rf_reconstruct.c revision 1.18 1 /* $NetBSD: rf_reconstruct.c,v 1.18 2000/02/24 04:39:41 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403
404 lp = raidPtr->Layout.map;
405 if (lp->SubmitReconBuffer) {
406 /*
407 * The current infrastructure only supports reconstructing one
408 * disk at a time for each array.
409 */
410 RF_LOCK_MUTEX(raidPtr->mutex);
411 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
412 (raidPtr->numFailures > 0)) {
413 /* XXX 0 above shouldn't be constant!!! */
414 /* some component other than this has failed.
415 Let's not make things worse than they already
416 are... */
417 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
418 printf(" Row: %d Col: %d Too many failures.\n",
419 row, col);
420 RF_UNLOCK_MUTEX(raidPtr->mutex);
421 return (EINVAL);
422 }
423 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
424 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
425 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
426
427 RF_UNLOCK_MUTEX(raidPtr->mutex);
428 return (EINVAL);
429 }
430
431
432 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
433 /* "It's gone..." */
434 raidPtr->numFailures++;
435 raidPtr->Disks[row][col].status = rf_ds_failed;
436 raidPtr->status[row] = rf_rs_degraded;
437 rf_update_component_labels(raidPtr);
438 }
439
440 while (raidPtr->reconInProgress) {
441 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
442 }
443
444 raidPtr->reconInProgress++;
445
446
447 /* first look for a spare drive onto which to reconstruct
448 the data. spare disk descriptors are stored in row 0.
449 This may have to change eventually */
450
451 /* Actually, we don't care if it's failed or not...
452 On a RAID set with correct parity, this function
453 should be callable on any component without ill affects. */
454 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
455 */
456
457 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
458 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
459
460 raidPtr->reconInProgress--;
461 RF_UNLOCK_MUTEX(raidPtr->mutex);
462 return (EINVAL);
463 }
464
465 /* XXX need goop here to see if the disk is alive,
466 and, if not, make it so... */
467
468
469
470 badDisk = &raidPtr->Disks[row][col];
471
472 proc = raidPtr->engine_thread;
473
474 /* This device may have been opened successfully the
475 first time. Close it before trying to open it again.. */
476
477 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
478 printf("Closed the open device: %s\n",
479 raidPtr->Disks[row][col].devname);
480 if (raidPtr->Disks[row][col].auto_configured == 1) {
481 VOP_CLOSE(raidPtr->raid_cinfo[row][col].ci_vp,
482 FREAD, NOCRED, 0);
483 vput(raidPtr->raid_cinfo[row][col].ci_vp);
484
485 } else {
486 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
487 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
488 FREAD | FWRITE, proc->p_ucred, proc);
489 }
490 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
491 }
492 printf("About to (re-)open the device for rebuilding: %s\n",
493 raidPtr->Disks[row][col].devname);
494
495 retcode = raidlookup(raidPtr->Disks[row][col].devname,
496 proc, &vp);
497
498 if (retcode) {
499 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
500 raidPtr->Disks[row][col].devname, retcode);
501
502 /* XXX the component isn't responding properly...
503 must be still dead :-( */
504 raidPtr->reconInProgress--;
505 RF_UNLOCK_MUTEX(raidPtr->mutex);
506 return(retcode);
507
508 } else {
509
510 /* Ok, so we can at least do a lookup...
511 How about actually getting a vp for it? */
512
513 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
514 proc)) != 0) {
515 raidPtr->reconInProgress--;
516 RF_UNLOCK_MUTEX(raidPtr->mutex);
517 return(retcode);
518 }
519 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
520 FREAD, proc->p_ucred, proc);
521 if (retcode) {
522 raidPtr->reconInProgress--;
523 RF_UNLOCK_MUTEX(raidPtr->mutex);
524 return(retcode);
525 }
526 raidPtr->Disks[row][col].blockSize =
527 dpart.disklab->d_secsize;
528
529 raidPtr->Disks[row][col].numBlocks =
530 dpart.part->p_size - rf_protectedSectors;
531
532 raidPtr->raid_cinfo[row][col].ci_vp = vp;
533 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
534
535 raidPtr->Disks[row][col].dev = va.va_rdev;
536
537 /* we allow the user to specify that only a
538 fraction of the disks should be used this is
539 just for debug: it speeds up
540 * the parity scan */
541 raidPtr->Disks[row][col].numBlocks =
542 raidPtr->Disks[row][col].numBlocks *
543 rf_sizePercentage / 100;
544 }
545
546
547
548 spareDiskPtr = &raidPtr->Disks[row][col];
549 spareDiskPtr->status = rf_ds_used_spare;
550
551 printf("RECON: initiating in-place reconstruction on\n");
552 printf(" row %d col %d -> spare at row %d col %d\n",
553 row, col, row, col);
554
555 RF_UNLOCK_MUTEX(raidPtr->mutex);
556
557 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
558 spareDiskPtr, numDisksDone,
559 row, col);
560 raidPtr->reconDesc = (void *) reconDesc;
561 #if RF_RECON_STATS > 0
562 reconDesc->hsStallCount = 0;
563 reconDesc->numReconExecDelays = 0;
564 reconDesc->numReconEventWaits = 0;
565 #endif /* RF_RECON_STATS > 0 */
566 reconDesc->reconExecTimerRunning = 0;
567 reconDesc->reconExecTicks = 0;
568 reconDesc->maxReconExecTicks = 0;
569 rc = rf_ContinueReconstructFailedDisk(reconDesc);
570
571 RF_LOCK_MUTEX(raidPtr->mutex);
572 raidPtr->reconInProgress--;
573 RF_UNLOCK_MUTEX(raidPtr->mutex);
574
575 } else {
576 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
577 lp->parityConfig);
578 rc = EIO;
579 }
580 RF_LOCK_MUTEX(raidPtr->mutex);
581
582 if (!rc) {
583 /* Need to set these here, as at this point it'll be claiming
584 that the disk is in rf_ds_spared! But we know better :-) */
585
586 raidPtr->Disks[row][col].status = rf_ds_optimal;
587 raidPtr->status[row] = rf_rs_optimal;
588
589 /* fix up the component label */
590 /* Don't actually need the read here.. */
591 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
592 raidPtr->raid_cinfo[row][col].ci_vp,
593 &c_label);
594
595 raid_init_component_label(raidPtr, &c_label);
596
597 c_label.row = row;
598 c_label.column = col;
599
600 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
601 raidPtr->raid_cinfo[row][col].ci_vp,
602 &c_label);
603
604 }
605 RF_UNLOCK_MUTEX(raidPtr->mutex);
606 RF_SIGNAL_COND(raidPtr->waitForReconCond);
607 wakeup(&raidPtr->waitForReconCond);
608 return (rc);
609 }
610
611
612 int
613 rf_ContinueReconstructFailedDisk(reconDesc)
614 RF_RaidReconDesc_t *reconDesc;
615 {
616 RF_Raid_t *raidPtr = reconDesc->raidPtr;
617 RF_RowCol_t row = reconDesc->row;
618 RF_RowCol_t col = reconDesc->col;
619 RF_RowCol_t srow = reconDesc->srow;
620 RF_RowCol_t scol = reconDesc->scol;
621 RF_ReconMap_t *mapPtr;
622
623 RF_ReconEvent_t *event;
624 struct timeval etime, elpsd;
625 unsigned long xor_s, xor_resid_us;
626 int retcode, i, ds;
627
628 switch (reconDesc->state) {
629
630
631 case 0:
632
633 raidPtr->accumXorTimeUs = 0;
634
635 /* create one trace record per physical disk */
636 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
637
638 /* quiesce the array prior to starting recon. this is needed
639 * to assure no nasty interactions with pending user writes.
640 * We need to do this before we change the disk or row status. */
641 reconDesc->state = 1;
642
643 Dprintf("RECON: begin request suspend\n");
644 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
645 Dprintf("RECON: end request suspend\n");
646 rf_StartUserStats(raidPtr); /* zero out the stats kept on
647 * user accs */
648
649 /* fall through to state 1 */
650
651 case 1:
652
653 RF_LOCK_MUTEX(raidPtr->mutex);
654
655 /* create the reconstruction control pointer and install it in
656 * the right slot */
657 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
658 mapPtr = raidPtr->reconControl[row]->reconMap;
659 raidPtr->status[row] = rf_rs_reconstructing;
660 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
661 raidPtr->Disks[row][col].spareRow = srow;
662 raidPtr->Disks[row][col].spareCol = scol;
663
664 RF_UNLOCK_MUTEX(raidPtr->mutex);
665
666 RF_GETTIME(raidPtr->reconControl[row]->starttime);
667
668 /* now start up the actual reconstruction: issue a read for
669 * each surviving disk */
670
671 reconDesc->numDisksDone = 0;
672 for (i = 0; i < raidPtr->numCol; i++) {
673 if (i != col) {
674 /* find and issue the next I/O on the
675 * indicated disk */
676 if (IssueNextReadRequest(raidPtr, row, i)) {
677 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
678 reconDesc->numDisksDone++;
679 }
680 }
681 }
682
683 case 2:
684 Dprintf("RECON: resume requests\n");
685 rf_ResumeNewRequests(raidPtr);
686
687
688 reconDesc->state = 3;
689
690 case 3:
691
692 /* process reconstruction events until all disks report that
693 * they've completed all work */
694 mapPtr = raidPtr->reconControl[row]->reconMap;
695
696
697
698 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
699
700 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
701 RF_ASSERT(event);
702
703 if (ProcessReconEvent(raidPtr, row, event))
704 reconDesc->numDisksDone++;
705 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
706 if (rf_prReconSched) {
707 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
708 }
709 }
710
711
712
713 reconDesc->state = 4;
714
715
716 case 4:
717 mapPtr = raidPtr->reconControl[row]->reconMap;
718 if (rf_reconDebug) {
719 printf("RECON: all reads completed\n");
720 }
721 /* at this point all the reads have completed. We now wait
722 * for any pending writes to complete, and then we're done */
723
724 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
725
726 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
727 RF_ASSERT(event);
728
729 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
730 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
731 if (rf_prReconSched) {
732 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
733 }
734 }
735 reconDesc->state = 5;
736
737 case 5:
738 /* Success: mark the dead disk as reconstructed. We quiesce
739 * the array here to assure no nasty interactions with pending
740 * user accesses when we free up the psstatus structure as
741 * part of FreeReconControl() */
742
743 reconDesc->state = 6;
744
745 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
746 rf_StopUserStats(raidPtr);
747 rf_PrintUserStats(raidPtr); /* print out the stats on user
748 * accs accumulated during
749 * recon */
750
751 /* fall through to state 6 */
752 case 6:
753
754
755
756 RF_LOCK_MUTEX(raidPtr->mutex);
757 raidPtr->numFailures--;
758 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
759 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
760 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
761 RF_UNLOCK_MUTEX(raidPtr->mutex);
762 RF_GETTIME(etime);
763 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
764
765 /* XXX -- why is state 7 different from state 6 if there is no
766 * return() here? -- XXX Note that I set elpsd above & use it
767 * below, so if you put a return here you'll have to fix this.
768 * (also, FreeReconControl is called below) */
769
770 case 7:
771
772 rf_ResumeNewRequests(raidPtr);
773
774 printf("Reconstruction of disk at row %d col %d completed and spare disk reassigned\n", row, col);
775 xor_s = raidPtr->accumXorTimeUs / 1000000;
776 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
777 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
778 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
779 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
780 (int) raidPtr->reconControl[row]->starttime.tv_sec,
781 (int) raidPtr->reconControl[row]->starttime.tv_usec,
782 (int) etime.tv_sec, (int) etime.tv_usec);
783
784 #if RF_RECON_STATS > 0
785 printf("Total head-sep stall count was %d\n",
786 (int) reconDesc->hsStallCount);
787 #endif /* RF_RECON_STATS > 0 */
788 rf_FreeReconControl(raidPtr, row);
789 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
790 FreeReconDesc(reconDesc);
791
792 }
793
794 SignalReconDone(raidPtr);
795 return (0);
796 }
797 /*****************************************************************************
798 * do the right thing upon each reconstruction event.
799 * returns nonzero if and only if there is nothing left unread on the
800 * indicated disk
801 *****************************************************************************/
802 static int
803 ProcessReconEvent(raidPtr, frow, event)
804 RF_Raid_t *raidPtr;
805 RF_RowCol_t frow;
806 RF_ReconEvent_t *event;
807 {
808 int retcode = 0, submitblocked;
809 RF_ReconBuffer_t *rbuf;
810 RF_SectorCount_t sectorsPerRU;
811
812 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
813 switch (event->type) {
814
815 /* a read I/O has completed */
816 case RF_REVENT_READDONE:
817 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
818 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
819 frow, event->col, rbuf->parityStripeID);
820 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
821 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
822 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
823 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
824 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
825 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
826 if (!submitblocked)
827 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
828 break;
829
830 /* a write I/O has completed */
831 case RF_REVENT_WRITEDONE:
832 if (rf_floatingRbufDebug) {
833 rf_CheckFloatingRbufCount(raidPtr, 1);
834 }
835 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
836 rbuf = (RF_ReconBuffer_t *) event->arg;
837 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
838 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
839 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
840 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
841 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
842 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
843
844 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
845 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
846 raidPtr->numFullReconBuffers--;
847 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
848 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
849 } else
850 if (rbuf->type == RF_RBUF_TYPE_FORCED)
851 rf_FreeReconBuffer(rbuf);
852 else
853 RF_ASSERT(0);
854 break;
855
856 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
857 * cleared */
858 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
859 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
860 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
861 * BUFCLEAR event if we
862 * couldn't submit */
863 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
864 break;
865
866 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
867 * blockage has been cleared */
868 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
869 retcode = TryToRead(raidPtr, frow, event->col);
870 break;
871
872 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
873 * reconstruction blockage has been
874 * cleared */
875 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
876 retcode = TryToRead(raidPtr, frow, event->col);
877 break;
878
879 /* a buffer has become ready to write */
880 case RF_REVENT_BUFREADY:
881 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
882 retcode = IssueNextWriteRequest(raidPtr, frow);
883 if (rf_floatingRbufDebug) {
884 rf_CheckFloatingRbufCount(raidPtr, 1);
885 }
886 break;
887
888 /* we need to skip the current RU entirely because it got
889 * recon'd while we were waiting for something else to happen */
890 case RF_REVENT_SKIP:
891 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
892 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
893 break;
894
895 /* a forced-reconstruction read access has completed. Just
896 * submit the buffer */
897 case RF_REVENT_FORCEDREADDONE:
898 rbuf = (RF_ReconBuffer_t *) event->arg;
899 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
900 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
901 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
902 RF_ASSERT(!submitblocked);
903 break;
904
905 default:
906 RF_PANIC();
907 }
908 rf_FreeReconEventDesc(event);
909 return (retcode);
910 }
911 /*****************************************************************************
912 *
913 * find the next thing that's needed on the indicated disk, and issue
914 * a read request for it. We assume that the reconstruction buffer
915 * associated with this process is free to receive the data. If
916 * reconstruction is blocked on the indicated RU, we issue a
917 * blockage-release request instead of a physical disk read request.
918 * If the current disk gets too far ahead of the others, we issue a
919 * head-separation wait request and return.
920 *
921 * ctrl->{ru_count, curPSID, diskOffset} and
922 * rbuf->failedDiskSectorOffset are maintained to point the the unit
923 * we're currently accessing. Note that this deviates from the
924 * standard C idiom of having counters point to the next thing to be
925 * accessed. This allows us to easily retry when we're blocked by
926 * head separation or reconstruction-blockage events.
927 *
928 * returns nonzero if and only if there is nothing left unread on the
929 * indicated disk
930 *
931 *****************************************************************************/
932 static int
933 IssueNextReadRequest(raidPtr, row, col)
934 RF_Raid_t *raidPtr;
935 RF_RowCol_t row;
936 RF_RowCol_t col;
937 {
938 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
939 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
940 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
941 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
942 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
943 int do_new_check = 0, retcode = 0, status;
944
945 /* if we are currently the slowest disk, mark that we have to do a new
946 * check */
947 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
948 do_new_check = 1;
949
950 while (1) {
951
952 ctrl->ru_count++;
953 if (ctrl->ru_count < RUsPerPU) {
954 ctrl->diskOffset += sectorsPerRU;
955 rbuf->failedDiskSectorOffset += sectorsPerRU;
956 } else {
957 ctrl->curPSID++;
958 ctrl->ru_count = 0;
959 /* code left over from when head-sep was based on
960 * parity stripe id */
961 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
962 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
963 return (1); /* finito! */
964 }
965 /* find the disk offsets of the start of the parity
966 * stripe on both the current disk and the failed
967 * disk. skip this entire parity stripe if either disk
968 * does not appear in the indicated PS */
969 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
970 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
971 if (status) {
972 ctrl->ru_count = RUsPerPU - 1;
973 continue;
974 }
975 }
976 rbuf->which_ru = ctrl->ru_count;
977
978 /* skip this RU if it's already been reconstructed */
979 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
980 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
981 continue;
982 }
983 break;
984 }
985 ctrl->headSepCounter++;
986 if (do_new_check)
987 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
988
989
990 /* at this point, we have definitely decided what to do, and we have
991 * only to see if we can actually do it now */
992 rbuf->parityStripeID = ctrl->curPSID;
993 rbuf->which_ru = ctrl->ru_count;
994 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
995 raidPtr->recon_tracerecs[col].reconacc = 1;
996 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
997 retcode = TryToRead(raidPtr, row, col);
998 return (retcode);
999 }
1000
1001 /*
1002 * tries to issue the next read on the indicated disk. We may be
1003 * blocked by (a) the heads being too far apart, or (b) recon on the
1004 * indicated RU being blocked due to a write by a user thread. In
1005 * this case, we issue a head-sep or blockage wait request, which will
1006 * cause this same routine to be invoked again later when the blockage
1007 * has cleared.
1008 */
1009
1010 static int
1011 TryToRead(raidPtr, row, col)
1012 RF_Raid_t *raidPtr;
1013 RF_RowCol_t row;
1014 RF_RowCol_t col;
1015 {
1016 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1017 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1018 RF_StripeNum_t psid = ctrl->curPSID;
1019 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1020 RF_DiskQueueData_t *req;
1021 int status, created = 0;
1022 RF_ReconParityStripeStatus_t *pssPtr;
1023
1024 /* if the current disk is too far ahead of the others, issue a
1025 * head-separation wait and return */
1026 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1027 return (0);
1028 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1029 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1030
1031 /* if recon is blocked on the indicated parity stripe, issue a
1032 * block-wait request and return. this also must mark the indicated RU
1033 * in the stripe as under reconstruction if not blocked. */
1034 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1035 if (status == RF_PSS_RECON_BLOCKED) {
1036 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1037 goto out;
1038 } else
1039 if (status == RF_PSS_FORCED_ON_WRITE) {
1040 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1041 goto out;
1042 }
1043 /* make one last check to be sure that the indicated RU didn't get
1044 * reconstructed while we were waiting for something else to happen.
1045 * This is unfortunate in that it causes us to make this check twice
1046 * in the normal case. Might want to make some attempt to re-work
1047 * this so that we only do this check if we've definitely blocked on
1048 * one of the above checks. When this condition is detected, we may
1049 * have just created a bogus status entry, which we need to delete. */
1050 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1051 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1052 if (created)
1053 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1054 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1055 goto out;
1056 }
1057 /* found something to read. issue the I/O */
1058 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1059 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1060 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1061 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1062 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1063 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1064 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1065
1066 /* should be ok to use a NULL proc pointer here, all the bufs we use
1067 * should be in kernel space */
1068 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1069 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1070
1071 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1072
1073 ctrl->rbuf->arg = (void *) req;
1074 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1075 pssPtr->issued[col] = 1;
1076
1077 out:
1078 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1079 return (0);
1080 }
1081
1082
1083 /*
1084 * given a parity stripe ID, we want to find out whether both the
1085 * current disk and the failed disk exist in that parity stripe. If
1086 * not, we want to skip this whole PS. If so, we want to find the
1087 * disk offset of the start of the PS on both the current disk and the
1088 * failed disk.
1089 *
1090 * this works by getting a list of disks comprising the indicated
1091 * parity stripe, and searching the list for the current and failed
1092 * disks. Once we've decided they both exist in the parity stripe, we
1093 * need to decide whether each is data or parity, so that we'll know
1094 * which mapping function to call to get the corresponding disk
1095 * offsets.
1096 *
1097 * this is kind of unpleasant, but doing it this way allows the
1098 * reconstruction code to use parity stripe IDs rather than physical
1099 * disks address to march through the failed disk, which greatly
1100 * simplifies a lot of code, as well as eliminating the need for a
1101 * reverse-mapping function. I also think it will execute faster,
1102 * since the calls to the mapping module are kept to a minimum.
1103 *
1104 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1105 * THE STRIPE IN THE CORRECT ORDER */
1106
1107
1108 static int
1109 ComputePSDiskOffsets(
1110 RF_Raid_t * raidPtr, /* raid descriptor */
1111 RF_StripeNum_t psid, /* parity stripe identifier */
1112 RF_RowCol_t row, /* row and column of disk to find the offsets
1113 * for */
1114 RF_RowCol_t col,
1115 RF_SectorNum_t * outDiskOffset,
1116 RF_SectorNum_t * outFailedDiskSectorOffset,
1117 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1118 RF_RowCol_t * spCol,
1119 RF_SectorNum_t * spOffset)
1120 { /* OUT: offset into disk containing spare unit */
1121 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1122 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1123 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1124 RF_RowCol_t *diskids;
1125 u_int i, j, k, i_offset, j_offset;
1126 RF_RowCol_t prow, pcol;
1127 int testcol, testrow;
1128 RF_RowCol_t stripe;
1129 RF_SectorNum_t poffset;
1130 char i_is_parity = 0, j_is_parity = 0;
1131 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1132
1133 /* get a listing of the disks comprising that stripe */
1134 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1135 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1136 RF_ASSERT(diskids);
1137
1138 /* reject this entire parity stripe if it does not contain the
1139 * indicated disk or it does not contain the failed disk */
1140 if (row != stripe)
1141 goto skipit;
1142 for (i = 0; i < stripeWidth; i++) {
1143 if (col == diskids[i])
1144 break;
1145 }
1146 if (i == stripeWidth)
1147 goto skipit;
1148 for (j = 0; j < stripeWidth; j++) {
1149 if (fcol == diskids[j])
1150 break;
1151 }
1152 if (j == stripeWidth) {
1153 goto skipit;
1154 }
1155 /* find out which disk the parity is on */
1156 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1157
1158 /* find out if either the current RU or the failed RU is parity */
1159 /* also, if the parity occurs in this stripe prior to the data and/or
1160 * failed col, we need to decrement i and/or j */
1161 for (k = 0; k < stripeWidth; k++)
1162 if (diskids[k] == pcol)
1163 break;
1164 RF_ASSERT(k < stripeWidth);
1165 i_offset = i;
1166 j_offset = j;
1167 if (k < i)
1168 i_offset--;
1169 else
1170 if (k == i) {
1171 i_is_parity = 1;
1172 i_offset = 0;
1173 } /* set offsets to zero to disable multiply
1174 * below */
1175 if (k < j)
1176 j_offset--;
1177 else
1178 if (k == j) {
1179 j_is_parity = 1;
1180 j_offset = 0;
1181 }
1182 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1183 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1184 * tells us how far into the stripe the [current,failed] disk is. */
1185
1186 /* call the mapping routine to get the offset into the current disk,
1187 * repeat for failed disk. */
1188 if (i_is_parity)
1189 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1190 else
1191 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1192
1193 RF_ASSERT(row == testrow && col == testcol);
1194
1195 if (j_is_parity)
1196 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1197 else
1198 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1199 RF_ASSERT(row == testrow && fcol == testcol);
1200
1201 /* now locate the spare unit for the failed unit */
1202 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1203 if (j_is_parity)
1204 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1205 else
1206 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1207 } else {
1208 *spRow = raidPtr->reconControl[row]->spareRow;
1209 *spCol = raidPtr->reconControl[row]->spareCol;
1210 *spOffset = *outFailedDiskSectorOffset;
1211 }
1212
1213 return (0);
1214
1215 skipit:
1216 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1217 psid, row, col);
1218 return (1);
1219 }
1220 /* this is called when a buffer has become ready to write to the replacement disk */
1221 static int
1222 IssueNextWriteRequest(raidPtr, row)
1223 RF_Raid_t *raidPtr;
1224 RF_RowCol_t row;
1225 {
1226 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1227 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1228 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1229 RF_ReconBuffer_t *rbuf;
1230 RF_DiskQueueData_t *req;
1231
1232 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1233 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1234 * have gotten the event that sent us here */
1235 RF_ASSERT(rbuf->pssPtr);
1236
1237 rbuf->pssPtr->writeRbuf = rbuf;
1238 rbuf->pssPtr = NULL;
1239
1240 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1241 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1242 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1243 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1244 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1245 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1246
1247 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1248 * kernel space */
1249 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1250 sectorsPerRU, rbuf->buffer,
1251 rbuf->parityStripeID, rbuf->which_ru,
1252 ReconWriteDoneProc, (void *) rbuf, NULL,
1253 &raidPtr->recon_tracerecs[fcol],
1254 (void *) raidPtr, 0, NULL);
1255
1256 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1257
1258 rbuf->arg = (void *) req;
1259 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1260
1261 return (0);
1262 }
1263
1264 /*
1265 * this gets called upon the completion of a reconstruction read
1266 * operation the arg is a pointer to the per-disk reconstruction
1267 * control structure for the process that just finished a read.
1268 *
1269 * called at interrupt context in the kernel, so don't do anything
1270 * illegal here.
1271 */
1272 static int
1273 ReconReadDoneProc(arg, status)
1274 void *arg;
1275 int status;
1276 {
1277 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1278 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1279
1280 if (status) {
1281 /*
1282 * XXX
1283 */
1284 printf("Recon read failed!\n");
1285 RF_PANIC();
1286 }
1287 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1288 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1289 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1290 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1291 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1292
1293 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1294 return (0);
1295 }
1296 /* this gets called upon the completion of a reconstruction write operation.
1297 * the arg is a pointer to the rbuf that was just written
1298 *
1299 * called at interrupt context in the kernel, so don't do anything illegal here.
1300 */
1301 static int
1302 ReconWriteDoneProc(arg, status)
1303 void *arg;
1304 int status;
1305 {
1306 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1307
1308 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1309 if (status) {
1310 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1311 * write failed!\n"); */
1312 RF_PANIC();
1313 }
1314 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1315 return (0);
1316 }
1317
1318
1319 /*
1320 * computes a new minimum head sep, and wakes up anyone who needs to
1321 * be woken as a result
1322 */
1323 static void
1324 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1325 RF_Raid_t *raidPtr;
1326 RF_RowCol_t row;
1327 RF_HeadSepLimit_t hsCtr;
1328 {
1329 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1330 RF_HeadSepLimit_t new_min;
1331 RF_RowCol_t i;
1332 RF_CallbackDesc_t *p;
1333 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1334 * of a minimum */
1335
1336
1337 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1338
1339 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1340 for (i = 0; i < raidPtr->numCol; i++)
1341 if (i != reconCtrlPtr->fcol) {
1342 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1343 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1344 }
1345 /* set the new minimum and wake up anyone who can now run again */
1346 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1347 reconCtrlPtr->minHeadSepCounter = new_min;
1348 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1349 while (reconCtrlPtr->headSepCBList) {
1350 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1351 break;
1352 p = reconCtrlPtr->headSepCBList;
1353 reconCtrlPtr->headSepCBList = p->next;
1354 p->next = NULL;
1355 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1356 rf_FreeCallbackDesc(p);
1357 }
1358
1359 }
1360 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1361 }
1362
1363 /*
1364 * checks to see that the maximum head separation will not be violated
1365 * if we initiate a reconstruction I/O on the indicated disk.
1366 * Limiting the maximum head separation between two disks eliminates
1367 * the nasty buffer-stall conditions that occur when one disk races
1368 * ahead of the others and consumes all of the floating recon buffers.
1369 * This code is complex and unpleasant but it's necessary to avoid
1370 * some very nasty, albeit fairly rare, reconstruction behavior.
1371 *
1372 * returns non-zero if and only if we have to stop working on the
1373 * indicated disk due to a head-separation delay.
1374 */
1375 static int
1376 CheckHeadSeparation(
1377 RF_Raid_t * raidPtr,
1378 RF_PerDiskReconCtrl_t * ctrl,
1379 RF_RowCol_t row,
1380 RF_RowCol_t col,
1381 RF_HeadSepLimit_t hsCtr,
1382 RF_ReconUnitNum_t which_ru)
1383 {
1384 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1385 RF_CallbackDesc_t *cb, *p, *pt;
1386 int retval = 0;
1387
1388 /* if we're too far ahead of the slowest disk, stop working on this
1389 * disk until the slower ones catch up. We do this by scheduling a
1390 * wakeup callback for the time when the slowest disk has caught up.
1391 * We define "caught up" with 20% hysteresis, i.e. the head separation
1392 * must have fallen to at most 80% of the max allowable head
1393 * separation before we'll wake up.
1394 *
1395 */
1396 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1397 if ((raidPtr->headSepLimit >= 0) &&
1398 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1399 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1400 raidPtr->raidid, row, col, ctrl->headSepCounter,
1401 reconCtrlPtr->minHeadSepCounter,
1402 raidPtr->headSepLimit);
1403 cb = rf_AllocCallbackDesc();
1404 /* the minHeadSepCounter value we have to get to before we'll
1405 * wake up. build in 20% hysteresis. */
1406 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1407 cb->row = row;
1408 cb->col = col;
1409 cb->next = NULL;
1410
1411 /* insert this callback descriptor into the sorted list of
1412 * pending head-sep callbacks */
1413 p = reconCtrlPtr->headSepCBList;
1414 if (!p)
1415 reconCtrlPtr->headSepCBList = cb;
1416 else
1417 if (cb->callbackArg.v < p->callbackArg.v) {
1418 cb->next = reconCtrlPtr->headSepCBList;
1419 reconCtrlPtr->headSepCBList = cb;
1420 } else {
1421 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1422 cb->next = p;
1423 pt->next = cb;
1424 }
1425 retval = 1;
1426 #if RF_RECON_STATS > 0
1427 ctrl->reconCtrl->reconDesc->hsStallCount++;
1428 #endif /* RF_RECON_STATS > 0 */
1429 }
1430 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1431
1432 return (retval);
1433 }
1434 /*
1435 * checks to see if reconstruction has been either forced or blocked
1436 * by a user operation. if forced, we skip this RU entirely. else if
1437 * blocked, put ourselves on the wait list. else return 0.
1438 *
1439 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1440 */
1441 static int
1442 CheckForcedOrBlockedReconstruction(
1443 RF_Raid_t * raidPtr,
1444 RF_ReconParityStripeStatus_t * pssPtr,
1445 RF_PerDiskReconCtrl_t * ctrl,
1446 RF_RowCol_t row,
1447 RF_RowCol_t col,
1448 RF_StripeNum_t psid,
1449 RF_ReconUnitNum_t which_ru)
1450 {
1451 RF_CallbackDesc_t *cb;
1452 int retcode = 0;
1453
1454 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1455 retcode = RF_PSS_FORCED_ON_WRITE;
1456 else
1457 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1458 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1459 cb = rf_AllocCallbackDesc(); /* append ourselves to
1460 * the blockage-wait
1461 * list */
1462 cb->row = row;
1463 cb->col = col;
1464 cb->next = pssPtr->blockWaitList;
1465 pssPtr->blockWaitList = cb;
1466 retcode = RF_PSS_RECON_BLOCKED;
1467 }
1468 if (!retcode)
1469 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1470 * reconstruction */
1471
1472 return (retcode);
1473 }
1474 /*
1475 * if reconstruction is currently ongoing for the indicated stripeID,
1476 * reconstruction is forced to completion and we return non-zero to
1477 * indicate that the caller must wait. If not, then reconstruction is
1478 * blocked on the indicated stripe and the routine returns zero. If
1479 * and only if we return non-zero, we'll cause the cbFunc to get
1480 * invoked with the cbArg when the reconstruction has completed.
1481 */
1482 int
1483 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1484 RF_Raid_t *raidPtr;
1485 RF_AccessStripeMap_t *asmap;
1486 void (*cbFunc) (RF_Raid_t *, void *);
1487 void *cbArg;
1488 {
1489 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1490 * we're working on */
1491 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1492 * forcing recon on */
1493 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1494 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1495 * stripe status structure */
1496 RF_StripeNum_t psid; /* parity stripe id */
1497 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1498 * offset */
1499 RF_RowCol_t *diskids;
1500 RF_RowCol_t stripe;
1501 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1502 RF_RowCol_t fcol, diskno, i;
1503 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1504 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1505 RF_CallbackDesc_t *cb;
1506 int created = 0, nPromoted;
1507
1508 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1509
1510 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1511
1512 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1513
1514 /* if recon is not ongoing on this PS, just return */
1515 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1516 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1517 return (0);
1518 }
1519 /* otherwise, we have to wait for reconstruction to complete on this
1520 * RU. */
1521 /* In order to avoid waiting for a potentially large number of
1522 * low-priority accesses to complete, we force a normal-priority (i.e.
1523 * not low-priority) reconstruction on this RU. */
1524 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1525 DDprintf1("Forcing recon on psid %ld\n", psid);
1526 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1527 * forced recon */
1528 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1529 * that we just set */
1530 fcol = raidPtr->reconControl[row]->fcol;
1531
1532 /* get a listing of the disks comprising the indicated stripe */
1533 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1534 RF_ASSERT(row == stripe);
1535
1536 /* For previously issued reads, elevate them to normal
1537 * priority. If the I/O has already completed, it won't be
1538 * found in the queue, and hence this will be a no-op. For
1539 * unissued reads, allocate buffers and issue new reads. The
1540 * fact that we've set the FORCED bit means that the regular
1541 * recon procs will not re-issue these reqs */
1542 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1543 if ((diskno = diskids[i]) != fcol) {
1544 if (pssPtr->issued[diskno]) {
1545 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1546 if (rf_reconDebug && nPromoted)
1547 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1548 } else {
1549 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1550 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1551 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1552 * location */
1553 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1554 new_rbuf->which_ru = which_ru;
1555 new_rbuf->failedDiskSectorOffset = fd_offset;
1556 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1557
1558 /* use NULL b_proc b/c all addrs
1559 * should be in kernel space */
1560 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1561 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1562 NULL, (void *) raidPtr, 0, NULL);
1563
1564 RF_ASSERT(req); /* XXX -- fix this --
1565 * XXX */
1566
1567 new_rbuf->arg = req;
1568 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1569 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1570 }
1571 }
1572 /* if the write is sitting in the disk queue, elevate its
1573 * priority */
1574 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1575 printf("raid%d: promoted write to row %d col %d\n",
1576 raidPtr->raidid, row, fcol);
1577 }
1578 /* install a callback descriptor to be invoked when recon completes on
1579 * this parity stripe. */
1580 cb = rf_AllocCallbackDesc();
1581 /* XXX the following is bogus.. These functions don't really match!!
1582 * GO */
1583 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1584 cb->callbackArg.p = (void *) cbArg;
1585 cb->next = pssPtr->procWaitList;
1586 pssPtr->procWaitList = cb;
1587 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1588 raidPtr->raidid, psid);
1589
1590 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1591 return (1);
1592 }
1593 /* called upon the completion of a forced reconstruction read.
1594 * all we do is schedule the FORCEDREADONE event.
1595 * called at interrupt context in the kernel, so don't do anything illegal here.
1596 */
1597 static void
1598 ForceReconReadDoneProc(arg, status)
1599 void *arg;
1600 int status;
1601 {
1602 RF_ReconBuffer_t *rbuf = arg;
1603
1604 if (status) {
1605 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1606 * recon read
1607 * failed!\n"); */
1608 RF_PANIC();
1609 }
1610 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1611 }
1612 /* releases a block on the reconstruction of the indicated stripe */
1613 int
1614 rf_UnblockRecon(raidPtr, asmap)
1615 RF_Raid_t *raidPtr;
1616 RF_AccessStripeMap_t *asmap;
1617 {
1618 RF_RowCol_t row = asmap->origRow;
1619 RF_StripeNum_t stripeID = asmap->stripeID;
1620 RF_ReconParityStripeStatus_t *pssPtr;
1621 RF_ReconUnitNum_t which_ru;
1622 RF_StripeNum_t psid;
1623 int created = 0;
1624 RF_CallbackDesc_t *cb;
1625
1626 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1627 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1628 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1629
1630 /* When recon is forced, the pss desc can get deleted before we get
1631 * back to unblock recon. But, this can _only_ happen when recon is
1632 * forced. It would be good to put some kind of sanity check here, but
1633 * how to decide if recon was just forced or not? */
1634 if (!pssPtr) {
1635 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1636 * RU %d\n",psid,which_ru); */
1637 if (rf_reconDebug || rf_pssDebug)
1638 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1639 goto out;
1640 }
1641 pssPtr->blockCount--;
1642 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1643 raidPtr->raidid, psid, pssPtr->blockCount);
1644 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1645
1646 /* unblock recon before calling CauseReconEvent in case
1647 * CauseReconEvent causes us to try to issue a new read before
1648 * returning here. */
1649 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1650
1651
1652 while (pssPtr->blockWaitList) {
1653 /* spin through the block-wait list and
1654 release all the waiters */
1655 cb = pssPtr->blockWaitList;
1656 pssPtr->blockWaitList = cb->next;
1657 cb->next = NULL;
1658 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1659 rf_FreeCallbackDesc(cb);
1660 }
1661 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1662 /* if no recon was requested while recon was blocked */
1663 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1664 }
1665 }
1666 out:
1667 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1668 return (0);
1669 }
1670