rf_reconstruct.c revision 1.20 1 /* $NetBSD: rf_reconstruct.c,v 1.20 2000/02/25 17:14:18 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403
404 lp = raidPtr->Layout.map;
405 if (lp->SubmitReconBuffer) {
406 /*
407 * The current infrastructure only supports reconstructing one
408 * disk at a time for each array.
409 */
410 RF_LOCK_MUTEX(raidPtr->mutex);
411 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
412 (raidPtr->numFailures > 0)) {
413 /* XXX 0 above shouldn't be constant!!! */
414 /* some component other than this has failed.
415 Let's not make things worse than they already
416 are... */
417 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
418 printf(" Row: %d Col: %d Too many failures.\n",
419 row, col);
420 RF_UNLOCK_MUTEX(raidPtr->mutex);
421 return (EINVAL);
422 }
423 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
424 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
425 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
426
427 RF_UNLOCK_MUTEX(raidPtr->mutex);
428 return (EINVAL);
429 }
430
431
432 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
433 /* "It's gone..." */
434 raidPtr->numFailures++;
435 raidPtr->Disks[row][col].status = rf_ds_failed;
436 raidPtr->status[row] = rf_rs_degraded;
437 rf_update_component_labels(raidPtr);
438 }
439
440 while (raidPtr->reconInProgress) {
441 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
442 }
443
444 raidPtr->reconInProgress++;
445
446
447 /* first look for a spare drive onto which to reconstruct
448 the data. spare disk descriptors are stored in row 0.
449 This may have to change eventually */
450
451 /* Actually, we don't care if it's failed or not...
452 On a RAID set with correct parity, this function
453 should be callable on any component without ill affects. */
454 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
455 */
456
457 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
458 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
459
460 raidPtr->reconInProgress--;
461 RF_UNLOCK_MUTEX(raidPtr->mutex);
462 return (EINVAL);
463 }
464
465 /* XXX need goop here to see if the disk is alive,
466 and, if not, make it so... */
467
468
469
470 badDisk = &raidPtr->Disks[row][col];
471
472 proc = raidPtr->engine_thread;
473
474 /* This device may have been opened successfully the
475 first time. Close it before trying to open it again.. */
476
477 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
478 printf("Closed the open device: %s\n",
479 raidPtr->Disks[row][col].devname);
480 if (raidPtr->Disks[row][col].auto_configured == 1) {
481 VOP_CLOSE(raidPtr->raid_cinfo[row][col].ci_vp,
482 FREAD, NOCRED, 0);
483 vput(raidPtr->raid_cinfo[row][col].ci_vp);
484
485 } else {
486 VOP_UNLOCK(raidPtr->raid_cinfo[row][col].ci_vp, 0);
487 (void) vn_close(raidPtr->raid_cinfo[row][col].ci_vp,
488 FREAD | FWRITE, proc->p_ucred, proc);
489 }
490 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
491 }
492 /* note that this disk was *not* auto_configured (any longer)*/
493 raidPtr->Disks[row][col].auto_configured = 0;
494
495 printf("About to (re-)open the device for rebuilding: %s\n",
496 raidPtr->Disks[row][col].devname);
497
498 retcode = raidlookup(raidPtr->Disks[row][col].devname,
499 proc, &vp);
500
501 if (retcode) {
502 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
503 raidPtr->Disks[row][col].devname, retcode);
504
505 /* XXX the component isn't responding properly...
506 must be still dead :-( */
507 raidPtr->reconInProgress--;
508 RF_UNLOCK_MUTEX(raidPtr->mutex);
509 return(retcode);
510
511 } else {
512
513 /* Ok, so we can at least do a lookup...
514 How about actually getting a vp for it? */
515
516 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
517 proc)) != 0) {
518 raidPtr->reconInProgress--;
519 RF_UNLOCK_MUTEX(raidPtr->mutex);
520 return(retcode);
521 }
522 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
523 FREAD, proc->p_ucred, proc);
524 if (retcode) {
525 raidPtr->reconInProgress--;
526 RF_UNLOCK_MUTEX(raidPtr->mutex);
527 return(retcode);
528 }
529 raidPtr->Disks[row][col].blockSize =
530 dpart.disklab->d_secsize;
531
532 raidPtr->Disks[row][col].numBlocks =
533 dpart.part->p_size - rf_protectedSectors;
534
535 raidPtr->raid_cinfo[row][col].ci_vp = vp;
536 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
537
538 raidPtr->Disks[row][col].dev = va.va_rdev;
539
540 /* we allow the user to specify that only a
541 fraction of the disks should be used this is
542 just for debug: it speeds up
543 * the parity scan */
544 raidPtr->Disks[row][col].numBlocks =
545 raidPtr->Disks[row][col].numBlocks *
546 rf_sizePercentage / 100;
547 }
548
549
550
551 spareDiskPtr = &raidPtr->Disks[row][col];
552 spareDiskPtr->status = rf_ds_used_spare;
553
554 printf("RECON: initiating in-place reconstruction on\n");
555 printf(" row %d col %d -> spare at row %d col %d\n",
556 row, col, row, col);
557
558 RF_UNLOCK_MUTEX(raidPtr->mutex);
559
560 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
561 spareDiskPtr, numDisksDone,
562 row, col);
563 raidPtr->reconDesc = (void *) reconDesc;
564 #if RF_RECON_STATS > 0
565 reconDesc->hsStallCount = 0;
566 reconDesc->numReconExecDelays = 0;
567 reconDesc->numReconEventWaits = 0;
568 #endif /* RF_RECON_STATS > 0 */
569 reconDesc->reconExecTimerRunning = 0;
570 reconDesc->reconExecTicks = 0;
571 reconDesc->maxReconExecTicks = 0;
572 rc = rf_ContinueReconstructFailedDisk(reconDesc);
573
574 RF_LOCK_MUTEX(raidPtr->mutex);
575 raidPtr->reconInProgress--;
576 RF_UNLOCK_MUTEX(raidPtr->mutex);
577
578 } else {
579 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
580 lp->parityConfig);
581 rc = EIO;
582 }
583 RF_LOCK_MUTEX(raidPtr->mutex);
584
585 if (!rc) {
586 /* Need to set these here, as at this point it'll be claiming
587 that the disk is in rf_ds_spared! But we know better :-) */
588
589 raidPtr->Disks[row][col].status = rf_ds_optimal;
590 raidPtr->status[row] = rf_rs_optimal;
591
592 /* fix up the component label */
593 /* Don't actually need the read here.. */
594 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
595 raidPtr->raid_cinfo[row][col].ci_vp,
596 &c_label);
597
598 raid_init_component_label(raidPtr, &c_label);
599
600 c_label.row = row;
601 c_label.column = col;
602
603 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
604 raidPtr->raid_cinfo[row][col].ci_vp,
605 &c_label);
606
607 }
608 RF_UNLOCK_MUTEX(raidPtr->mutex);
609 RF_SIGNAL_COND(raidPtr->waitForReconCond);
610 wakeup(&raidPtr->waitForReconCond);
611 return (rc);
612 }
613
614
615 int
616 rf_ContinueReconstructFailedDisk(reconDesc)
617 RF_RaidReconDesc_t *reconDesc;
618 {
619 RF_Raid_t *raidPtr = reconDesc->raidPtr;
620 RF_RowCol_t row = reconDesc->row;
621 RF_RowCol_t col = reconDesc->col;
622 RF_RowCol_t srow = reconDesc->srow;
623 RF_RowCol_t scol = reconDesc->scol;
624 RF_ReconMap_t *mapPtr;
625
626 RF_ReconEvent_t *event;
627 struct timeval etime, elpsd;
628 unsigned long xor_s, xor_resid_us;
629 int retcode, i, ds;
630
631 switch (reconDesc->state) {
632
633
634 case 0:
635
636 raidPtr->accumXorTimeUs = 0;
637
638 /* create one trace record per physical disk */
639 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
640
641 /* quiesce the array prior to starting recon. this is needed
642 * to assure no nasty interactions with pending user writes.
643 * We need to do this before we change the disk or row status. */
644 reconDesc->state = 1;
645
646 Dprintf("RECON: begin request suspend\n");
647 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
648 Dprintf("RECON: end request suspend\n");
649 rf_StartUserStats(raidPtr); /* zero out the stats kept on
650 * user accs */
651
652 /* fall through to state 1 */
653
654 case 1:
655
656 RF_LOCK_MUTEX(raidPtr->mutex);
657
658 /* create the reconstruction control pointer and install it in
659 * the right slot */
660 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
661 mapPtr = raidPtr->reconControl[row]->reconMap;
662 raidPtr->status[row] = rf_rs_reconstructing;
663 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
664 raidPtr->Disks[row][col].spareRow = srow;
665 raidPtr->Disks[row][col].spareCol = scol;
666
667 RF_UNLOCK_MUTEX(raidPtr->mutex);
668
669 RF_GETTIME(raidPtr->reconControl[row]->starttime);
670
671 /* now start up the actual reconstruction: issue a read for
672 * each surviving disk */
673
674 reconDesc->numDisksDone = 0;
675 for (i = 0; i < raidPtr->numCol; i++) {
676 if (i != col) {
677 /* find and issue the next I/O on the
678 * indicated disk */
679 if (IssueNextReadRequest(raidPtr, row, i)) {
680 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
681 reconDesc->numDisksDone++;
682 }
683 }
684 }
685
686 case 2:
687 Dprintf("RECON: resume requests\n");
688 rf_ResumeNewRequests(raidPtr);
689
690
691 reconDesc->state = 3;
692
693 case 3:
694
695 /* process reconstruction events until all disks report that
696 * they've completed all work */
697 mapPtr = raidPtr->reconControl[row]->reconMap;
698
699
700
701 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
702
703 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
704 RF_ASSERT(event);
705
706 if (ProcessReconEvent(raidPtr, row, event))
707 reconDesc->numDisksDone++;
708 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
709 if (rf_prReconSched) {
710 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
711 }
712 }
713
714
715
716 reconDesc->state = 4;
717
718
719 case 4:
720 mapPtr = raidPtr->reconControl[row]->reconMap;
721 if (rf_reconDebug) {
722 printf("RECON: all reads completed\n");
723 }
724 /* at this point all the reads have completed. We now wait
725 * for any pending writes to complete, and then we're done */
726
727 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
728
729 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
730 RF_ASSERT(event);
731
732 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
733 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
734 if (rf_prReconSched) {
735 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
736 }
737 }
738 reconDesc->state = 5;
739
740 case 5:
741 /* Success: mark the dead disk as reconstructed. We quiesce
742 * the array here to assure no nasty interactions with pending
743 * user accesses when we free up the psstatus structure as
744 * part of FreeReconControl() */
745
746 reconDesc->state = 6;
747
748 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
749 rf_StopUserStats(raidPtr);
750 rf_PrintUserStats(raidPtr); /* print out the stats on user
751 * accs accumulated during
752 * recon */
753
754 /* fall through to state 6 */
755 case 6:
756
757
758
759 RF_LOCK_MUTEX(raidPtr->mutex);
760 raidPtr->numFailures--;
761 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
762 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
763 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
764 RF_UNLOCK_MUTEX(raidPtr->mutex);
765 RF_GETTIME(etime);
766 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
767
768 /* XXX -- why is state 7 different from state 6 if there is no
769 * return() here? -- XXX Note that I set elpsd above & use it
770 * below, so if you put a return here you'll have to fix this.
771 * (also, FreeReconControl is called below) */
772
773 case 7:
774
775 rf_ResumeNewRequests(raidPtr);
776
777 printf("Reconstruction of disk at row %d col %d completed\n",
778 row, col);
779 xor_s = raidPtr->accumXorTimeUs / 1000000;
780 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
781 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
782 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
783 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
784 (int) raidPtr->reconControl[row]->starttime.tv_sec,
785 (int) raidPtr->reconControl[row]->starttime.tv_usec,
786 (int) etime.tv_sec, (int) etime.tv_usec);
787
788 #if RF_RECON_STATS > 0
789 printf("Total head-sep stall count was %d\n",
790 (int) reconDesc->hsStallCount);
791 #endif /* RF_RECON_STATS > 0 */
792 rf_FreeReconControl(raidPtr, row);
793 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
794 FreeReconDesc(reconDesc);
795
796 }
797
798 SignalReconDone(raidPtr);
799 return (0);
800 }
801 /*****************************************************************************
802 * do the right thing upon each reconstruction event.
803 * returns nonzero if and only if there is nothing left unread on the
804 * indicated disk
805 *****************************************************************************/
806 static int
807 ProcessReconEvent(raidPtr, frow, event)
808 RF_Raid_t *raidPtr;
809 RF_RowCol_t frow;
810 RF_ReconEvent_t *event;
811 {
812 int retcode = 0, submitblocked;
813 RF_ReconBuffer_t *rbuf;
814 RF_SectorCount_t sectorsPerRU;
815
816 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
817 switch (event->type) {
818
819 /* a read I/O has completed */
820 case RF_REVENT_READDONE:
821 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
822 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
823 frow, event->col, rbuf->parityStripeID);
824 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
825 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
826 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
827 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
828 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
829 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
830 if (!submitblocked)
831 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
832 break;
833
834 /* a write I/O has completed */
835 case RF_REVENT_WRITEDONE:
836 if (rf_floatingRbufDebug) {
837 rf_CheckFloatingRbufCount(raidPtr, 1);
838 }
839 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
840 rbuf = (RF_ReconBuffer_t *) event->arg;
841 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
842 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
843 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
844 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
845 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
846 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
847
848 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
849 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
850 raidPtr->numFullReconBuffers--;
851 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
852 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
853 } else
854 if (rbuf->type == RF_RBUF_TYPE_FORCED)
855 rf_FreeReconBuffer(rbuf);
856 else
857 RF_ASSERT(0);
858 break;
859
860 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
861 * cleared */
862 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
863 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
864 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
865 * BUFCLEAR event if we
866 * couldn't submit */
867 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
868 break;
869
870 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
871 * blockage has been cleared */
872 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
873 retcode = TryToRead(raidPtr, frow, event->col);
874 break;
875
876 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
877 * reconstruction blockage has been
878 * cleared */
879 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
880 retcode = TryToRead(raidPtr, frow, event->col);
881 break;
882
883 /* a buffer has become ready to write */
884 case RF_REVENT_BUFREADY:
885 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
886 retcode = IssueNextWriteRequest(raidPtr, frow);
887 if (rf_floatingRbufDebug) {
888 rf_CheckFloatingRbufCount(raidPtr, 1);
889 }
890 break;
891
892 /* we need to skip the current RU entirely because it got
893 * recon'd while we were waiting for something else to happen */
894 case RF_REVENT_SKIP:
895 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
896 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
897 break;
898
899 /* a forced-reconstruction read access has completed. Just
900 * submit the buffer */
901 case RF_REVENT_FORCEDREADDONE:
902 rbuf = (RF_ReconBuffer_t *) event->arg;
903 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
904 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
905 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
906 RF_ASSERT(!submitblocked);
907 break;
908
909 default:
910 RF_PANIC();
911 }
912 rf_FreeReconEventDesc(event);
913 return (retcode);
914 }
915 /*****************************************************************************
916 *
917 * find the next thing that's needed on the indicated disk, and issue
918 * a read request for it. We assume that the reconstruction buffer
919 * associated with this process is free to receive the data. If
920 * reconstruction is blocked on the indicated RU, we issue a
921 * blockage-release request instead of a physical disk read request.
922 * If the current disk gets too far ahead of the others, we issue a
923 * head-separation wait request and return.
924 *
925 * ctrl->{ru_count, curPSID, diskOffset} and
926 * rbuf->failedDiskSectorOffset are maintained to point the the unit
927 * we're currently accessing. Note that this deviates from the
928 * standard C idiom of having counters point to the next thing to be
929 * accessed. This allows us to easily retry when we're blocked by
930 * head separation or reconstruction-blockage events.
931 *
932 * returns nonzero if and only if there is nothing left unread on the
933 * indicated disk
934 *
935 *****************************************************************************/
936 static int
937 IssueNextReadRequest(raidPtr, row, col)
938 RF_Raid_t *raidPtr;
939 RF_RowCol_t row;
940 RF_RowCol_t col;
941 {
942 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
943 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
944 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
945 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
946 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
947 int do_new_check = 0, retcode = 0, status;
948
949 /* if we are currently the slowest disk, mark that we have to do a new
950 * check */
951 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
952 do_new_check = 1;
953
954 while (1) {
955
956 ctrl->ru_count++;
957 if (ctrl->ru_count < RUsPerPU) {
958 ctrl->diskOffset += sectorsPerRU;
959 rbuf->failedDiskSectorOffset += sectorsPerRU;
960 } else {
961 ctrl->curPSID++;
962 ctrl->ru_count = 0;
963 /* code left over from when head-sep was based on
964 * parity stripe id */
965 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
966 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
967 return (1); /* finito! */
968 }
969 /* find the disk offsets of the start of the parity
970 * stripe on both the current disk and the failed
971 * disk. skip this entire parity stripe if either disk
972 * does not appear in the indicated PS */
973 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
974 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
975 if (status) {
976 ctrl->ru_count = RUsPerPU - 1;
977 continue;
978 }
979 }
980 rbuf->which_ru = ctrl->ru_count;
981
982 /* skip this RU if it's already been reconstructed */
983 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
984 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
985 continue;
986 }
987 break;
988 }
989 ctrl->headSepCounter++;
990 if (do_new_check)
991 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
992
993
994 /* at this point, we have definitely decided what to do, and we have
995 * only to see if we can actually do it now */
996 rbuf->parityStripeID = ctrl->curPSID;
997 rbuf->which_ru = ctrl->ru_count;
998 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
999 raidPtr->recon_tracerecs[col].reconacc = 1;
1000 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1001 retcode = TryToRead(raidPtr, row, col);
1002 return (retcode);
1003 }
1004
1005 /*
1006 * tries to issue the next read on the indicated disk. We may be
1007 * blocked by (a) the heads being too far apart, or (b) recon on the
1008 * indicated RU being blocked due to a write by a user thread. In
1009 * this case, we issue a head-sep or blockage wait request, which will
1010 * cause this same routine to be invoked again later when the blockage
1011 * has cleared.
1012 */
1013
1014 static int
1015 TryToRead(raidPtr, row, col)
1016 RF_Raid_t *raidPtr;
1017 RF_RowCol_t row;
1018 RF_RowCol_t col;
1019 {
1020 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1021 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1022 RF_StripeNum_t psid = ctrl->curPSID;
1023 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1024 RF_DiskQueueData_t *req;
1025 int status, created = 0;
1026 RF_ReconParityStripeStatus_t *pssPtr;
1027
1028 /* if the current disk is too far ahead of the others, issue a
1029 * head-separation wait and return */
1030 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1031 return (0);
1032 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1033 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1034
1035 /* if recon is blocked on the indicated parity stripe, issue a
1036 * block-wait request and return. this also must mark the indicated RU
1037 * in the stripe as under reconstruction if not blocked. */
1038 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1039 if (status == RF_PSS_RECON_BLOCKED) {
1040 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1041 goto out;
1042 } else
1043 if (status == RF_PSS_FORCED_ON_WRITE) {
1044 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1045 goto out;
1046 }
1047 /* make one last check to be sure that the indicated RU didn't get
1048 * reconstructed while we were waiting for something else to happen.
1049 * This is unfortunate in that it causes us to make this check twice
1050 * in the normal case. Might want to make some attempt to re-work
1051 * this so that we only do this check if we've definitely blocked on
1052 * one of the above checks. When this condition is detected, we may
1053 * have just created a bogus status entry, which we need to delete. */
1054 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1055 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1056 if (created)
1057 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1058 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1059 goto out;
1060 }
1061 /* found something to read. issue the I/O */
1062 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1063 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1064 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1065 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1066 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1067 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1068 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1069
1070 /* should be ok to use a NULL proc pointer here, all the bufs we use
1071 * should be in kernel space */
1072 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1073 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1074
1075 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1076
1077 ctrl->rbuf->arg = (void *) req;
1078 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1079 pssPtr->issued[col] = 1;
1080
1081 out:
1082 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1083 return (0);
1084 }
1085
1086
1087 /*
1088 * given a parity stripe ID, we want to find out whether both the
1089 * current disk and the failed disk exist in that parity stripe. If
1090 * not, we want to skip this whole PS. If so, we want to find the
1091 * disk offset of the start of the PS on both the current disk and the
1092 * failed disk.
1093 *
1094 * this works by getting a list of disks comprising the indicated
1095 * parity stripe, and searching the list for the current and failed
1096 * disks. Once we've decided they both exist in the parity stripe, we
1097 * need to decide whether each is data or parity, so that we'll know
1098 * which mapping function to call to get the corresponding disk
1099 * offsets.
1100 *
1101 * this is kind of unpleasant, but doing it this way allows the
1102 * reconstruction code to use parity stripe IDs rather than physical
1103 * disks address to march through the failed disk, which greatly
1104 * simplifies a lot of code, as well as eliminating the need for a
1105 * reverse-mapping function. I also think it will execute faster,
1106 * since the calls to the mapping module are kept to a minimum.
1107 *
1108 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1109 * THE STRIPE IN THE CORRECT ORDER */
1110
1111
1112 static int
1113 ComputePSDiskOffsets(
1114 RF_Raid_t * raidPtr, /* raid descriptor */
1115 RF_StripeNum_t psid, /* parity stripe identifier */
1116 RF_RowCol_t row, /* row and column of disk to find the offsets
1117 * for */
1118 RF_RowCol_t col,
1119 RF_SectorNum_t * outDiskOffset,
1120 RF_SectorNum_t * outFailedDiskSectorOffset,
1121 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1122 RF_RowCol_t * spCol,
1123 RF_SectorNum_t * spOffset)
1124 { /* OUT: offset into disk containing spare unit */
1125 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1126 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1127 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1128 RF_RowCol_t *diskids;
1129 u_int i, j, k, i_offset, j_offset;
1130 RF_RowCol_t prow, pcol;
1131 int testcol, testrow;
1132 RF_RowCol_t stripe;
1133 RF_SectorNum_t poffset;
1134 char i_is_parity = 0, j_is_parity = 0;
1135 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1136
1137 /* get a listing of the disks comprising that stripe */
1138 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1139 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1140 RF_ASSERT(diskids);
1141
1142 /* reject this entire parity stripe if it does not contain the
1143 * indicated disk or it does not contain the failed disk */
1144 if (row != stripe)
1145 goto skipit;
1146 for (i = 0; i < stripeWidth; i++) {
1147 if (col == diskids[i])
1148 break;
1149 }
1150 if (i == stripeWidth)
1151 goto skipit;
1152 for (j = 0; j < stripeWidth; j++) {
1153 if (fcol == diskids[j])
1154 break;
1155 }
1156 if (j == stripeWidth) {
1157 goto skipit;
1158 }
1159 /* find out which disk the parity is on */
1160 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1161
1162 /* find out if either the current RU or the failed RU is parity */
1163 /* also, if the parity occurs in this stripe prior to the data and/or
1164 * failed col, we need to decrement i and/or j */
1165 for (k = 0; k < stripeWidth; k++)
1166 if (diskids[k] == pcol)
1167 break;
1168 RF_ASSERT(k < stripeWidth);
1169 i_offset = i;
1170 j_offset = j;
1171 if (k < i)
1172 i_offset--;
1173 else
1174 if (k == i) {
1175 i_is_parity = 1;
1176 i_offset = 0;
1177 } /* set offsets to zero to disable multiply
1178 * below */
1179 if (k < j)
1180 j_offset--;
1181 else
1182 if (k == j) {
1183 j_is_parity = 1;
1184 j_offset = 0;
1185 }
1186 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1187 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1188 * tells us how far into the stripe the [current,failed] disk is. */
1189
1190 /* call the mapping routine to get the offset into the current disk,
1191 * repeat for failed disk. */
1192 if (i_is_parity)
1193 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1194 else
1195 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1196
1197 RF_ASSERT(row == testrow && col == testcol);
1198
1199 if (j_is_parity)
1200 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1201 else
1202 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1203 RF_ASSERT(row == testrow && fcol == testcol);
1204
1205 /* now locate the spare unit for the failed unit */
1206 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1207 if (j_is_parity)
1208 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1209 else
1210 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1211 } else {
1212 *spRow = raidPtr->reconControl[row]->spareRow;
1213 *spCol = raidPtr->reconControl[row]->spareCol;
1214 *spOffset = *outFailedDiskSectorOffset;
1215 }
1216
1217 return (0);
1218
1219 skipit:
1220 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1221 psid, row, col);
1222 return (1);
1223 }
1224 /* this is called when a buffer has become ready to write to the replacement disk */
1225 static int
1226 IssueNextWriteRequest(raidPtr, row)
1227 RF_Raid_t *raidPtr;
1228 RF_RowCol_t row;
1229 {
1230 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1231 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1232 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1233 RF_ReconBuffer_t *rbuf;
1234 RF_DiskQueueData_t *req;
1235
1236 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1237 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1238 * have gotten the event that sent us here */
1239 RF_ASSERT(rbuf->pssPtr);
1240
1241 rbuf->pssPtr->writeRbuf = rbuf;
1242 rbuf->pssPtr = NULL;
1243
1244 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1245 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1246 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1247 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1248 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1249 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1250
1251 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1252 * kernel space */
1253 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1254 sectorsPerRU, rbuf->buffer,
1255 rbuf->parityStripeID, rbuf->which_ru,
1256 ReconWriteDoneProc, (void *) rbuf, NULL,
1257 &raidPtr->recon_tracerecs[fcol],
1258 (void *) raidPtr, 0, NULL);
1259
1260 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1261
1262 rbuf->arg = (void *) req;
1263 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1264
1265 return (0);
1266 }
1267
1268 /*
1269 * this gets called upon the completion of a reconstruction read
1270 * operation the arg is a pointer to the per-disk reconstruction
1271 * control structure for the process that just finished a read.
1272 *
1273 * called at interrupt context in the kernel, so don't do anything
1274 * illegal here.
1275 */
1276 static int
1277 ReconReadDoneProc(arg, status)
1278 void *arg;
1279 int status;
1280 {
1281 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1282 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1283
1284 if (status) {
1285 /*
1286 * XXX
1287 */
1288 printf("Recon read failed!\n");
1289 RF_PANIC();
1290 }
1291 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1292 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1293 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1294 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1295 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1296
1297 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1298 return (0);
1299 }
1300 /* this gets called upon the completion of a reconstruction write operation.
1301 * the arg is a pointer to the rbuf that was just written
1302 *
1303 * called at interrupt context in the kernel, so don't do anything illegal here.
1304 */
1305 static int
1306 ReconWriteDoneProc(arg, status)
1307 void *arg;
1308 int status;
1309 {
1310 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1311
1312 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1313 if (status) {
1314 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1315 * write failed!\n"); */
1316 RF_PANIC();
1317 }
1318 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1319 return (0);
1320 }
1321
1322
1323 /*
1324 * computes a new minimum head sep, and wakes up anyone who needs to
1325 * be woken as a result
1326 */
1327 static void
1328 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1329 RF_Raid_t *raidPtr;
1330 RF_RowCol_t row;
1331 RF_HeadSepLimit_t hsCtr;
1332 {
1333 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1334 RF_HeadSepLimit_t new_min;
1335 RF_RowCol_t i;
1336 RF_CallbackDesc_t *p;
1337 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1338 * of a minimum */
1339
1340
1341 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1342
1343 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1344 for (i = 0; i < raidPtr->numCol; i++)
1345 if (i != reconCtrlPtr->fcol) {
1346 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1347 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1348 }
1349 /* set the new minimum and wake up anyone who can now run again */
1350 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1351 reconCtrlPtr->minHeadSepCounter = new_min;
1352 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1353 while (reconCtrlPtr->headSepCBList) {
1354 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1355 break;
1356 p = reconCtrlPtr->headSepCBList;
1357 reconCtrlPtr->headSepCBList = p->next;
1358 p->next = NULL;
1359 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1360 rf_FreeCallbackDesc(p);
1361 }
1362
1363 }
1364 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1365 }
1366
1367 /*
1368 * checks to see that the maximum head separation will not be violated
1369 * if we initiate a reconstruction I/O on the indicated disk.
1370 * Limiting the maximum head separation between two disks eliminates
1371 * the nasty buffer-stall conditions that occur when one disk races
1372 * ahead of the others and consumes all of the floating recon buffers.
1373 * This code is complex and unpleasant but it's necessary to avoid
1374 * some very nasty, albeit fairly rare, reconstruction behavior.
1375 *
1376 * returns non-zero if and only if we have to stop working on the
1377 * indicated disk due to a head-separation delay.
1378 */
1379 static int
1380 CheckHeadSeparation(
1381 RF_Raid_t * raidPtr,
1382 RF_PerDiskReconCtrl_t * ctrl,
1383 RF_RowCol_t row,
1384 RF_RowCol_t col,
1385 RF_HeadSepLimit_t hsCtr,
1386 RF_ReconUnitNum_t which_ru)
1387 {
1388 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1389 RF_CallbackDesc_t *cb, *p, *pt;
1390 int retval = 0;
1391
1392 /* if we're too far ahead of the slowest disk, stop working on this
1393 * disk until the slower ones catch up. We do this by scheduling a
1394 * wakeup callback for the time when the slowest disk has caught up.
1395 * We define "caught up" with 20% hysteresis, i.e. the head separation
1396 * must have fallen to at most 80% of the max allowable head
1397 * separation before we'll wake up.
1398 *
1399 */
1400 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1401 if ((raidPtr->headSepLimit >= 0) &&
1402 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1403 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1404 raidPtr->raidid, row, col, ctrl->headSepCounter,
1405 reconCtrlPtr->minHeadSepCounter,
1406 raidPtr->headSepLimit);
1407 cb = rf_AllocCallbackDesc();
1408 /* the minHeadSepCounter value we have to get to before we'll
1409 * wake up. build in 20% hysteresis. */
1410 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1411 cb->row = row;
1412 cb->col = col;
1413 cb->next = NULL;
1414
1415 /* insert this callback descriptor into the sorted list of
1416 * pending head-sep callbacks */
1417 p = reconCtrlPtr->headSepCBList;
1418 if (!p)
1419 reconCtrlPtr->headSepCBList = cb;
1420 else
1421 if (cb->callbackArg.v < p->callbackArg.v) {
1422 cb->next = reconCtrlPtr->headSepCBList;
1423 reconCtrlPtr->headSepCBList = cb;
1424 } else {
1425 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1426 cb->next = p;
1427 pt->next = cb;
1428 }
1429 retval = 1;
1430 #if RF_RECON_STATS > 0
1431 ctrl->reconCtrl->reconDesc->hsStallCount++;
1432 #endif /* RF_RECON_STATS > 0 */
1433 }
1434 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1435
1436 return (retval);
1437 }
1438 /*
1439 * checks to see if reconstruction has been either forced or blocked
1440 * by a user operation. if forced, we skip this RU entirely. else if
1441 * blocked, put ourselves on the wait list. else return 0.
1442 *
1443 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1444 */
1445 static int
1446 CheckForcedOrBlockedReconstruction(
1447 RF_Raid_t * raidPtr,
1448 RF_ReconParityStripeStatus_t * pssPtr,
1449 RF_PerDiskReconCtrl_t * ctrl,
1450 RF_RowCol_t row,
1451 RF_RowCol_t col,
1452 RF_StripeNum_t psid,
1453 RF_ReconUnitNum_t which_ru)
1454 {
1455 RF_CallbackDesc_t *cb;
1456 int retcode = 0;
1457
1458 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1459 retcode = RF_PSS_FORCED_ON_WRITE;
1460 else
1461 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1462 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1463 cb = rf_AllocCallbackDesc(); /* append ourselves to
1464 * the blockage-wait
1465 * list */
1466 cb->row = row;
1467 cb->col = col;
1468 cb->next = pssPtr->blockWaitList;
1469 pssPtr->blockWaitList = cb;
1470 retcode = RF_PSS_RECON_BLOCKED;
1471 }
1472 if (!retcode)
1473 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1474 * reconstruction */
1475
1476 return (retcode);
1477 }
1478 /*
1479 * if reconstruction is currently ongoing for the indicated stripeID,
1480 * reconstruction is forced to completion and we return non-zero to
1481 * indicate that the caller must wait. If not, then reconstruction is
1482 * blocked on the indicated stripe and the routine returns zero. If
1483 * and only if we return non-zero, we'll cause the cbFunc to get
1484 * invoked with the cbArg when the reconstruction has completed.
1485 */
1486 int
1487 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1488 RF_Raid_t *raidPtr;
1489 RF_AccessStripeMap_t *asmap;
1490 void (*cbFunc) (RF_Raid_t *, void *);
1491 void *cbArg;
1492 {
1493 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1494 * we're working on */
1495 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1496 * forcing recon on */
1497 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1498 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1499 * stripe status structure */
1500 RF_StripeNum_t psid; /* parity stripe id */
1501 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1502 * offset */
1503 RF_RowCol_t *diskids;
1504 RF_RowCol_t stripe;
1505 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1506 RF_RowCol_t fcol, diskno, i;
1507 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1508 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1509 RF_CallbackDesc_t *cb;
1510 int created = 0, nPromoted;
1511
1512 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1513
1514 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1515
1516 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1517
1518 /* if recon is not ongoing on this PS, just return */
1519 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1520 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1521 return (0);
1522 }
1523 /* otherwise, we have to wait for reconstruction to complete on this
1524 * RU. */
1525 /* In order to avoid waiting for a potentially large number of
1526 * low-priority accesses to complete, we force a normal-priority (i.e.
1527 * not low-priority) reconstruction on this RU. */
1528 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1529 DDprintf1("Forcing recon on psid %ld\n", psid);
1530 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1531 * forced recon */
1532 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1533 * that we just set */
1534 fcol = raidPtr->reconControl[row]->fcol;
1535
1536 /* get a listing of the disks comprising the indicated stripe */
1537 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1538 RF_ASSERT(row == stripe);
1539
1540 /* For previously issued reads, elevate them to normal
1541 * priority. If the I/O has already completed, it won't be
1542 * found in the queue, and hence this will be a no-op. For
1543 * unissued reads, allocate buffers and issue new reads. The
1544 * fact that we've set the FORCED bit means that the regular
1545 * recon procs will not re-issue these reqs */
1546 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1547 if ((diskno = diskids[i]) != fcol) {
1548 if (pssPtr->issued[diskno]) {
1549 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1550 if (rf_reconDebug && nPromoted)
1551 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1552 } else {
1553 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1554 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1555 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1556 * location */
1557 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1558 new_rbuf->which_ru = which_ru;
1559 new_rbuf->failedDiskSectorOffset = fd_offset;
1560 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1561
1562 /* use NULL b_proc b/c all addrs
1563 * should be in kernel space */
1564 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1565 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1566 NULL, (void *) raidPtr, 0, NULL);
1567
1568 RF_ASSERT(req); /* XXX -- fix this --
1569 * XXX */
1570
1571 new_rbuf->arg = req;
1572 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1573 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1574 }
1575 }
1576 /* if the write is sitting in the disk queue, elevate its
1577 * priority */
1578 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1579 printf("raid%d: promoted write to row %d col %d\n",
1580 raidPtr->raidid, row, fcol);
1581 }
1582 /* install a callback descriptor to be invoked when recon completes on
1583 * this parity stripe. */
1584 cb = rf_AllocCallbackDesc();
1585 /* XXX the following is bogus.. These functions don't really match!!
1586 * GO */
1587 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1588 cb->callbackArg.p = (void *) cbArg;
1589 cb->next = pssPtr->procWaitList;
1590 pssPtr->procWaitList = cb;
1591 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1592 raidPtr->raidid, psid);
1593
1594 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1595 return (1);
1596 }
1597 /* called upon the completion of a forced reconstruction read.
1598 * all we do is schedule the FORCEDREADONE event.
1599 * called at interrupt context in the kernel, so don't do anything illegal here.
1600 */
1601 static void
1602 ForceReconReadDoneProc(arg, status)
1603 void *arg;
1604 int status;
1605 {
1606 RF_ReconBuffer_t *rbuf = arg;
1607
1608 if (status) {
1609 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1610 * recon read
1611 * failed!\n"); */
1612 RF_PANIC();
1613 }
1614 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1615 }
1616 /* releases a block on the reconstruction of the indicated stripe */
1617 int
1618 rf_UnblockRecon(raidPtr, asmap)
1619 RF_Raid_t *raidPtr;
1620 RF_AccessStripeMap_t *asmap;
1621 {
1622 RF_RowCol_t row = asmap->origRow;
1623 RF_StripeNum_t stripeID = asmap->stripeID;
1624 RF_ReconParityStripeStatus_t *pssPtr;
1625 RF_ReconUnitNum_t which_ru;
1626 RF_StripeNum_t psid;
1627 int created = 0;
1628 RF_CallbackDesc_t *cb;
1629
1630 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1631 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1632 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1633
1634 /* When recon is forced, the pss desc can get deleted before we get
1635 * back to unblock recon. But, this can _only_ happen when recon is
1636 * forced. It would be good to put some kind of sanity check here, but
1637 * how to decide if recon was just forced or not? */
1638 if (!pssPtr) {
1639 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1640 * RU %d\n",psid,which_ru); */
1641 if (rf_reconDebug || rf_pssDebug)
1642 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1643 goto out;
1644 }
1645 pssPtr->blockCount--;
1646 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1647 raidPtr->raidid, psid, pssPtr->blockCount);
1648 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1649
1650 /* unblock recon before calling CauseReconEvent in case
1651 * CauseReconEvent causes us to try to issue a new read before
1652 * returning here. */
1653 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1654
1655
1656 while (pssPtr->blockWaitList) {
1657 /* spin through the block-wait list and
1658 release all the waiters */
1659 cb = pssPtr->blockWaitList;
1660 pssPtr->blockWaitList = cb->next;
1661 cb->next = NULL;
1662 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1663 rf_FreeCallbackDesc(cb);
1664 }
1665 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1666 /* if no recon was requested while recon was blocked */
1667 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1668 }
1669 }
1670 out:
1671 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1672 return (0);
1673 }
1674