zero out the stats kept on
640 * user accs */
641
642 /* fall through to state 1 */
643
644 case 1:
645
646 RF_LOCK_MUTEX(raidPtr->mutex);
647
648 /* create the reconstruction control pointer and install it in
649 * the right slot */
650 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
651 mapPtr = raidPtr->reconControl[row]->reconMap;
652 raidPtr->status[row] = rf_rs_reconstructing;
653 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
654 raidPtr->Disks[row][col].spareRow = srow;
655 raidPtr->Disks[row][col].spareCol = scol;
656
657 RF_UNLOCK_MUTEX(raidPtr->mutex);
658
659 RF_GETTIME(raidPtr->reconControl[row]->starttime);
660
661 /* now start up the actual reconstruction: issue a read for
662 * each surviving disk */
663
664 reconDesc->numDisksDone = 0;
665 for (i = 0; i < raidPtr->numCol; i++) {
666 if (i != col) {
667 /* find and issue the next I/O on the
668 * indicated disk */
669 if (IssueNextReadRequest(raidPtr, row, i)) {
670 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
671 reconDesc->numDisksDone++;
672 }
673 }
674 }
675
676 case 2:
677 Dprintf("RECON: resume requests\n");
678 rf_ResumeNewRequests(raidPtr);
679
680
681 reconDesc->state = 3;
682
683 case 3:
684
685 /* process reconstruction events until all disks report that
686 * they've completed all work */
687 mapPtr = raidPtr->reconControl[row]->reconMap;
688
689
690
691 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
692
693 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
694 RF_ASSERT(event);
695
696 if (ProcessReconEvent(raidPtr, row, event))
697 reconDesc->numDisksDone++;
698 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
699 if (rf_prReconSched) {
700 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
701 }
702 }
703
704
705
706 reconDesc->state = 4;
707
708
709 case 4:
710 mapPtr = raidPtr->reconControl[row]->reconMap;
711 if (rf_reconDebug) {
712 printf("RECON: all reads completed\n");
713 }
714 /* at this point all the reads have completed. We now wait
715 * for any pending writes to complete, and then we're done */
716
717 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
718
719 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
720 RF_ASSERT(event);
721
722 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
723 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
724 if (rf_prReconSched) {
725 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
726 }
727 }
728 reconDesc->state = 5;
729
730 case 5:
731 /* Success: mark the dead disk as reconstructed. We quiesce
732 * the array here to assure no nasty interactions with pending
733 * user accesses when we free up the psstatus structure as
734 * part of FreeReconControl() */
735
736 reconDesc->state = 6;
737
738 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
739 rf_StopUserStats(raidPtr);
740 rf_PrintUserStats(raidPtr); /* print out the stats on user
741 * accs accumulated during
742 * recon */
743
744 /* fall through to state 6 */
745 case 6:
746
747
748
749 RF_LOCK_MUTEX(raidPtr->mutex);
750 raidPtr->numFailures--;
751 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
752 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
753 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
754 RF_UNLOCK_MUTEX(raidPtr->mutex);
755 RF_GETTIME(etime);
756 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
757
758 /* XXX -- why is state 7 different from state 6 if there is no
759 * return() here? -- XXX Note that I set elpsd above & use it
760 * below, so if you put a return here you'll have to fix this.
761 * (also, FreeReconControl is called below) */
762
763 case 7:
764
765 rf_ResumeNewRequests(raidPtr);
766
767 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col);
768 xor_s = raidPtr->accumXorTimeUs / 1000000;
769 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
770 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
771 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
772 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
773 (int) raidPtr->reconControl[row]->starttime.tv_sec,
774 (int) raidPtr->reconControl[row]->starttime.tv_usec,
775 (int) etime.tv_sec, (int) etime.tv_usec);
776
777 #if RF_RECON_STATS > 0
778 printf("Total head-sep stall count was %d\n",
779 (int) reconDesc->hsStallCount);
780 #endif /* RF_RECON_STATS > 0 */
781 rf_FreeReconControl(raidPtr, row);
782 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
783 FreeReconDesc(reconDesc);
784
785 }
786
787 SignalReconDone(raidPtr);
788 return (0);
789 }
790 /*****************************************************************************
791 * do the right thing upon each reconstruction event.
792 * returns nonzero if and only if there is nothing left unread on the
793 * indicated disk
794 *****************************************************************************/
795 static int
796 ProcessReconEvent(raidPtr, frow, event)
797 RF_Raid_t *raidPtr;
798 RF_RowCol_t frow;
799 RF_ReconEvent_t *event;
800 {
801 int retcode = 0, submitblocked;
802 RF_ReconBuffer_t *rbuf;
803 RF_SectorCount_t sectorsPerRU;
804
805 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
806 switch (event->type) {
807
808 /* a read I/O has completed */
809 case RF_REVENT_READDONE:
810 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
811 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
812 frow, event->col, rbuf->parityStripeID);
813 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
814 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
815 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
816 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
817 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
818 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
819 if (!submitblocked)
820 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
821 break;
822
823 /* a write I/O has completed */
824 case RF_REVENT_WRITEDONE:
825 if (rf_floatingRbufDebug) {
826 rf_CheckFloatingRbufCount(raidPtr, 1);
827 }
828 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
829 rbuf = (RF_ReconBuffer_t *) event->arg;
830 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
831 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
832 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
833 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
834 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
835 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
836
837 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
838 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
839 raidPtr->numFullReconBuffers--;
840 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
841 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
842 } else
843 if (rbuf->type == RF_RBUF_TYPE_FORCED)
844 rf_FreeReconBuffer(rbuf);
845 else
846 RF_ASSERT(0);
847 break;
848
849 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
850 * cleared */
851 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
852 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
853 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
854 * BUFCLEAR event if we
855 * couldn't submit */
856 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
857 break;
858
859 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
860 * blockage has been cleared */
861 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
862 retcode = TryToRead(raidPtr, frow, event->col);
863 break;
864
865 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
866 * reconstruction blockage has been
867 * cleared */
868 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
869 retcode = TryToRead(raidPtr, frow, event->col);
870 break;
871
872 /* a buffer has become ready to write */
873 case RF_REVENT_BUFREADY:
874 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
875 retcode = IssueNextWriteRequest(raidPtr, frow);
876 if (rf_floatingRbufDebug) {
877 rf_CheckFloatingRbufCount(raidPtr, 1);
878 }
879 break;
880
881 /* we need to skip the current RU entirely because it got
882 * recon'd while we were waiting for something else to happen */
883 case RF_REVENT_SKIP:
884 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
885 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
886 break;
887
888 /* a forced-reconstruction read access has completed. Just
889 * submit the buffer */
890 case RF_REVENT_FORCEDREADDONE:
891 rbuf = (RF_ReconBuffer_t *) event->arg;
892 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
893 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
894 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
895 RF_ASSERT(!submitblocked);
896 break;
897
898 default:
899 RF_PANIC();
900 }
901 rf_FreeReconEventDesc(event);
902 return (retcode);
903 }
904 /*****************************************************************************
905 *
906 * find the next thing that's needed on the indicated disk, and issue
907 * a read request for it. We assume that the reconstruction buffer
908 * associated with this process is free to receive the data. If
909 * reconstruction is blocked on the indicated RU, we issue a
910 * blockage-release request instead of a physical disk read request.
911 * If the current disk gets too far ahead of the others, we issue a
912 * head-separation wait request and return.
913 *
914 * ctrl->{ru_count, curPSID, diskOffset} and
915 * rbuf->failedDiskSectorOffset are maintained to point the the unit
916 * we're currently accessing. Note that this deviates from the
917 * standard C idiom of having counters point to the next thing to be
918 * accessed. This allows us to easily retry when we're blocked by
919 * head separation or reconstruction-blockage events.
920 *
921 * returns nonzero if and only if there is nothing left unread on the
922 * indicated disk
923 *
924 *****************************************************************************/
925 static int
926 IssueNextReadRequest(raidPtr, row, col)
927 RF_Raid_t *raidPtr;
928 RF_RowCol_t row;
929 RF_RowCol_t col;
930 {
931 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
932 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
933 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
934 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
935 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
936 int do_new_check = 0, retcode = 0, status;
937
938 /* if we are currently the slowest disk, mark that we have to do a new
939 * check */
940 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
941 do_new_check = 1;
942
943 while (1) {
944
945 ctrl->ru_count++;
946 if (ctrl->ru_count < RUsPerPU) {
947 ctrl->diskOffset += sectorsPerRU;
948 rbuf->failedDiskSectorOffset += sectorsPerRU;
949 } else {
950 ctrl->curPSID++;
951 ctrl->ru_count = 0;
952 /* code left over from when head-sep was based on
953 * parity stripe id */
954 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
955 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
956 return (1); /* finito! */
957 }
958 /* find the disk offsets of the start of the parity
959 * stripe on both the current disk and the failed
960 * disk. skip this entire parity stripe if either disk
961 * does not appear in the indicated PS */
962 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
963 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
964 if (status) {
965 ctrl->ru_count = RUsPerPU - 1;
966 continue;
967 }
968 }
969 rbuf->which_ru = ctrl->ru_count;
970
971 /* skip this RU if it's already been reconstructed */
972 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
973 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
974 continue;
975 }
976 break;
977 }
978 ctrl->headSepCounter++;
979 if (do_new_check)
980 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
981
982
983 /* at this point, we have definitely decided what to do, and we have
984 * only to see if we can actually do it now */
985 rbuf->parityStripeID = ctrl->curPSID;
986 rbuf->which_ru = ctrl->ru_count;
987 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
988 raidPtr->recon_tracerecs[col].reconacc = 1;
989 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
990 retcode = TryToRead(raidPtr, row, col);
991 return (retcode);
992 }
993
994 /*
995 * tries to issue the next read on the indicated disk. We may be
996 * blocked by (a) the heads being too far apart, or (b) recon on the
997 * indicated RU being blocked due to a write by a user thread. In
998 * this case, we issue a head-sep or blockage wait request, which will
999 * cause this same routine to be invoked again later when the blockage
1000 * has cleared.
1001 */
1002
1003 static int
1004 TryToRead(raidPtr, row, col)
1005 RF_Raid_t *raidPtr;
1006 RF_RowCol_t row;
1007 RF_RowCol_t col;
1008 {
1009 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1010 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1011 RF_StripeNum_t psid = ctrl->curPSID;
1012 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1013 RF_DiskQueueData_t *req;
1014 int status, created = 0;
1015 RF_ReconParityStripeStatus_t *pssPtr;
1016
1017 /* if the current disk is too far ahead of the others, issue a
1018 * head-separation wait and return */
1019 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1020 return (0);
1021 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1022 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1023
1024 /* if recon is blocked on the indicated parity stripe, issue a
1025 * block-wait request and return. this also must mark the indicated RU
1026 * in the stripe as under reconstruction if not blocked. */
1027 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1028 if (status == RF_PSS_RECON_BLOCKED) {
1029 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1030 goto out;
1031 } else
1032 if (status == RF_PSS_FORCED_ON_WRITE) {
1033 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1034 goto out;
1035 }
1036 /* make one last check to be sure that the indicated RU didn't get
1037 * reconstructed while we were waiting for something else to happen.
1038 * This is unfortunate in that it causes us to make this check twice
1039 * in the normal case. Might want to make some attempt to re-work
1040 * this so that we only do this check if we've definitely blocked on
1041 * one of the above checks. When this condition is detected, we may
1042 * have just created a bogus status entry, which we need to delete. */
1043 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1044 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1045 if (created)
1046 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1047 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1048 goto out;
1049 }
1050 /* found something to read. issue the I/O */
1051 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1052 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1053 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1054 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1055 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1056 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1057 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1058
1059 /* should be ok to use a NULL proc pointer here, all the bufs we use
1060 * should be in kernel space */
1061 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1062 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1063
1064 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1065
1066 ctrl->rbuf->arg = (void *) req;
1067 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1068 pssPtr->issued[col] = 1;
1069
1070 out:
1071 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1072 return (0);
1073 }
1074
1075
1076 /*
1077 * given a parity stripe ID, we want to find out whether both the
1078 * current disk and the failed disk exist in that parity stripe. If
1079 * not, we want to skip this whole PS. If so, we want to find the
1080 * disk offset of the start of the PS on both the current disk and the
1081 * failed disk.
1082 *
1083 * this works by getting a list of disks comprising the indicated
1084 * parity stripe, and searching the list for the current and failed
1085 * disks. Once we've decided they both exist in the parity stripe, we
1086 * need to decide whether each is data or parity, so that we'll know
1087 * which mapping function to call to get the corresponding disk
1088 * offsets.
1089 *
1090 * this is kind of unpleasant, but doing it this way allows the
1091 * reconstruction code to use parity stripe IDs rather than physical
1092 * disks address to march through the failed disk, which greatly
1093 * simplifies a lot of code, as well as eliminating the need for a
1094 * reverse-mapping function. I also think it will execute faster,
1095 * since the calls to the mapping module are kept to a minimum.
1096 *
1097 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1098 * THE STRIPE IN THE CORRECT ORDER */
1099
1100
1101 static int
1102 ComputePSDiskOffsets(
1103 RF_Raid_t * raidPtr, /* raid descriptor */
1104 RF_StripeNum_t psid, /* parity stripe identifier */
1105 RF_RowCol_t row, /* row and column of disk to find the offsets
1106 * for */
1107 RF_RowCol_t col,
1108 RF_SectorNum_t * outDiskOffset,
1109 RF_SectorNum_t * outFailedDiskSectorOffset,
1110 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1111 RF_RowCol_t * spCol,
1112 RF_SectorNum_t * spOffset)
1113 { /* OUT: offset into disk containing spare unit */
1114 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1115 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1116 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1117 RF_RowCol_t *diskids;
1118 u_int i, j, k, i_offset, j_offset;
1119 RF_RowCol_t prow, pcol;
1120 int testcol, testrow;
1121 RF_RowCol_t stripe;
1122 RF_SectorNum_t poffset;
1123 char i_is_parity = 0, j_is_parity = 0;
1124 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1125
1126 /* get a listing of the disks comprising that stripe */
1127 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1128 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1129 RF_ASSERT(diskids);
1130
1131 /* reject this entire parity stripe if it does not contain the
1132 * indicated disk or it does not contain the failed disk */
1133 if (row != stripe)
1134 goto skipit;
1135 for (i = 0; i < stripeWidth; i++) {
1136 if (col == diskids[i])
1137 break;
1138 }
1139 if (i == stripeWidth)
1140 goto skipit;
1141 for (j = 0; j < stripeWidth; j++) {
1142 if (fcol == diskids[j])
1143 break;
1144 }
1145 if (j == stripeWidth) {
1146 goto skipit;
1147 }
1148 /* find out which disk the parity is on */
1149 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1150
1151 /* find out if either the current RU or the failed RU is parity */
1152 /* also, if the parity occurs in this stripe prior to the data and/or
1153 * failed col, we need to decrement i and/or j */
1154 for (k = 0; k < stripeWidth; k++)
1155 if (diskids[k] == pcol)
1156 break;
1157 RF_ASSERT(k < stripeWidth);
1158 i_offset = i;
1159 j_offset = j;
1160 if (k < i)
1161 i_offset--;
1162 else
1163 if (k == i) {
1164 i_is_parity = 1;
1165 i_offset = 0;
1166 } /* set offsets to zero to disable multiply
1167 * below */
1168 if (k < j)
1169 j_offset--;
1170 else
1171 if (k == j) {
1172 j_is_parity = 1;
1173 j_offset = 0;
1174 }
1175 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1176 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1177 * tells us how far into the stripe the [current,failed] disk is. */
1178
1179 /* call the mapping routine to get the offset into the current disk,
1180 * repeat for failed disk. */
1181 if (i_is_parity)
1182 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1183 else
1184 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1185
1186 RF_ASSERT(row == testrow && col == testcol);
1187
1188 if (j_is_parity)
1189 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1190 else
1191 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1192 RF_ASSERT(row == testrow && fcol == testcol);
1193
1194 /* now locate the spare unit for the failed unit */
1195 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1196 if (j_is_parity)
1197 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1198 else
1199 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1200 } else {
1201 *spRow = raidPtr->reconControl[row]->spareRow;
1202 *spCol = raidPtr->reconControl[row]->spareCol;
1203 *spOffset = *outFailedDiskSectorOffset;
1204 }
1205
1206 return (0);
1207
1208 skipit:
1209 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1210 psid, row, col);
1211 return (1);
1212 }
1213 /* this is called when a buffer has become ready to write to the replacement disk */
1214 static int
1215 IssueNextWriteRequest(raidPtr, row)
1216 RF_Raid_t *raidPtr;
1217 RF_RowCol_t row;
1218 {
1219 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1220 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1221 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1222 RF_ReconBuffer_t *rbuf;
1223 RF_DiskQueueData_t *req;
1224
1225 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1226 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1227 * have gotten the event that sent us here */
1228 RF_ASSERT(rbuf->pssPtr);
1229
1230 rbuf->pssPtr->writeRbuf = rbuf;
1231 rbuf->pssPtr = NULL;
1232
1233 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1234 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1235 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1236 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1237 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1238 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1239
1240 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1241 * kernel space */
1242 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1243 sectorsPerRU, rbuf->buffer,
1244 rbuf->parityStripeID, rbuf->which_ru,
1245 ReconWriteDoneProc, (void *) rbuf, NULL,
1246 &raidPtr->recon_tracerecs[fcol],
1247 (void *) raidPtr, 0, NULL);
1248
1249 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1250
1251 rbuf->arg = (void *) req;
1252 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1253
1254 return (0);
1255 }
1256
1257 /*
1258 * this gets called upon the completion of a reconstruction read
1259 * operation the arg is a pointer to the per-disk reconstruction
1260 * control structure for the process that just finished a read.
1261 *
1262 * called at interrupt context in the kernel, so don't do anything
1263 * illegal here.
1264 */
1265 static int
1266 ReconReadDoneProc(arg, status)
1267 void *arg;
1268 int status;
1269 {
1270 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1271 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1272
1273 if (status) {
1274 /*
1275 * XXX
1276 */
1277 printf("Recon read failed!\n");
1278 RF_PANIC();
1279 }
1280 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1281 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1282 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1283 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1284 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1285
1286 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1287 return (0);
1288 }
1289 /* this gets called upon the completion of a reconstruction write operation.
1290 * the arg is a pointer to the rbuf that was just written
1291 *
1292 * called at interrupt context in the kernel, so don't do anything illegal here.
1293 */
1294 static int
1295 ReconWriteDoneProc(arg, status)
1296 void *arg;
1297 int status;
1298 {
1299 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1300
1301 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1302 if (status) {
1303 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1304 * write failed!\n"); */
1305 RF_PANIC();
1306 }
1307 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1308 return (0);
1309 }
1310
1311
1312 /*
1313 * computes a new minimum head sep, and wakes up anyone who needs to
1314 * be woken as a result
1315 */
1316 static void
1317 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1318 RF_Raid_t *raidPtr;
1319 RF_RowCol_t row;
1320 RF_HeadSepLimit_t hsCtr;
1321 {
1322 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1323 RF_HeadSepLimit_t new_min;
1324 RF_RowCol_t i;
1325 RF_CallbackDesc_t *p;
1326 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1327 * of a minimum */
1328
1329
1330 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1331
1332 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1333 for (i = 0; i < raidPtr->numCol; i++)
1334 if (i != reconCtrlPtr->fcol) {
1335 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1336 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1337 }
1338 /* set the new minimum and wake up anyone who can now run again */
1339 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1340 reconCtrlPtr->minHeadSepCounter = new_min;
1341 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1342 while (reconCtrlPtr->headSepCBList) {
1343 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1344 break;
1345 p = reconCtrlPtr->headSepCBList;
1346 reconCtrlPtr->headSepCBList = p->next;
1347 p->next = NULL;
1348 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1349 rf_FreeCallbackDesc(p);
1350 }
1351
1352 }
1353 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1354 }
1355
1356 /*
1357 * checks to see that the maximum head separation will not be violated
1358 * if we initiate a reconstruction I/O on the indicated disk.
1359 * Limiting the maximum head separation between two disks eliminates
1360 * the nasty buffer-stall conditions that occur when one disk races
1361 * ahead of the others and consumes all of the floating recon buffers.
1362 * This code is complex and unpleasant but it's necessary to avoid
1363 * some very nasty, albeit fairly rare, reconstruction behavior.
1364 *
1365 * returns non-zero if and only if we have to stop working on the
1366 * indicated disk due to a head-separation delay.
1367 */
1368 static int
1369 CheckHeadSeparation(
1370 RF_Raid_t * raidPtr,
1371 RF_PerDiskReconCtrl_t * ctrl,
1372 RF_RowCol_t row,
1373 RF_RowCol_t col,
1374 RF_HeadSepLimit_t hsCtr,
1375 RF_ReconUnitNum_t which_ru)
1376 {
1377 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1378 RF_CallbackDesc_t *cb, *p, *pt;
1379 int retval = 0;
1380
1381 /* if we're too far ahead of the slowest disk, stop working on this
1382 * disk until the slower ones catch up. We do this by scheduling a
1383 * wakeup callback for the time when the slowest disk has caught up.
1384 * We define "caught up" with 20% hysteresis, i.e. the head separation
1385 * must have fallen to at most 80% of the max allowable head
1386 * separation before we'll wake up.
1387 *
1388 */
1389 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1390 if ((raidPtr->headSepLimit >= 0) &&
1391 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1392 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1393 raidPtr->raidid, row, col, ctrl->headSepCounter,
1394 reconCtrlPtr->minHeadSepCounter,
1395 raidPtr->headSepLimit);
1396 cb = rf_AllocCallbackDesc();
1397 /* the minHeadSepCounter value we have to get to before we'll
1398 * wake up. build in 20% hysteresis. */
1399 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1400 cb->row = row;
1401 cb->col = col;
1402 cb->next = NULL;
1403
1404 /* insert this callback descriptor into the sorted list of
1405 * pending head-sep callbacks */
1406 p = reconCtrlPtr->headSepCBList;
1407 if (!p)
1408 reconCtrlPtr->headSepCBList = cb;
1409 else
1410 if (cb->callbackArg.v < p->callbackArg.v) {
1411 cb->next = reconCtrlPtr->headSepCBList;
1412 reconCtrlPtr->headSepCBList = cb;
1413 } else {
1414 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1415 cb->next = p;
1416 pt->next = cb;
1417 }
1418 retval = 1;
1419 #if RF_RECON_STATS > 0
1420 ctrl->reconCtrl->reconDesc->hsStallCount++;
1421 #endif /* RF_RECON_STATS > 0 */
1422 }
1423 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1424
1425 return (retval);
1426 }
1427 /*
1428 * checks to see if reconstruction has been either forced or blocked
1429 * by a user operation. if forced, we skip this RU entirely. else if
1430 * blocked, put ourselves on the wait list. else return 0.
1431 *
1432 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1433 */
1434 static int
1435 CheckForcedOrBlockedReconstruction(
1436 RF_Raid_t * raidPtr,
1437 RF_ReconParityStripeStatus_t * pssPtr,
1438 RF_PerDiskReconCtrl_t * ctrl,
1439 RF_RowCol_t row,
1440 RF_RowCol_t col,
1441 RF_StripeNum_t psid,
1442 RF_ReconUnitNum_t which_ru)
1443 {
1444 RF_CallbackDesc_t *cb;
1445 int retcode = 0;
1446
1447 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1448 retcode = RF_PSS_FORCED_ON_WRITE;
1449 else
1450 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1451 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1452 cb = rf_AllocCallbackDesc(); /* append ourselves to
1453 * the blockage-wait
1454 * list */
1455 cb->row = row;
1456 cb->col = col;
1457 cb->next = pssPtr->blockWaitList;
1458 pssPtr->blockWaitList = cb;
1459 retcode = RF_PSS_RECON_BLOCKED;
1460 }
1461 if (!retcode)
1462 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1463 * reconstruction */
1464
1465 return (retcode);
1466 }
1467 /*
1468 * if reconstruction is currently ongoing for the indicated stripeID,
1469 * reconstruction is forced to completion and we return non-zero to
1470 * indicate that the caller must wait. If not, then reconstruction is
1471 * blocked on the indicated stripe and the routine returns zero. If
1472 * and only if we return non-zero, we'll cause the cbFunc to get
1473 * invoked with the cbArg when the reconstruction has completed.
1474 */
1475 int
1476 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1477 RF_Raid_t *raidPtr;
1478 RF_AccessStripeMap_t *asmap;
1479 void (*cbFunc) (RF_Raid_t *, void *);
1480 void *cbArg;
1481 {
1482 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1483 * we're working on */
1484 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1485 * forcing recon on */
1486 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1487 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1488 * stripe status structure */
1489 RF_StripeNum_t psid; /* parity stripe id */
1490 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1491 * offset */
1492 RF_RowCol_t *diskids;
1493 RF_RowCol_t stripe;
1494 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1495 RF_RowCol_t fcol, diskno, i;
1496 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1497 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1498 RF_CallbackDesc_t *cb;
1499 int created = 0, nPromoted;
1500
1501 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1502
1503 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1504
1505 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1506
1507 /* if recon is not ongoing on this PS, just return */
1508 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1509 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1510 return (0);
1511 }
1512 /* otherwise, we have to wait for reconstruction to complete on this
1513 * RU. */
1514 /* In order to avoid waiting for a potentially large number of
1515 * low-priority accesses to complete, we force a normal-priority (i.e.
1516 * not low-priority) reconstruction on this RU. */
1517 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1518 DDprintf1("Forcing recon on psid %ld\n", psid);
1519 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1520 * forced recon */
1521 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1522 * that we just set */
1523 fcol = raidPtr->reconControl[row]->fcol;
1524
1525 /* get a listing of the disks comprising the indicated stripe */
1526 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1527 RF_ASSERT(row == stripe);
1528
1529 /* For previously issued reads, elevate them to normal
1530 * priority. If the I/O has already completed, it won't be
1531 * found in the queue, and hence this will be a no-op. For
1532 * unissued reads, allocate buffers and issue new reads. The
1533 * fact that we've set the FORCED bit means that the regular
1534 * recon procs will not re-issue these reqs */
1535 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1536 if ((diskno = diskids[i]) != fcol) {
1537 if (pssPtr->issued[diskno]) {
1538 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1539 if (rf_reconDebug && nPromoted)
1540 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1541 } else {
1542 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1543 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1544 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1545 * location */
1546 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1547 new_rbuf->which_ru = which_ru;
1548 new_rbuf->failedDiskSectorOffset = fd_offset;
1549 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1550
1551 /* use NULL b_proc b/c all addrs
1552 * should be in kernel space */
1553 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1554 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1555 NULL, (void *) raidPtr, 0, NULL);
1556
1557 RF_ASSERT(req); /* XXX -- fix this --
1558 * XXX */
1559
1560 new_rbuf->arg = req;
1561 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1562 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1563 }
1564 }
1565 /* if the write is sitting in the disk queue, elevate its
1566 * priority */
1567 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1568 printf("raid%d: promoted write to row %d col %d\n",
1569 raidPtr->raidid, row, fcol);
1570 }
1571 /* install a callback descriptor to be invoked when recon completes on
1572 * this parity stripe. */
1573 cb = rf_AllocCallbackDesc();
1574 /* XXX the following is bogus.. These functions don't really match!!
1575 * GO */
1576 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1577 cb->callbackArg.p = (void *) cbArg;
1578 cb->next = pssPtr->procWaitList;
1579 pssPtr->procWaitList = cb;
1580 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1581 raidPtr->raidid, psid);
1582
1583 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1584 return (1);
1585 }
1586 /* called upon the completion of a forced reconstruction read.
1587 * all we do is schedule the FORCEDREADONE event.
1588 * called at interrupt context in the kernel, so don't do anything illegal here.
1589 */
1590 static void
1591 ForceReconReadDoneProc(arg, status)
1592 void *arg;
1593 int status;
1594 {
1595 RF_ReconBuffer_t *rbuf = arg;
1596
1597 if (status) {
1598 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1599 * recon read
1600 * failed!\n"); */
1601 RF_PANIC();
1602 }
1603 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1604 }
1605 /* releases a block on the reconstruction of the indicated stripe */
1606 int
1607 rf_UnblockRecon(raidPtr, asmap)
1608 RF_Raid_t *raidPtr;
1609 RF_AccessStripeMap_t *asmap;
1610 {
1611 RF_RowCol_t row = asmap->origRow;
1612 RF_StripeNum_t stripeID = asmap->stripeID;
1613 RF_ReconParityStripeStatus_t *pssPtr;
1614 RF_ReconUnitNum_t which_ru;
1615 RF_StripeNum_t psid;
1616 int created = 0;
1617 RF_CallbackDesc_t *cb;
1618
1619 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1620 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1621 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1622
1623 /* When recon is forced, the pss desc can get deleted before we get
1624 * back to unblock recon. But, this can _only_ happen when recon is
1625 * forced. It would be good to put some kind of sanity check here, but
1626 * how to decide if recon was just forced or not? */
1627 if (!pssPtr) {
1628 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1629 * RU %d\n",psid,which_ru); */
1630 if (rf_reconDebug || rf_pssDebug)
1631 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1632 goto out;
1633 }
1634 pssPtr->blockCount--;
1635 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1636 raidPtr->raidid, psid, pssPtr->blockCount);
1637 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1638
1639 /* unblock recon before calling CauseReconEvent in case
1640 * CauseReconEvent causes us to try to issue a new read before
1641 * returning here. */
1642 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1643
1644
1645 while (pssPtr->blockWaitList) {
1646 /* spin through the block-wait list and
1647 release all the waiters */
1648 cb = pssPtr->blockWaitList;
1649 pssPtr->blockWaitList = cb->next;
1650 cb->next = NULL;
1651 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1652 rf_FreeCallbackDesc(cb);
1653 }
1654 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1655 /* if no recon was requested while recon was blocked */
1656 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1657 }
1658 }
1659 out:
1660 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1661 return (0);
1662 }
1663