rf_reconstruct.c revision 1.22 1 /* $NetBSD: rf_reconstruct.c,v 1.22 2000/03/13 23:52:36 soren Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403 int ac;
404
405 lp = raidPtr->Layout.map;
406 if (lp->SubmitReconBuffer) {
407 /*
408 * The current infrastructure only supports reconstructing one
409 * disk at a time for each array.
410 */
411 RF_LOCK_MUTEX(raidPtr->mutex);
412 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
413 (raidPtr->numFailures > 0)) {
414 /* XXX 0 above shouldn't be constant!!! */
415 /* some component other than this has failed.
416 Let's not make things worse than they already
417 are... */
418 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
419 printf(" Row: %d Col: %d Too many failures.\n",
420 row, col);
421 RF_UNLOCK_MUTEX(raidPtr->mutex);
422 return (EINVAL);
423 }
424 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
425 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
426 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
427
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 return (EINVAL);
430 }
431
432
433 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
434 /* "It's gone..." */
435 raidPtr->numFailures++;
436 raidPtr->Disks[row][col].status = rf_ds_failed;
437 raidPtr->status[row] = rf_rs_degraded;
438 rf_update_component_labels(raidPtr);
439 }
440
441 while (raidPtr->reconInProgress) {
442 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
443 }
444
445 raidPtr->reconInProgress++;
446
447
448 /* first look for a spare drive onto which to reconstruct
449 the data. spare disk descriptors are stored in row 0.
450 This may have to change eventually */
451
452 /* Actually, we don't care if it's failed or not...
453 On a RAID set with correct parity, this function
454 should be callable on any component without ill affects. */
455 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
456 */
457
458 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
459 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
460
461 raidPtr->reconInProgress--;
462 RF_UNLOCK_MUTEX(raidPtr->mutex);
463 return (EINVAL);
464 }
465
466 /* XXX need goop here to see if the disk is alive,
467 and, if not, make it so... */
468
469
470
471 badDisk = &raidPtr->Disks[row][col];
472
473 proc = raidPtr->engine_thread;
474
475 /* This device may have been opened successfully the
476 first time. Close it before trying to open it again.. */
477
478 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
479 printf("Closed the open device: %s\n",
480 raidPtr->Disks[row][col].devname);
481 vp = raidPtr->raid_cinfo[row][col].ci_vp;
482 ac = raidPtr->Disks[row][col].auto_configured;
483 rf_close_component(raidPtr, vp, ac);
484 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
485 }
486 /* note that this disk was *not* auto_configured (any longer)*/
487 raidPtr->Disks[row][col].auto_configured = 0;
488
489 printf("About to (re-)open the device for rebuilding: %s\n",
490 raidPtr->Disks[row][col].devname);
491
492 retcode = raidlookup(raidPtr->Disks[row][col].devname,
493 proc, &vp);
494
495 if (retcode) {
496 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
497 raidPtr->Disks[row][col].devname, retcode);
498
499 /* XXX the component isn't responding properly...
500 must be still dead :-( */
501 raidPtr->reconInProgress--;
502 RF_UNLOCK_MUTEX(raidPtr->mutex);
503 return(retcode);
504
505 } else {
506
507 /* Ok, so we can at least do a lookup...
508 How about actually getting a vp for it? */
509
510 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
511 proc)) != 0) {
512 raidPtr->reconInProgress--;
513 RF_UNLOCK_MUTEX(raidPtr->mutex);
514 return(retcode);
515 }
516 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
517 FREAD, proc->p_ucred, proc);
518 if (retcode) {
519 raidPtr->reconInProgress--;
520 RF_UNLOCK_MUTEX(raidPtr->mutex);
521 return(retcode);
522 }
523 raidPtr->Disks[row][col].blockSize =
524 dpart.disklab->d_secsize;
525
526 raidPtr->Disks[row][col].numBlocks =
527 dpart.part->p_size - rf_protectedSectors;
528
529 raidPtr->raid_cinfo[row][col].ci_vp = vp;
530 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
531
532 raidPtr->Disks[row][col].dev = va.va_rdev;
533
534 /* we allow the user to specify that only a
535 fraction of the disks should be used this is
536 just for debug: it speeds up
537 * the parity scan */
538 raidPtr->Disks[row][col].numBlocks =
539 raidPtr->Disks[row][col].numBlocks *
540 rf_sizePercentage / 100;
541 }
542
543
544
545 spareDiskPtr = &raidPtr->Disks[row][col];
546 spareDiskPtr->status = rf_ds_used_spare;
547
548 printf("RECON: initiating in-place reconstruction on\n");
549 printf(" row %d col %d -> spare at row %d col %d\n",
550 row, col, row, col);
551
552 RF_UNLOCK_MUTEX(raidPtr->mutex);
553
554 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
555 spareDiskPtr, numDisksDone,
556 row, col);
557 raidPtr->reconDesc = (void *) reconDesc;
558 #if RF_RECON_STATS > 0
559 reconDesc->hsStallCount = 0;
560 reconDesc->numReconExecDelays = 0;
561 reconDesc->numReconEventWaits = 0;
562 #endif /* RF_RECON_STATS > 0 */
563 reconDesc->reconExecTimerRunning = 0;
564 reconDesc->reconExecTicks = 0;
565 reconDesc->maxReconExecTicks = 0;
566 rc = rf_ContinueReconstructFailedDisk(reconDesc);
567
568 RF_LOCK_MUTEX(raidPtr->mutex);
569 raidPtr->reconInProgress--;
570 RF_UNLOCK_MUTEX(raidPtr->mutex);
571
572 } else {
573 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
574 lp->parityConfig);
575 rc = EIO;
576 }
577 RF_LOCK_MUTEX(raidPtr->mutex);
578
579 if (!rc) {
580 /* Need to set these here, as at this point it'll be claiming
581 that the disk is in rf_ds_spared! But we know better :-) */
582
583 raidPtr->Disks[row][col].status = rf_ds_optimal;
584 raidPtr->status[row] = rf_rs_optimal;
585
586 /* fix up the component label */
587 /* Don't actually need the read here.. */
588 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
589 raidPtr->raid_cinfo[row][col].ci_vp,
590 &c_label);
591
592 raid_init_component_label(raidPtr, &c_label);
593
594 c_label.row = row;
595 c_label.column = col;
596
597 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
598 raidPtr->raid_cinfo[row][col].ci_vp,
599 &c_label);
600
601 }
602 RF_UNLOCK_MUTEX(raidPtr->mutex);
603 RF_SIGNAL_COND(raidPtr->waitForReconCond);
604 wakeup(&raidPtr->waitForReconCond);
605 return (rc);
606 }
607
608
609 int
610 rf_ContinueReconstructFailedDisk(reconDesc)
611 RF_RaidReconDesc_t *reconDesc;
612 {
613 RF_Raid_t *raidPtr = reconDesc->raidPtr;
614 RF_RowCol_t row = reconDesc->row;
615 RF_RowCol_t col = reconDesc->col;
616 RF_RowCol_t srow = reconDesc->srow;
617 RF_RowCol_t scol = reconDesc->scol;
618 RF_ReconMap_t *mapPtr;
619
620 RF_ReconEvent_t *event;
621 struct timeval etime, elpsd;
622 unsigned long xor_s, xor_resid_us;
623 int retcode, i, ds;
624
625 switch (reconDesc->state) {
626
627
628 case 0:
629
630 raidPtr->accumXorTimeUs = 0;
631
632 /* create one trace record per physical disk */
633 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
634
635 /* quiesce the array prior to starting recon. this is needed
636 * to assure no nasty interactions with pending user writes.
637 * We need to do this before we change the disk or row status. */
638 reconDesc->state = 1;
639
640 Dprintf("RECON: begin request suspend\n");
641 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
642 Dprintf("RECON: end request suspend\n");
643 rf_StartUserStats(raidPtr); /* zero out the stats kept on
644 * user accs */
645
646 /* fall through to state 1 */
647
648 case 1:
649
650 RF_LOCK_MUTEX(raidPtr->mutex);
651
652 /* create the reconstruction control pointer and install it in
653 * the right slot */
654 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
655 mapPtr = raidPtr->reconControl[row]->reconMap;
656 raidPtr->status[row] = rf_rs_reconstructing;
657 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
658 raidPtr->Disks[row][col].spareRow = srow;
659 raidPtr->Disks[row][col].spareCol = scol;
660
661 RF_UNLOCK_MUTEX(raidPtr->mutex);
662
663 RF_GETTIME(raidPtr->reconControl[row]->starttime);
664
665 /* now start up the actual reconstruction: issue a read for
666 * each surviving disk */
667
668 reconDesc->numDisksDone = 0;
669 for (i = 0; i < raidPtr->numCol; i++) {
670 if (i != col) {
671 /* find and issue the next I/O on the
672 * indicated disk */
673 if (IssueNextReadRequest(raidPtr, row, i)) {
674 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
675 reconDesc->numDisksDone++;
676 }
677 }
678 }
679
680 case 2:
681 Dprintf("RECON: resume requests\n");
682 rf_ResumeNewRequests(raidPtr);
683
684
685 reconDesc->state = 3;
686
687 case 3:
688
689 /* process reconstruction events until all disks report that
690 * they've completed all work */
691 mapPtr = raidPtr->reconControl[row]->reconMap;
692
693
694
695 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
696
697 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
698 RF_ASSERT(event);
699
700 if (ProcessReconEvent(raidPtr, row, event))
701 reconDesc->numDisksDone++;
702 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
703 if (rf_prReconSched) {
704 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
705 }
706 }
707
708
709
710 reconDesc->state = 4;
711
712
713 case 4:
714 mapPtr = raidPtr->reconControl[row]->reconMap;
715 if (rf_reconDebug) {
716 printf("RECON: all reads completed\n");
717 }
718 /* at this point all the reads have completed. We now wait
719 * for any pending writes to complete, and then we're done */
720
721 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
722
723 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
724 RF_ASSERT(event);
725
726 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
727 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
728 if (rf_prReconSched) {
729 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
730 }
731 }
732 reconDesc->state = 5;
733
734 case 5:
735 /* Success: mark the dead disk as reconstructed. We quiesce
736 * the array here to assure no nasty interactions with pending
737 * user accesses when we free up the psstatus structure as
738 * part of FreeReconControl() */
739
740 reconDesc->state = 6;
741
742 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
743 rf_StopUserStats(raidPtr);
744 rf_PrintUserStats(raidPtr); /* print out the stats on user
745 * accs accumulated during
746 * recon */
747
748 /* fall through to state 6 */
749 case 6:
750
751
752
753 RF_LOCK_MUTEX(raidPtr->mutex);
754 raidPtr->numFailures--;
755 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
756 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
757 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
758 RF_UNLOCK_MUTEX(raidPtr->mutex);
759 RF_GETTIME(etime);
760 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
761
762 /* XXX -- why is state 7 different from state 6 if there is no
763 * return() here? -- XXX Note that I set elpsd above & use it
764 * below, so if you put a return here you'll have to fix this.
765 * (also, FreeReconControl is called below) */
766
767 case 7:
768
769 rf_ResumeNewRequests(raidPtr);
770
771 printf("Reconstruction of disk at row %d col %d completed\n",
772 row, col);
773 xor_s = raidPtr->accumXorTimeUs / 1000000;
774 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
775 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
776 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
777 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
778 (int) raidPtr->reconControl[row]->starttime.tv_sec,
779 (int) raidPtr->reconControl[row]->starttime.tv_usec,
780 (int) etime.tv_sec, (int) etime.tv_usec);
781
782 #if RF_RECON_STATS > 0
783 printf("Total head-sep stall count was %d\n",
784 (int) reconDesc->hsStallCount);
785 #endif /* RF_RECON_STATS > 0 */
786 rf_FreeReconControl(raidPtr, row);
787 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
788 FreeReconDesc(reconDesc);
789
790 }
791
792 SignalReconDone(raidPtr);
793 return (0);
794 }
795 /*****************************************************************************
796 * do the right thing upon each reconstruction event.
797 * returns nonzero if and only if there is nothing left unread on the
798 * indicated disk
799 *****************************************************************************/
800 static int
801 ProcessReconEvent(raidPtr, frow, event)
802 RF_Raid_t *raidPtr;
803 RF_RowCol_t frow;
804 RF_ReconEvent_t *event;
805 {
806 int retcode = 0, submitblocked;
807 RF_ReconBuffer_t *rbuf;
808 RF_SectorCount_t sectorsPerRU;
809
810 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
811 switch (event->type) {
812
813 /* a read I/O has completed */
814 case RF_REVENT_READDONE:
815 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
816 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
817 frow, event->col, rbuf->parityStripeID);
818 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
819 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
820 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
821 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
822 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
823 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
824 if (!submitblocked)
825 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
826 break;
827
828 /* a write I/O has completed */
829 case RF_REVENT_WRITEDONE:
830 if (rf_floatingRbufDebug) {
831 rf_CheckFloatingRbufCount(raidPtr, 1);
832 }
833 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
834 rbuf = (RF_ReconBuffer_t *) event->arg;
835 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
836 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
837 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
838 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
839 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
840 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
841
842 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
843 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
844 raidPtr->numFullReconBuffers--;
845 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
846 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
847 } else
848 if (rbuf->type == RF_RBUF_TYPE_FORCED)
849 rf_FreeReconBuffer(rbuf);
850 else
851 RF_ASSERT(0);
852 break;
853
854 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
855 * cleared */
856 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
857 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
858 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
859 * BUFCLEAR event if we
860 * couldn't submit */
861 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
862 break;
863
864 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
865 * blockage has been cleared */
866 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
867 retcode = TryToRead(raidPtr, frow, event->col);
868 break;
869
870 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
871 * reconstruction blockage has been
872 * cleared */
873 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
874 retcode = TryToRead(raidPtr, frow, event->col);
875 break;
876
877 /* a buffer has become ready to write */
878 case RF_REVENT_BUFREADY:
879 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
880 retcode = IssueNextWriteRequest(raidPtr, frow);
881 if (rf_floatingRbufDebug) {
882 rf_CheckFloatingRbufCount(raidPtr, 1);
883 }
884 break;
885
886 /* we need to skip the current RU entirely because it got
887 * recon'd while we were waiting for something else to happen */
888 case RF_REVENT_SKIP:
889 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
890 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
891 break;
892
893 /* a forced-reconstruction read access has completed. Just
894 * submit the buffer */
895 case RF_REVENT_FORCEDREADDONE:
896 rbuf = (RF_ReconBuffer_t *) event->arg;
897 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
898 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
899 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
900 RF_ASSERT(!submitblocked);
901 break;
902
903 default:
904 RF_PANIC();
905 }
906 rf_FreeReconEventDesc(event);
907 return (retcode);
908 }
909 /*****************************************************************************
910 *
911 * find the next thing that's needed on the indicated disk, and issue
912 * a read request for it. We assume that the reconstruction buffer
913 * associated with this process is free to receive the data. If
914 * reconstruction is blocked on the indicated RU, we issue a
915 * blockage-release request instead of a physical disk read request.
916 * If the current disk gets too far ahead of the others, we issue a
917 * head-separation wait request and return.
918 *
919 * ctrl->{ru_count, curPSID, diskOffset} and
920 * rbuf->failedDiskSectorOffset are maintained to point to the unit
921 * we're currently accessing. Note that this deviates from the
922 * standard C idiom of having counters point to the next thing to be
923 * accessed. This allows us to easily retry when we're blocked by
924 * head separation or reconstruction-blockage events.
925 *
926 * returns nonzero if and only if there is nothing left unread on the
927 * indicated disk
928 *
929 *****************************************************************************/
930 static int
931 IssueNextReadRequest(raidPtr, row, col)
932 RF_Raid_t *raidPtr;
933 RF_RowCol_t row;
934 RF_RowCol_t col;
935 {
936 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
937 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
938 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
939 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
940 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
941 int do_new_check = 0, retcode = 0, status;
942
943 /* if we are currently the slowest disk, mark that we have to do a new
944 * check */
945 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
946 do_new_check = 1;
947
948 while (1) {
949
950 ctrl->ru_count++;
951 if (ctrl->ru_count < RUsPerPU) {
952 ctrl->diskOffset += sectorsPerRU;
953 rbuf->failedDiskSectorOffset += sectorsPerRU;
954 } else {
955 ctrl->curPSID++;
956 ctrl->ru_count = 0;
957 /* code left over from when head-sep was based on
958 * parity stripe id */
959 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
960 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
961 return (1); /* finito! */
962 }
963 /* find the disk offsets of the start of the parity
964 * stripe on both the current disk and the failed
965 * disk. skip this entire parity stripe if either disk
966 * does not appear in the indicated PS */
967 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
968 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
969 if (status) {
970 ctrl->ru_count = RUsPerPU - 1;
971 continue;
972 }
973 }
974 rbuf->which_ru = ctrl->ru_count;
975
976 /* skip this RU if it's already been reconstructed */
977 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
978 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
979 continue;
980 }
981 break;
982 }
983 ctrl->headSepCounter++;
984 if (do_new_check)
985 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
986
987
988 /* at this point, we have definitely decided what to do, and we have
989 * only to see if we can actually do it now */
990 rbuf->parityStripeID = ctrl->curPSID;
991 rbuf->which_ru = ctrl->ru_count;
992 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
993 raidPtr->recon_tracerecs[col].reconacc = 1;
994 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
995 retcode = TryToRead(raidPtr, row, col);
996 return (retcode);
997 }
998
999 /*
1000 * tries to issue the next read on the indicated disk. We may be
1001 * blocked by (a) the heads being too far apart, or (b) recon on the
1002 * indicated RU being blocked due to a write by a user thread. In
1003 * this case, we issue a head-sep or blockage wait request, which will
1004 * cause this same routine to be invoked again later when the blockage
1005 * has cleared.
1006 */
1007
1008 static int
1009 TryToRead(raidPtr, row, col)
1010 RF_Raid_t *raidPtr;
1011 RF_RowCol_t row;
1012 RF_RowCol_t col;
1013 {
1014 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1015 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1016 RF_StripeNum_t psid = ctrl->curPSID;
1017 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1018 RF_DiskQueueData_t *req;
1019 int status, created = 0;
1020 RF_ReconParityStripeStatus_t *pssPtr;
1021
1022 /* if the current disk is too far ahead of the others, issue a
1023 * head-separation wait and return */
1024 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1025 return (0);
1026 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1027 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1028
1029 /* if recon is blocked on the indicated parity stripe, issue a
1030 * block-wait request and return. this also must mark the indicated RU
1031 * in the stripe as under reconstruction if not blocked. */
1032 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1033 if (status == RF_PSS_RECON_BLOCKED) {
1034 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1035 goto out;
1036 } else
1037 if (status == RF_PSS_FORCED_ON_WRITE) {
1038 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1039 goto out;
1040 }
1041 /* make one last check to be sure that the indicated RU didn't get
1042 * reconstructed while we were waiting for something else to happen.
1043 * This is unfortunate in that it causes us to make this check twice
1044 * in the normal case. Might want to make some attempt to re-work
1045 * this so that we only do this check if we've definitely blocked on
1046 * one of the above checks. When this condition is detected, we may
1047 * have just created a bogus status entry, which we need to delete. */
1048 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1049 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1050 if (created)
1051 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1052 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1053 goto out;
1054 }
1055 /* found something to read. issue the I/O */
1056 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1057 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1058 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1059 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1060 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1061 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1062 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1063
1064 /* should be ok to use a NULL proc pointer here, all the bufs we use
1065 * should be in kernel space */
1066 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1067 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1068
1069 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1070
1071 ctrl->rbuf->arg = (void *) req;
1072 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1073 pssPtr->issued[col] = 1;
1074
1075 out:
1076 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1077 return (0);
1078 }
1079
1080
1081 /*
1082 * given a parity stripe ID, we want to find out whether both the
1083 * current disk and the failed disk exist in that parity stripe. If
1084 * not, we want to skip this whole PS. If so, we want to find the
1085 * disk offset of the start of the PS on both the current disk and the
1086 * failed disk.
1087 *
1088 * this works by getting a list of disks comprising the indicated
1089 * parity stripe, and searching the list for the current and failed
1090 * disks. Once we've decided they both exist in the parity stripe, we
1091 * need to decide whether each is data or parity, so that we'll know
1092 * which mapping function to call to get the corresponding disk
1093 * offsets.
1094 *
1095 * this is kind of unpleasant, but doing it this way allows the
1096 * reconstruction code to use parity stripe IDs rather than physical
1097 * disks address to march through the failed disk, which greatly
1098 * simplifies a lot of code, as well as eliminating the need for a
1099 * reverse-mapping function. I also think it will execute faster,
1100 * since the calls to the mapping module are kept to a minimum.
1101 *
1102 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1103 * THE STRIPE IN THE CORRECT ORDER */
1104
1105
1106 static int
1107 ComputePSDiskOffsets(
1108 RF_Raid_t * raidPtr, /* raid descriptor */
1109 RF_StripeNum_t psid, /* parity stripe identifier */
1110 RF_RowCol_t row, /* row and column of disk to find the offsets
1111 * for */
1112 RF_RowCol_t col,
1113 RF_SectorNum_t * outDiskOffset,
1114 RF_SectorNum_t * outFailedDiskSectorOffset,
1115 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1116 RF_RowCol_t * spCol,
1117 RF_SectorNum_t * spOffset)
1118 { /* OUT: offset into disk containing spare unit */
1119 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1120 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1121 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1122 RF_RowCol_t *diskids;
1123 u_int i, j, k, i_offset, j_offset;
1124 RF_RowCol_t prow, pcol;
1125 int testcol, testrow;
1126 RF_RowCol_t stripe;
1127 RF_SectorNum_t poffset;
1128 char i_is_parity = 0, j_is_parity = 0;
1129 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1130
1131 /* get a listing of the disks comprising that stripe */
1132 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1133 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1134 RF_ASSERT(diskids);
1135
1136 /* reject this entire parity stripe if it does not contain the
1137 * indicated disk or it does not contain the failed disk */
1138 if (row != stripe)
1139 goto skipit;
1140 for (i = 0; i < stripeWidth; i++) {
1141 if (col == diskids[i])
1142 break;
1143 }
1144 if (i == stripeWidth)
1145 goto skipit;
1146 for (j = 0; j < stripeWidth; j++) {
1147 if (fcol == diskids[j])
1148 break;
1149 }
1150 if (j == stripeWidth) {
1151 goto skipit;
1152 }
1153 /* find out which disk the parity is on */
1154 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1155
1156 /* find out if either the current RU or the failed RU is parity */
1157 /* also, if the parity occurs in this stripe prior to the data and/or
1158 * failed col, we need to decrement i and/or j */
1159 for (k = 0; k < stripeWidth; k++)
1160 if (diskids[k] == pcol)
1161 break;
1162 RF_ASSERT(k < stripeWidth);
1163 i_offset = i;
1164 j_offset = j;
1165 if (k < i)
1166 i_offset--;
1167 else
1168 if (k == i) {
1169 i_is_parity = 1;
1170 i_offset = 0;
1171 } /* set offsets to zero to disable multiply
1172 * below */
1173 if (k < j)
1174 j_offset--;
1175 else
1176 if (k == j) {
1177 j_is_parity = 1;
1178 j_offset = 0;
1179 }
1180 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1181 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1182 * tells us how far into the stripe the [current,failed] disk is. */
1183
1184 /* call the mapping routine to get the offset into the current disk,
1185 * repeat for failed disk. */
1186 if (i_is_parity)
1187 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1188 else
1189 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1190
1191 RF_ASSERT(row == testrow && col == testcol);
1192
1193 if (j_is_parity)
1194 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1195 else
1196 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1197 RF_ASSERT(row == testrow && fcol == testcol);
1198
1199 /* now locate the spare unit for the failed unit */
1200 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1201 if (j_is_parity)
1202 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1203 else
1204 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1205 } else {
1206 *spRow = raidPtr->reconControl[row]->spareRow;
1207 *spCol = raidPtr->reconControl[row]->spareCol;
1208 *spOffset = *outFailedDiskSectorOffset;
1209 }
1210
1211 return (0);
1212
1213 skipit:
1214 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1215 psid, row, col);
1216 return (1);
1217 }
1218 /* this is called when a buffer has become ready to write to the replacement disk */
1219 static int
1220 IssueNextWriteRequest(raidPtr, row)
1221 RF_Raid_t *raidPtr;
1222 RF_RowCol_t row;
1223 {
1224 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1225 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1226 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1227 RF_ReconBuffer_t *rbuf;
1228 RF_DiskQueueData_t *req;
1229
1230 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1231 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1232 * have gotten the event that sent us here */
1233 RF_ASSERT(rbuf->pssPtr);
1234
1235 rbuf->pssPtr->writeRbuf = rbuf;
1236 rbuf->pssPtr = NULL;
1237
1238 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1239 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1240 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1241 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1242 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1243 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1244
1245 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1246 * kernel space */
1247 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1248 sectorsPerRU, rbuf->buffer,
1249 rbuf->parityStripeID, rbuf->which_ru,
1250 ReconWriteDoneProc, (void *) rbuf, NULL,
1251 &raidPtr->recon_tracerecs[fcol],
1252 (void *) raidPtr, 0, NULL);
1253
1254 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1255
1256 rbuf->arg = (void *) req;
1257 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1258
1259 return (0);
1260 }
1261
1262 /*
1263 * this gets called upon the completion of a reconstruction read
1264 * operation the arg is a pointer to the per-disk reconstruction
1265 * control structure for the process that just finished a read.
1266 *
1267 * called at interrupt context in the kernel, so don't do anything
1268 * illegal here.
1269 */
1270 static int
1271 ReconReadDoneProc(arg, status)
1272 void *arg;
1273 int status;
1274 {
1275 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1276 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1277
1278 if (status) {
1279 /*
1280 * XXX
1281 */
1282 printf("Recon read failed!\n");
1283 RF_PANIC();
1284 }
1285 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1286 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1287 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1288 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1289 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1290
1291 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1292 return (0);
1293 }
1294 /* this gets called upon the completion of a reconstruction write operation.
1295 * the arg is a pointer to the rbuf that was just written
1296 *
1297 * called at interrupt context in the kernel, so don't do anything illegal here.
1298 */
1299 static int
1300 ReconWriteDoneProc(arg, status)
1301 void *arg;
1302 int status;
1303 {
1304 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1305
1306 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1307 if (status) {
1308 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1309 * write failed!\n"); */
1310 RF_PANIC();
1311 }
1312 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1313 return (0);
1314 }
1315
1316
1317 /*
1318 * computes a new minimum head sep, and wakes up anyone who needs to
1319 * be woken as a result
1320 */
1321 static void
1322 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1323 RF_Raid_t *raidPtr;
1324 RF_RowCol_t row;
1325 RF_HeadSepLimit_t hsCtr;
1326 {
1327 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1328 RF_HeadSepLimit_t new_min;
1329 RF_RowCol_t i;
1330 RF_CallbackDesc_t *p;
1331 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1332 * of a minimum */
1333
1334
1335 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1336
1337 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1338 for (i = 0; i < raidPtr->numCol; i++)
1339 if (i != reconCtrlPtr->fcol) {
1340 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1341 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1342 }
1343 /* set the new minimum and wake up anyone who can now run again */
1344 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1345 reconCtrlPtr->minHeadSepCounter = new_min;
1346 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1347 while (reconCtrlPtr->headSepCBList) {
1348 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1349 break;
1350 p = reconCtrlPtr->headSepCBList;
1351 reconCtrlPtr->headSepCBList = p->next;
1352 p->next = NULL;
1353 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1354 rf_FreeCallbackDesc(p);
1355 }
1356
1357 }
1358 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1359 }
1360
1361 /*
1362 * checks to see that the maximum head separation will not be violated
1363 * if we initiate a reconstruction I/O on the indicated disk.
1364 * Limiting the maximum head separation between two disks eliminates
1365 * the nasty buffer-stall conditions that occur when one disk races
1366 * ahead of the others and consumes all of the floating recon buffers.
1367 * This code is complex and unpleasant but it's necessary to avoid
1368 * some very nasty, albeit fairly rare, reconstruction behavior.
1369 *
1370 * returns non-zero if and only if we have to stop working on the
1371 * indicated disk due to a head-separation delay.
1372 */
1373 static int
1374 CheckHeadSeparation(
1375 RF_Raid_t * raidPtr,
1376 RF_PerDiskReconCtrl_t * ctrl,
1377 RF_RowCol_t row,
1378 RF_RowCol_t col,
1379 RF_HeadSepLimit_t hsCtr,
1380 RF_ReconUnitNum_t which_ru)
1381 {
1382 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1383 RF_CallbackDesc_t *cb, *p, *pt;
1384 int retval = 0;
1385
1386 /* if we're too far ahead of the slowest disk, stop working on this
1387 * disk until the slower ones catch up. We do this by scheduling a
1388 * wakeup callback for the time when the slowest disk has caught up.
1389 * We define "caught up" with 20% hysteresis, i.e. the head separation
1390 * must have fallen to at most 80% of the max allowable head
1391 * separation before we'll wake up.
1392 *
1393 */
1394 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1395 if ((raidPtr->headSepLimit >= 0) &&
1396 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1397 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1398 raidPtr->raidid, row, col, ctrl->headSepCounter,
1399 reconCtrlPtr->minHeadSepCounter,
1400 raidPtr->headSepLimit);
1401 cb = rf_AllocCallbackDesc();
1402 /* the minHeadSepCounter value we have to get to before we'll
1403 * wake up. build in 20% hysteresis. */
1404 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1405 cb->row = row;
1406 cb->col = col;
1407 cb->next = NULL;
1408
1409 /* insert this callback descriptor into the sorted list of
1410 * pending head-sep callbacks */
1411 p = reconCtrlPtr->headSepCBList;
1412 if (!p)
1413 reconCtrlPtr->headSepCBList = cb;
1414 else
1415 if (cb->callbackArg.v < p->callbackArg.v) {
1416 cb->next = reconCtrlPtr->headSepCBList;
1417 reconCtrlPtr->headSepCBList = cb;
1418 } else {
1419 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1420 cb->next = p;
1421 pt->next = cb;
1422 }
1423 retval = 1;
1424 #if RF_RECON_STATS > 0
1425 ctrl->reconCtrl->reconDesc->hsStallCount++;
1426 #endif /* RF_RECON_STATS > 0 */
1427 }
1428 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1429
1430 return (retval);
1431 }
1432 /*
1433 * checks to see if reconstruction has been either forced or blocked
1434 * by a user operation. if forced, we skip this RU entirely. else if
1435 * blocked, put ourselves on the wait list. else return 0.
1436 *
1437 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1438 */
1439 static int
1440 CheckForcedOrBlockedReconstruction(
1441 RF_Raid_t * raidPtr,
1442 RF_ReconParityStripeStatus_t * pssPtr,
1443 RF_PerDiskReconCtrl_t * ctrl,
1444 RF_RowCol_t row,
1445 RF_RowCol_t col,
1446 RF_StripeNum_t psid,
1447 RF_ReconUnitNum_t which_ru)
1448 {
1449 RF_CallbackDesc_t *cb;
1450 int retcode = 0;
1451
1452 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1453 retcode = RF_PSS_FORCED_ON_WRITE;
1454 else
1455 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1456 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1457 cb = rf_AllocCallbackDesc(); /* append ourselves to
1458 * the blockage-wait
1459 * list */
1460 cb->row = row;
1461 cb->col = col;
1462 cb->next = pssPtr->blockWaitList;
1463 pssPtr->blockWaitList = cb;
1464 retcode = RF_PSS_RECON_BLOCKED;
1465 }
1466 if (!retcode)
1467 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1468 * reconstruction */
1469
1470 return (retcode);
1471 }
1472 /*
1473 * if reconstruction is currently ongoing for the indicated stripeID,
1474 * reconstruction is forced to completion and we return non-zero to
1475 * indicate that the caller must wait. If not, then reconstruction is
1476 * blocked on the indicated stripe and the routine returns zero. If
1477 * and only if we return non-zero, we'll cause the cbFunc to get
1478 * invoked with the cbArg when the reconstruction has completed.
1479 */
1480 int
1481 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1482 RF_Raid_t *raidPtr;
1483 RF_AccessStripeMap_t *asmap;
1484 void (*cbFunc) (RF_Raid_t *, void *);
1485 void *cbArg;
1486 {
1487 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1488 * we're working on */
1489 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1490 * forcing recon on */
1491 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1492 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1493 * stripe status structure */
1494 RF_StripeNum_t psid; /* parity stripe id */
1495 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1496 * offset */
1497 RF_RowCol_t *diskids;
1498 RF_RowCol_t stripe;
1499 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1500 RF_RowCol_t fcol, diskno, i;
1501 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1502 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1503 RF_CallbackDesc_t *cb;
1504 int created = 0, nPromoted;
1505
1506 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1507
1508 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1509
1510 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1511
1512 /* if recon is not ongoing on this PS, just return */
1513 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1514 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1515 return (0);
1516 }
1517 /* otherwise, we have to wait for reconstruction to complete on this
1518 * RU. */
1519 /* In order to avoid waiting for a potentially large number of
1520 * low-priority accesses to complete, we force a normal-priority (i.e.
1521 * not low-priority) reconstruction on this RU. */
1522 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1523 DDprintf1("Forcing recon on psid %ld\n", psid);
1524 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1525 * forced recon */
1526 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1527 * that we just set */
1528 fcol = raidPtr->reconControl[row]->fcol;
1529
1530 /* get a listing of the disks comprising the indicated stripe */
1531 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1532 RF_ASSERT(row == stripe);
1533
1534 /* For previously issued reads, elevate them to normal
1535 * priority. If the I/O has already completed, it won't be
1536 * found in the queue, and hence this will be a no-op. For
1537 * unissued reads, allocate buffers and issue new reads. The
1538 * fact that we've set the FORCED bit means that the regular
1539 * recon procs will not re-issue these reqs */
1540 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1541 if ((diskno = diskids[i]) != fcol) {
1542 if (pssPtr->issued[diskno]) {
1543 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1544 if (rf_reconDebug && nPromoted)
1545 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1546 } else {
1547 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1548 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1549 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1550 * location */
1551 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1552 new_rbuf->which_ru = which_ru;
1553 new_rbuf->failedDiskSectorOffset = fd_offset;
1554 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1555
1556 /* use NULL b_proc b/c all addrs
1557 * should be in kernel space */
1558 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1559 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1560 NULL, (void *) raidPtr, 0, NULL);
1561
1562 RF_ASSERT(req); /* XXX -- fix this --
1563 * XXX */
1564
1565 new_rbuf->arg = req;
1566 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1567 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1568 }
1569 }
1570 /* if the write is sitting in the disk queue, elevate its
1571 * priority */
1572 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1573 printf("raid%d: promoted write to row %d col %d\n",
1574 raidPtr->raidid, row, fcol);
1575 }
1576 /* install a callback descriptor to be invoked when recon completes on
1577 * this parity stripe. */
1578 cb = rf_AllocCallbackDesc();
1579 /* XXX the following is bogus.. These functions don't really match!!
1580 * GO */
1581 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1582 cb->callbackArg.p = (void *) cbArg;
1583 cb->next = pssPtr->procWaitList;
1584 pssPtr->procWaitList = cb;
1585 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1586 raidPtr->raidid, psid);
1587
1588 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1589 return (1);
1590 }
1591 /* called upon the completion of a forced reconstruction read.
1592 * all we do is schedule the FORCEDREADONE event.
1593 * called at interrupt context in the kernel, so don't do anything illegal here.
1594 */
1595 static void
1596 ForceReconReadDoneProc(arg, status)
1597 void *arg;
1598 int status;
1599 {
1600 RF_ReconBuffer_t *rbuf = arg;
1601
1602 if (status) {
1603 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1604 * recon read
1605 * failed!\n"); */
1606 RF_PANIC();
1607 }
1608 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1609 }
1610 /* releases a block on the reconstruction of the indicated stripe */
1611 int
1612 rf_UnblockRecon(raidPtr, asmap)
1613 RF_Raid_t *raidPtr;
1614 RF_AccessStripeMap_t *asmap;
1615 {
1616 RF_RowCol_t row = asmap->origRow;
1617 RF_StripeNum_t stripeID = asmap->stripeID;
1618 RF_ReconParityStripeStatus_t *pssPtr;
1619 RF_ReconUnitNum_t which_ru;
1620 RF_StripeNum_t psid;
1621 int created = 0;
1622 RF_CallbackDesc_t *cb;
1623
1624 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1625 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1626 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1627
1628 /* When recon is forced, the pss desc can get deleted before we get
1629 * back to unblock recon. But, this can _only_ happen when recon is
1630 * forced. It would be good to put some kind of sanity check here, but
1631 * how to decide if recon was just forced or not? */
1632 if (!pssPtr) {
1633 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1634 * RU %d\n",psid,which_ru); */
1635 if (rf_reconDebug || rf_pssDebug)
1636 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1637 goto out;
1638 }
1639 pssPtr->blockCount--;
1640 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1641 raidPtr->raidid, psid, pssPtr->blockCount);
1642 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1643
1644 /* unblock recon before calling CauseReconEvent in case
1645 * CauseReconEvent causes us to try to issue a new read before
1646 * returning here. */
1647 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1648
1649
1650 while (pssPtr->blockWaitList) {
1651 /* spin through the block-wait list and
1652 release all the waiters */
1653 cb = pssPtr->blockWaitList;
1654 pssPtr->blockWaitList = cb->next;
1655 cb->next = NULL;
1656 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1657 rf_FreeCallbackDesc(cb);
1658 }
1659 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1660 /* if no recon was requested while recon was blocked */
1661 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1662 }
1663 }
1664 out:
1665 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1666 return (0);
1667 }
1668