rf_reconstruct.c revision 1.22.2.1 1 /* $NetBSD: rf_reconstruct.c,v 1.22.2.1 2000/06/22 17:07:57 minoura Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403 int ac;
404
405 lp = raidPtr->Layout.map;
406 if (lp->SubmitReconBuffer) {
407 /*
408 * The current infrastructure only supports reconstructing one
409 * disk at a time for each array.
410 */
411 RF_LOCK_MUTEX(raidPtr->mutex);
412 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
413 (raidPtr->numFailures > 0)) {
414 /* XXX 0 above shouldn't be constant!!! */
415 /* some component other than this has failed.
416 Let's not make things worse than they already
417 are... */
418 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
419 printf(" Row: %d Col: %d Too many failures.\n",
420 row, col);
421 RF_UNLOCK_MUTEX(raidPtr->mutex);
422 return (EINVAL);
423 }
424 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
425 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
426 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
427
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 return (EINVAL);
430 }
431
432
433 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
434 /* "It's gone..." */
435 raidPtr->numFailures++;
436 raidPtr->Disks[row][col].status = rf_ds_failed;
437 raidPtr->status[row] = rf_rs_degraded;
438 rf_update_component_labels(raidPtr,
439 RF_NORMAL_COMPONENT_UPDATE);
440 }
441
442 while (raidPtr->reconInProgress) {
443 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
444 }
445
446 raidPtr->reconInProgress++;
447
448
449 /* first look for a spare drive onto which to reconstruct
450 the data. spare disk descriptors are stored in row 0.
451 This may have to change eventually */
452
453 /* Actually, we don't care if it's failed or not...
454 On a RAID set with correct parity, this function
455 should be callable on any component without ill affects. */
456 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
457 */
458
459 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
460 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
461
462 raidPtr->reconInProgress--;
463 RF_UNLOCK_MUTEX(raidPtr->mutex);
464 return (EINVAL);
465 }
466
467 /* XXX need goop here to see if the disk is alive,
468 and, if not, make it so... */
469
470
471
472 badDisk = &raidPtr->Disks[row][col];
473
474 proc = raidPtr->engine_thread;
475
476 /* This device may have been opened successfully the
477 first time. Close it before trying to open it again.. */
478
479 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
480 printf("Closed the open device: %s\n",
481 raidPtr->Disks[row][col].devname);
482 vp = raidPtr->raid_cinfo[row][col].ci_vp;
483 ac = raidPtr->Disks[row][col].auto_configured;
484 rf_close_component(raidPtr, vp, ac);
485 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
486 }
487 /* note that this disk was *not* auto_configured (any longer)*/
488 raidPtr->Disks[row][col].auto_configured = 0;
489
490 printf("About to (re-)open the device for rebuilding: %s\n",
491 raidPtr->Disks[row][col].devname);
492
493 retcode = raidlookup(raidPtr->Disks[row][col].devname,
494 proc, &vp);
495
496 if (retcode) {
497 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
498 raidPtr->Disks[row][col].devname, retcode);
499
500 /* XXX the component isn't responding properly...
501 must be still dead :-( */
502 raidPtr->reconInProgress--;
503 RF_UNLOCK_MUTEX(raidPtr->mutex);
504 return(retcode);
505
506 } else {
507
508 /* Ok, so we can at least do a lookup...
509 How about actually getting a vp for it? */
510
511 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
512 proc)) != 0) {
513 raidPtr->reconInProgress--;
514 RF_UNLOCK_MUTEX(raidPtr->mutex);
515 return(retcode);
516 }
517 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
518 FREAD, proc->p_ucred, proc);
519 if (retcode) {
520 raidPtr->reconInProgress--;
521 RF_UNLOCK_MUTEX(raidPtr->mutex);
522 return(retcode);
523 }
524 raidPtr->Disks[row][col].blockSize =
525 dpart.disklab->d_secsize;
526
527 raidPtr->Disks[row][col].numBlocks =
528 dpart.part->p_size - rf_protectedSectors;
529
530 raidPtr->raid_cinfo[row][col].ci_vp = vp;
531 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
532
533 raidPtr->Disks[row][col].dev = va.va_rdev;
534
535 /* we allow the user to specify that only a
536 fraction of the disks should be used this is
537 just for debug: it speeds up
538 * the parity scan */
539 raidPtr->Disks[row][col].numBlocks =
540 raidPtr->Disks[row][col].numBlocks *
541 rf_sizePercentage / 100;
542 }
543
544
545
546 spareDiskPtr = &raidPtr->Disks[row][col];
547 spareDiskPtr->status = rf_ds_used_spare;
548
549 printf("RECON: initiating in-place reconstruction on\n");
550 printf(" row %d col %d -> spare at row %d col %d\n",
551 row, col, row, col);
552
553 RF_UNLOCK_MUTEX(raidPtr->mutex);
554
555 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
556 spareDiskPtr, numDisksDone,
557 row, col);
558 raidPtr->reconDesc = (void *) reconDesc;
559 #if RF_RECON_STATS > 0
560 reconDesc->hsStallCount = 0;
561 reconDesc->numReconExecDelays = 0;
562 reconDesc->numReconEventWaits = 0;
563 #endif /* RF_RECON_STATS > 0 */
564 reconDesc->reconExecTimerRunning = 0;
565 reconDesc->reconExecTicks = 0;
566 reconDesc->maxReconExecTicks = 0;
567 rc = rf_ContinueReconstructFailedDisk(reconDesc);
568
569 RF_LOCK_MUTEX(raidPtr->mutex);
570 raidPtr->reconInProgress--;
571 RF_UNLOCK_MUTEX(raidPtr->mutex);
572
573 } else {
574 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
575 lp->parityConfig);
576 rc = EIO;
577 }
578 RF_LOCK_MUTEX(raidPtr->mutex);
579
580 if (!rc) {
581 /* Need to set these here, as at this point it'll be claiming
582 that the disk is in rf_ds_spared! But we know better :-) */
583
584 raidPtr->Disks[row][col].status = rf_ds_optimal;
585 raidPtr->status[row] = rf_rs_optimal;
586
587 /* fix up the component label */
588 /* Don't actually need the read here.. */
589 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
590 raidPtr->raid_cinfo[row][col].ci_vp,
591 &c_label);
592
593 raid_init_component_label(raidPtr, &c_label);
594
595 c_label.row = row;
596 c_label.column = col;
597
598 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
599 raidPtr->raid_cinfo[row][col].ci_vp,
600 &c_label);
601
602 }
603 RF_UNLOCK_MUTEX(raidPtr->mutex);
604 RF_SIGNAL_COND(raidPtr->waitForReconCond);
605 wakeup(&raidPtr->waitForReconCond);
606 return (rc);
607 }
608
609
610 int
611 rf_ContinueReconstructFailedDisk(reconDesc)
612 RF_RaidReconDesc_t *reconDesc;
613 {
614 RF_Raid_t *raidPtr = reconDesc->raidPtr;
615 RF_RowCol_t row = reconDesc->row;
616 RF_RowCol_t col = reconDesc->col;
617 RF_RowCol_t srow = reconDesc->srow;
618 RF_RowCol_t scol = reconDesc->scol;
619 RF_ReconMap_t *mapPtr;
620
621 RF_ReconEvent_t *event;
622 struct timeval etime, elpsd;
623 unsigned long xor_s, xor_resid_us;
624 int retcode, i, ds;
625
626 switch (reconDesc->state) {
627
628
629 case 0:
630
631 raidPtr->accumXorTimeUs = 0;
632
633 /* create one trace record per physical disk */
634 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
635
636 /* quiesce the array prior to starting recon. this is needed
637 * to assure no nasty interactions with pending user writes.
638 * We need to do this before we change the disk or row status. */
639 reconDesc->state = 1;
640
641 Dprintf("RECON: begin request suspend\n");
642 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
643 Dprintf("RECON: end request suspend\n");
644 rf_StartUserStats(raidPtr); /* zero out the stats kept on
645 * user accs */
646
647 /* fall through to state 1 */
648
649 case 1:
650
651 RF_LOCK_MUTEX(raidPtr->mutex);
652
653 /* create the reconstruction control pointer and install it in
654 * the right slot */
655 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
656 mapPtr = raidPtr->reconControl[row]->reconMap;
657 raidPtr->status[row] = rf_rs_reconstructing;
658 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
659 raidPtr->Disks[row][col].spareRow = srow;
660 raidPtr->Disks[row][col].spareCol = scol;
661
662 RF_UNLOCK_MUTEX(raidPtr->mutex);
663
664 RF_GETTIME(raidPtr->reconControl[row]->starttime);
665
666 /* now start up the actual reconstruction: issue a read for
667 * each surviving disk */
668
669 reconDesc->numDisksDone = 0;
670 for (i = 0; i < raidPtr->numCol; i++) {
671 if (i != col) {
672 /* find and issue the next I/O on the
673 * indicated disk */
674 if (IssueNextReadRequest(raidPtr, row, i)) {
675 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
676 reconDesc->numDisksDone++;
677 }
678 }
679 }
680
681 case 2:
682 Dprintf("RECON: resume requests\n");
683 rf_ResumeNewRequests(raidPtr);
684
685
686 reconDesc->state = 3;
687
688 case 3:
689
690 /* process reconstruction events until all disks report that
691 * they've completed all work */
692 mapPtr = raidPtr->reconControl[row]->reconMap;
693
694
695
696 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
697
698 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
699 RF_ASSERT(event);
700
701 if (ProcessReconEvent(raidPtr, row, event))
702 reconDesc->numDisksDone++;
703 raidPtr->reconControl[row]->numRUsTotal =
704 mapPtr->totalRUs;
705 raidPtr->reconControl[row]->numRUsComplete =
706 mapPtr->totalRUs -
707 rf_UnitsLeftToReconstruct(mapPtr);
708
709 raidPtr->reconControl[row]->percentComplete =
710 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
711 if (rf_prReconSched) {
712 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
713 }
714 }
715
716
717
718 reconDesc->state = 4;
719
720
721 case 4:
722 mapPtr = raidPtr->reconControl[row]->reconMap;
723 if (rf_reconDebug) {
724 printf("RECON: all reads completed\n");
725 }
726 /* at this point all the reads have completed. We now wait
727 * for any pending writes to complete, and then we're done */
728
729 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
730
731 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
732 RF_ASSERT(event);
733
734 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
735 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
736 if (rf_prReconSched) {
737 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
738 }
739 }
740 reconDesc->state = 5;
741
742 case 5:
743 /* Success: mark the dead disk as reconstructed. We quiesce
744 * the array here to assure no nasty interactions with pending
745 * user accesses when we free up the psstatus structure as
746 * part of FreeReconControl() */
747
748 reconDesc->state = 6;
749
750 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
751 rf_StopUserStats(raidPtr);
752 rf_PrintUserStats(raidPtr); /* print out the stats on user
753 * accs accumulated during
754 * recon */
755
756 /* fall through to state 6 */
757 case 6:
758
759
760
761 RF_LOCK_MUTEX(raidPtr->mutex);
762 raidPtr->numFailures--;
763 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
764 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
765 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
766 RF_UNLOCK_MUTEX(raidPtr->mutex);
767 RF_GETTIME(etime);
768 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
769
770 /* XXX -- why is state 7 different from state 6 if there is no
771 * return() here? -- XXX Note that I set elpsd above & use it
772 * below, so if you put a return here you'll have to fix this.
773 * (also, FreeReconControl is called below) */
774
775 case 7:
776
777 rf_ResumeNewRequests(raidPtr);
778
779 printf("Reconstruction of disk at row %d col %d completed\n",
780 row, col);
781 xor_s = raidPtr->accumXorTimeUs / 1000000;
782 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
783 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
784 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
785 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
786 (int) raidPtr->reconControl[row]->starttime.tv_sec,
787 (int) raidPtr->reconControl[row]->starttime.tv_usec,
788 (int) etime.tv_sec, (int) etime.tv_usec);
789
790 #if RF_RECON_STATS > 0
791 printf("Total head-sep stall count was %d\n",
792 (int) reconDesc->hsStallCount);
793 #endif /* RF_RECON_STATS > 0 */
794 rf_FreeReconControl(raidPtr, row);
795 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
796 FreeReconDesc(reconDesc);
797
798 }
799
800 SignalReconDone(raidPtr);
801 return (0);
802 }
803 /*****************************************************************************
804 * do the right thing upon each reconstruction event.
805 * returns nonzero if and only if there is nothing left unread on the
806 * indicated disk
807 *****************************************************************************/
808 static int
809 ProcessReconEvent(raidPtr, frow, event)
810 RF_Raid_t *raidPtr;
811 RF_RowCol_t frow;
812 RF_ReconEvent_t *event;
813 {
814 int retcode = 0, submitblocked;
815 RF_ReconBuffer_t *rbuf;
816 RF_SectorCount_t sectorsPerRU;
817
818 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
819 switch (event->type) {
820
821 /* a read I/O has completed */
822 case RF_REVENT_READDONE:
823 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
824 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
825 frow, event->col, rbuf->parityStripeID);
826 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
827 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
828 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
829 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
830 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
831 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
832 if (!submitblocked)
833 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
834 break;
835
836 /* a write I/O has completed */
837 case RF_REVENT_WRITEDONE:
838 if (rf_floatingRbufDebug) {
839 rf_CheckFloatingRbufCount(raidPtr, 1);
840 }
841 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
842 rbuf = (RF_ReconBuffer_t *) event->arg;
843 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
844 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
845 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
846 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
847 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
848 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
849
850 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
851 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
852 raidPtr->numFullReconBuffers--;
853 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
854 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
855 } else
856 if (rbuf->type == RF_RBUF_TYPE_FORCED)
857 rf_FreeReconBuffer(rbuf);
858 else
859 RF_ASSERT(0);
860 break;
861
862 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
863 * cleared */
864 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
865 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
866 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
867 * BUFCLEAR event if we
868 * couldn't submit */
869 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
870 break;
871
872 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
873 * blockage has been cleared */
874 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
875 retcode = TryToRead(raidPtr, frow, event->col);
876 break;
877
878 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
879 * reconstruction blockage has been
880 * cleared */
881 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
882 retcode = TryToRead(raidPtr, frow, event->col);
883 break;
884
885 /* a buffer has become ready to write */
886 case RF_REVENT_BUFREADY:
887 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
888 retcode = IssueNextWriteRequest(raidPtr, frow);
889 if (rf_floatingRbufDebug) {
890 rf_CheckFloatingRbufCount(raidPtr, 1);
891 }
892 break;
893
894 /* we need to skip the current RU entirely because it got
895 * recon'd while we were waiting for something else to happen */
896 case RF_REVENT_SKIP:
897 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
898 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
899 break;
900
901 /* a forced-reconstruction read access has completed. Just
902 * submit the buffer */
903 case RF_REVENT_FORCEDREADDONE:
904 rbuf = (RF_ReconBuffer_t *) event->arg;
905 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
906 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
907 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
908 RF_ASSERT(!submitblocked);
909 break;
910
911 default:
912 RF_PANIC();
913 }
914 rf_FreeReconEventDesc(event);
915 return (retcode);
916 }
917 /*****************************************************************************
918 *
919 * find the next thing that's needed on the indicated disk, and issue
920 * a read request for it. We assume that the reconstruction buffer
921 * associated with this process is free to receive the data. If
922 * reconstruction is blocked on the indicated RU, we issue a
923 * blockage-release request instead of a physical disk read request.
924 * If the current disk gets too far ahead of the others, we issue a
925 * head-separation wait request and return.
926 *
927 * ctrl->{ru_count, curPSID, diskOffset} and
928 * rbuf->failedDiskSectorOffset are maintained to point to the unit
929 * we're currently accessing. Note that this deviates from the
930 * standard C idiom of having counters point to the next thing to be
931 * accessed. This allows us to easily retry when we're blocked by
932 * head separation or reconstruction-blockage events.
933 *
934 * returns nonzero if and only if there is nothing left unread on the
935 * indicated disk
936 *
937 *****************************************************************************/
938 static int
939 IssueNextReadRequest(raidPtr, row, col)
940 RF_Raid_t *raidPtr;
941 RF_RowCol_t row;
942 RF_RowCol_t col;
943 {
944 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
945 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
946 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
947 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
948 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
949 int do_new_check = 0, retcode = 0, status;
950
951 /* if we are currently the slowest disk, mark that we have to do a new
952 * check */
953 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
954 do_new_check = 1;
955
956 while (1) {
957
958 ctrl->ru_count++;
959 if (ctrl->ru_count < RUsPerPU) {
960 ctrl->diskOffset += sectorsPerRU;
961 rbuf->failedDiskSectorOffset += sectorsPerRU;
962 } else {
963 ctrl->curPSID++;
964 ctrl->ru_count = 0;
965 /* code left over from when head-sep was based on
966 * parity stripe id */
967 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
968 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
969 return (1); /* finito! */
970 }
971 /* find the disk offsets of the start of the parity
972 * stripe on both the current disk and the failed
973 * disk. skip this entire parity stripe if either disk
974 * does not appear in the indicated PS */
975 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
976 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
977 if (status) {
978 ctrl->ru_count = RUsPerPU - 1;
979 continue;
980 }
981 }
982 rbuf->which_ru = ctrl->ru_count;
983
984 /* skip this RU if it's already been reconstructed */
985 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
986 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
987 continue;
988 }
989 break;
990 }
991 ctrl->headSepCounter++;
992 if (do_new_check)
993 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
994
995
996 /* at this point, we have definitely decided what to do, and we have
997 * only to see if we can actually do it now */
998 rbuf->parityStripeID = ctrl->curPSID;
999 rbuf->which_ru = ctrl->ru_count;
1000 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
1001 raidPtr->recon_tracerecs[col].reconacc = 1;
1002 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1003 retcode = TryToRead(raidPtr, row, col);
1004 return (retcode);
1005 }
1006
1007 /*
1008 * tries to issue the next read on the indicated disk. We may be
1009 * blocked by (a) the heads being too far apart, or (b) recon on the
1010 * indicated RU being blocked due to a write by a user thread. In
1011 * this case, we issue a head-sep or blockage wait request, which will
1012 * cause this same routine to be invoked again later when the blockage
1013 * has cleared.
1014 */
1015
1016 static int
1017 TryToRead(raidPtr, row, col)
1018 RF_Raid_t *raidPtr;
1019 RF_RowCol_t row;
1020 RF_RowCol_t col;
1021 {
1022 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1023 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1024 RF_StripeNum_t psid = ctrl->curPSID;
1025 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1026 RF_DiskQueueData_t *req;
1027 int status, created = 0;
1028 RF_ReconParityStripeStatus_t *pssPtr;
1029
1030 /* if the current disk is too far ahead of the others, issue a
1031 * head-separation wait and return */
1032 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1033 return (0);
1034 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1035 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1036
1037 /* if recon is blocked on the indicated parity stripe, issue a
1038 * block-wait request and return. this also must mark the indicated RU
1039 * in the stripe as under reconstruction if not blocked. */
1040 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1041 if (status == RF_PSS_RECON_BLOCKED) {
1042 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1043 goto out;
1044 } else
1045 if (status == RF_PSS_FORCED_ON_WRITE) {
1046 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1047 goto out;
1048 }
1049 /* make one last check to be sure that the indicated RU didn't get
1050 * reconstructed while we were waiting for something else to happen.
1051 * This is unfortunate in that it causes us to make this check twice
1052 * in the normal case. Might want to make some attempt to re-work
1053 * this so that we only do this check if we've definitely blocked on
1054 * one of the above checks. When this condition is detected, we may
1055 * have just created a bogus status entry, which we need to delete. */
1056 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1057 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1058 if (created)
1059 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1060 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1061 goto out;
1062 }
1063 /* found something to read. issue the I/O */
1064 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1065 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1066 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1067 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1068 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1069 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1070 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1071
1072 /* should be ok to use a NULL proc pointer here, all the bufs we use
1073 * should be in kernel space */
1074 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1075 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1076
1077 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1078
1079 ctrl->rbuf->arg = (void *) req;
1080 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1081 pssPtr->issued[col] = 1;
1082
1083 out:
1084 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1085 return (0);
1086 }
1087
1088
1089 /*
1090 * given a parity stripe ID, we want to find out whether both the
1091 * current disk and the failed disk exist in that parity stripe. If
1092 * not, we want to skip this whole PS. If so, we want to find the
1093 * disk offset of the start of the PS on both the current disk and the
1094 * failed disk.
1095 *
1096 * this works by getting a list of disks comprising the indicated
1097 * parity stripe, and searching the list for the current and failed
1098 * disks. Once we've decided they both exist in the parity stripe, we
1099 * need to decide whether each is data or parity, so that we'll know
1100 * which mapping function to call to get the corresponding disk
1101 * offsets.
1102 *
1103 * this is kind of unpleasant, but doing it this way allows the
1104 * reconstruction code to use parity stripe IDs rather than physical
1105 * disks address to march through the failed disk, which greatly
1106 * simplifies a lot of code, as well as eliminating the need for a
1107 * reverse-mapping function. I also think it will execute faster,
1108 * since the calls to the mapping module are kept to a minimum.
1109 *
1110 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1111 * THE STRIPE IN THE CORRECT ORDER */
1112
1113
1114 static int
1115 ComputePSDiskOffsets(
1116 RF_Raid_t * raidPtr, /* raid descriptor */
1117 RF_StripeNum_t psid, /* parity stripe identifier */
1118 RF_RowCol_t row, /* row and column of disk to find the offsets
1119 * for */
1120 RF_RowCol_t col,
1121 RF_SectorNum_t * outDiskOffset,
1122 RF_SectorNum_t * outFailedDiskSectorOffset,
1123 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1124 RF_RowCol_t * spCol,
1125 RF_SectorNum_t * spOffset)
1126 { /* OUT: offset into disk containing spare unit */
1127 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1128 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1129 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1130 RF_RowCol_t *diskids;
1131 u_int i, j, k, i_offset, j_offset;
1132 RF_RowCol_t prow, pcol;
1133 int testcol, testrow;
1134 RF_RowCol_t stripe;
1135 RF_SectorNum_t poffset;
1136 char i_is_parity = 0, j_is_parity = 0;
1137 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1138
1139 /* get a listing of the disks comprising that stripe */
1140 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1141 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1142 RF_ASSERT(diskids);
1143
1144 /* reject this entire parity stripe if it does not contain the
1145 * indicated disk or it does not contain the failed disk */
1146 if (row != stripe)
1147 goto skipit;
1148 for (i = 0; i < stripeWidth; i++) {
1149 if (col == diskids[i])
1150 break;
1151 }
1152 if (i == stripeWidth)
1153 goto skipit;
1154 for (j = 0; j < stripeWidth; j++) {
1155 if (fcol == diskids[j])
1156 break;
1157 }
1158 if (j == stripeWidth) {
1159 goto skipit;
1160 }
1161 /* find out which disk the parity is on */
1162 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1163
1164 /* find out if either the current RU or the failed RU is parity */
1165 /* also, if the parity occurs in this stripe prior to the data and/or
1166 * failed col, we need to decrement i and/or j */
1167 for (k = 0; k < stripeWidth; k++)
1168 if (diskids[k] == pcol)
1169 break;
1170 RF_ASSERT(k < stripeWidth);
1171 i_offset = i;
1172 j_offset = j;
1173 if (k < i)
1174 i_offset--;
1175 else
1176 if (k == i) {
1177 i_is_parity = 1;
1178 i_offset = 0;
1179 } /* set offsets to zero to disable multiply
1180 * below */
1181 if (k < j)
1182 j_offset--;
1183 else
1184 if (k == j) {
1185 j_is_parity = 1;
1186 j_offset = 0;
1187 }
1188 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1189 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1190 * tells us how far into the stripe the [current,failed] disk is. */
1191
1192 /* call the mapping routine to get the offset into the current disk,
1193 * repeat for failed disk. */
1194 if (i_is_parity)
1195 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1196 else
1197 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1198
1199 RF_ASSERT(row == testrow && col == testcol);
1200
1201 if (j_is_parity)
1202 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1203 else
1204 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1205 RF_ASSERT(row == testrow && fcol == testcol);
1206
1207 /* now locate the spare unit for the failed unit */
1208 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1209 if (j_is_parity)
1210 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1211 else
1212 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1213 } else {
1214 *spRow = raidPtr->reconControl[row]->spareRow;
1215 *spCol = raidPtr->reconControl[row]->spareCol;
1216 *spOffset = *outFailedDiskSectorOffset;
1217 }
1218
1219 return (0);
1220
1221 skipit:
1222 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1223 psid, row, col);
1224 return (1);
1225 }
1226 /* this is called when a buffer has become ready to write to the replacement disk */
1227 static int
1228 IssueNextWriteRequest(raidPtr, row)
1229 RF_Raid_t *raidPtr;
1230 RF_RowCol_t row;
1231 {
1232 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1233 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1234 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1235 RF_ReconBuffer_t *rbuf;
1236 RF_DiskQueueData_t *req;
1237
1238 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1239 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1240 * have gotten the event that sent us here */
1241 RF_ASSERT(rbuf->pssPtr);
1242
1243 rbuf->pssPtr->writeRbuf = rbuf;
1244 rbuf->pssPtr = NULL;
1245
1246 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1247 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1248 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1249 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1250 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1251 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1252
1253 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1254 * kernel space */
1255 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1256 sectorsPerRU, rbuf->buffer,
1257 rbuf->parityStripeID, rbuf->which_ru,
1258 ReconWriteDoneProc, (void *) rbuf, NULL,
1259 &raidPtr->recon_tracerecs[fcol],
1260 (void *) raidPtr, 0, NULL);
1261
1262 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1263
1264 rbuf->arg = (void *) req;
1265 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1266
1267 return (0);
1268 }
1269
1270 /*
1271 * this gets called upon the completion of a reconstruction read
1272 * operation the arg is a pointer to the per-disk reconstruction
1273 * control structure for the process that just finished a read.
1274 *
1275 * called at interrupt context in the kernel, so don't do anything
1276 * illegal here.
1277 */
1278 static int
1279 ReconReadDoneProc(arg, status)
1280 void *arg;
1281 int status;
1282 {
1283 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1284 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1285
1286 if (status) {
1287 /*
1288 * XXX
1289 */
1290 printf("Recon read failed!\n");
1291 RF_PANIC();
1292 }
1293 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1294 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1295 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1296 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1297 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1298
1299 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1300 return (0);
1301 }
1302 /* this gets called upon the completion of a reconstruction write operation.
1303 * the arg is a pointer to the rbuf that was just written
1304 *
1305 * called at interrupt context in the kernel, so don't do anything illegal here.
1306 */
1307 static int
1308 ReconWriteDoneProc(arg, status)
1309 void *arg;
1310 int status;
1311 {
1312 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1313
1314 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1315 if (status) {
1316 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1317 * write failed!\n"); */
1318 RF_PANIC();
1319 }
1320 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1321 return (0);
1322 }
1323
1324
1325 /*
1326 * computes a new minimum head sep, and wakes up anyone who needs to
1327 * be woken as a result
1328 */
1329 static void
1330 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1331 RF_Raid_t *raidPtr;
1332 RF_RowCol_t row;
1333 RF_HeadSepLimit_t hsCtr;
1334 {
1335 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1336 RF_HeadSepLimit_t new_min;
1337 RF_RowCol_t i;
1338 RF_CallbackDesc_t *p;
1339 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1340 * of a minimum */
1341
1342
1343 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1344
1345 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1346 for (i = 0; i < raidPtr->numCol; i++)
1347 if (i != reconCtrlPtr->fcol) {
1348 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1349 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1350 }
1351 /* set the new minimum and wake up anyone who can now run again */
1352 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1353 reconCtrlPtr->minHeadSepCounter = new_min;
1354 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1355 while (reconCtrlPtr->headSepCBList) {
1356 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1357 break;
1358 p = reconCtrlPtr->headSepCBList;
1359 reconCtrlPtr->headSepCBList = p->next;
1360 p->next = NULL;
1361 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1362 rf_FreeCallbackDesc(p);
1363 }
1364
1365 }
1366 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1367 }
1368
1369 /*
1370 * checks to see that the maximum head separation will not be violated
1371 * if we initiate a reconstruction I/O on the indicated disk.
1372 * Limiting the maximum head separation between two disks eliminates
1373 * the nasty buffer-stall conditions that occur when one disk races
1374 * ahead of the others and consumes all of the floating recon buffers.
1375 * This code is complex and unpleasant but it's necessary to avoid
1376 * some very nasty, albeit fairly rare, reconstruction behavior.
1377 *
1378 * returns non-zero if and only if we have to stop working on the
1379 * indicated disk due to a head-separation delay.
1380 */
1381 static int
1382 CheckHeadSeparation(
1383 RF_Raid_t * raidPtr,
1384 RF_PerDiskReconCtrl_t * ctrl,
1385 RF_RowCol_t row,
1386 RF_RowCol_t col,
1387 RF_HeadSepLimit_t hsCtr,
1388 RF_ReconUnitNum_t which_ru)
1389 {
1390 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1391 RF_CallbackDesc_t *cb, *p, *pt;
1392 int retval = 0;
1393
1394 /* if we're too far ahead of the slowest disk, stop working on this
1395 * disk until the slower ones catch up. We do this by scheduling a
1396 * wakeup callback for the time when the slowest disk has caught up.
1397 * We define "caught up" with 20% hysteresis, i.e. the head separation
1398 * must have fallen to at most 80% of the max allowable head
1399 * separation before we'll wake up.
1400 *
1401 */
1402 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1403 if ((raidPtr->headSepLimit >= 0) &&
1404 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1405 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1406 raidPtr->raidid, row, col, ctrl->headSepCounter,
1407 reconCtrlPtr->minHeadSepCounter,
1408 raidPtr->headSepLimit);
1409 cb = rf_AllocCallbackDesc();
1410 /* the minHeadSepCounter value we have to get to before we'll
1411 * wake up. build in 20% hysteresis. */
1412 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1413 cb->row = row;
1414 cb->col = col;
1415 cb->next = NULL;
1416
1417 /* insert this callback descriptor into the sorted list of
1418 * pending head-sep callbacks */
1419 p = reconCtrlPtr->headSepCBList;
1420 if (!p)
1421 reconCtrlPtr->headSepCBList = cb;
1422 else
1423 if (cb->callbackArg.v < p->callbackArg.v) {
1424 cb->next = reconCtrlPtr->headSepCBList;
1425 reconCtrlPtr->headSepCBList = cb;
1426 } else {
1427 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1428 cb->next = p;
1429 pt->next = cb;
1430 }
1431 retval = 1;
1432 #if RF_RECON_STATS > 0
1433 ctrl->reconCtrl->reconDesc->hsStallCount++;
1434 #endif /* RF_RECON_STATS > 0 */
1435 }
1436 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1437
1438 return (retval);
1439 }
1440 /*
1441 * checks to see if reconstruction has been either forced or blocked
1442 * by a user operation. if forced, we skip this RU entirely. else if
1443 * blocked, put ourselves on the wait list. else return 0.
1444 *
1445 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1446 */
1447 static int
1448 CheckForcedOrBlockedReconstruction(
1449 RF_Raid_t * raidPtr,
1450 RF_ReconParityStripeStatus_t * pssPtr,
1451 RF_PerDiskReconCtrl_t * ctrl,
1452 RF_RowCol_t row,
1453 RF_RowCol_t col,
1454 RF_StripeNum_t psid,
1455 RF_ReconUnitNum_t which_ru)
1456 {
1457 RF_CallbackDesc_t *cb;
1458 int retcode = 0;
1459
1460 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1461 retcode = RF_PSS_FORCED_ON_WRITE;
1462 else
1463 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1464 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1465 cb = rf_AllocCallbackDesc(); /* append ourselves to
1466 * the blockage-wait
1467 * list */
1468 cb->row = row;
1469 cb->col = col;
1470 cb->next = pssPtr->blockWaitList;
1471 pssPtr->blockWaitList = cb;
1472 retcode = RF_PSS_RECON_BLOCKED;
1473 }
1474 if (!retcode)
1475 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1476 * reconstruction */
1477
1478 return (retcode);
1479 }
1480 /*
1481 * if reconstruction is currently ongoing for the indicated stripeID,
1482 * reconstruction is forced to completion and we return non-zero to
1483 * indicate that the caller must wait. If not, then reconstruction is
1484 * blocked on the indicated stripe and the routine returns zero. If
1485 * and only if we return non-zero, we'll cause the cbFunc to get
1486 * invoked with the cbArg when the reconstruction has completed.
1487 */
1488 int
1489 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1490 RF_Raid_t *raidPtr;
1491 RF_AccessStripeMap_t *asmap;
1492 void (*cbFunc) (RF_Raid_t *, void *);
1493 void *cbArg;
1494 {
1495 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1496 * we're working on */
1497 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1498 * forcing recon on */
1499 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1500 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1501 * stripe status structure */
1502 RF_StripeNum_t psid; /* parity stripe id */
1503 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1504 * offset */
1505 RF_RowCol_t *diskids;
1506 RF_RowCol_t stripe;
1507 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1508 RF_RowCol_t fcol, diskno, i;
1509 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1510 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1511 RF_CallbackDesc_t *cb;
1512 int created = 0, nPromoted;
1513
1514 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1515
1516 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1517
1518 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1519
1520 /* if recon is not ongoing on this PS, just return */
1521 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1522 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1523 return (0);
1524 }
1525 /* otherwise, we have to wait for reconstruction to complete on this
1526 * RU. */
1527 /* In order to avoid waiting for a potentially large number of
1528 * low-priority accesses to complete, we force a normal-priority (i.e.
1529 * not low-priority) reconstruction on this RU. */
1530 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1531 DDprintf1("Forcing recon on psid %ld\n", psid);
1532 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1533 * forced recon */
1534 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1535 * that we just set */
1536 fcol = raidPtr->reconControl[row]->fcol;
1537
1538 /* get a listing of the disks comprising the indicated stripe */
1539 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1540 RF_ASSERT(row == stripe);
1541
1542 /* For previously issued reads, elevate them to normal
1543 * priority. If the I/O has already completed, it won't be
1544 * found in the queue, and hence this will be a no-op. For
1545 * unissued reads, allocate buffers and issue new reads. The
1546 * fact that we've set the FORCED bit means that the regular
1547 * recon procs will not re-issue these reqs */
1548 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1549 if ((diskno = diskids[i]) != fcol) {
1550 if (pssPtr->issued[diskno]) {
1551 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1552 if (rf_reconDebug && nPromoted)
1553 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1554 } else {
1555 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1556 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1557 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1558 * location */
1559 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1560 new_rbuf->which_ru = which_ru;
1561 new_rbuf->failedDiskSectorOffset = fd_offset;
1562 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1563
1564 /* use NULL b_proc b/c all addrs
1565 * should be in kernel space */
1566 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1567 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1568 NULL, (void *) raidPtr, 0, NULL);
1569
1570 RF_ASSERT(req); /* XXX -- fix this --
1571 * XXX */
1572
1573 new_rbuf->arg = req;
1574 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1575 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1576 }
1577 }
1578 /* if the write is sitting in the disk queue, elevate its
1579 * priority */
1580 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1581 printf("raid%d: promoted write to row %d col %d\n",
1582 raidPtr->raidid, row, fcol);
1583 }
1584 /* install a callback descriptor to be invoked when recon completes on
1585 * this parity stripe. */
1586 cb = rf_AllocCallbackDesc();
1587 /* XXX the following is bogus.. These functions don't really match!!
1588 * GO */
1589 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1590 cb->callbackArg.p = (void *) cbArg;
1591 cb->next = pssPtr->procWaitList;
1592 pssPtr->procWaitList = cb;
1593 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1594 raidPtr->raidid, psid);
1595
1596 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1597 return (1);
1598 }
1599 /* called upon the completion of a forced reconstruction read.
1600 * all we do is schedule the FORCEDREADONE event.
1601 * called at interrupt context in the kernel, so don't do anything illegal here.
1602 */
1603 static void
1604 ForceReconReadDoneProc(arg, status)
1605 void *arg;
1606 int status;
1607 {
1608 RF_ReconBuffer_t *rbuf = arg;
1609
1610 if (status) {
1611 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1612 * recon read
1613 * failed!\n"); */
1614 RF_PANIC();
1615 }
1616 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1617 }
1618 /* releases a block on the reconstruction of the indicated stripe */
1619 int
1620 rf_UnblockRecon(raidPtr, asmap)
1621 RF_Raid_t *raidPtr;
1622 RF_AccessStripeMap_t *asmap;
1623 {
1624 RF_RowCol_t row = asmap->origRow;
1625 RF_StripeNum_t stripeID = asmap->stripeID;
1626 RF_ReconParityStripeStatus_t *pssPtr;
1627 RF_ReconUnitNum_t which_ru;
1628 RF_StripeNum_t psid;
1629 int created = 0;
1630 RF_CallbackDesc_t *cb;
1631
1632 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1633 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1634 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1635
1636 /* When recon is forced, the pss desc can get deleted before we get
1637 * back to unblock recon. But, this can _only_ happen when recon is
1638 * forced. It would be good to put some kind of sanity check here, but
1639 * how to decide if recon was just forced or not? */
1640 if (!pssPtr) {
1641 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1642 * RU %d\n",psid,which_ru); */
1643 if (rf_reconDebug || rf_pssDebug)
1644 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1645 goto out;
1646 }
1647 pssPtr->blockCount--;
1648 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1649 raidPtr->raidid, psid, pssPtr->blockCount);
1650 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1651
1652 /* unblock recon before calling CauseReconEvent in case
1653 * CauseReconEvent causes us to try to issue a new read before
1654 * returning here. */
1655 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1656
1657
1658 while (pssPtr->blockWaitList) {
1659 /* spin through the block-wait list and
1660 release all the waiters */
1661 cb = pssPtr->blockWaitList;
1662 pssPtr->blockWaitList = cb->next;
1663 cb->next = NULL;
1664 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1665 rf_FreeCallbackDesc(cb);
1666 }
1667 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1668 /* if no recon was requested while recon was blocked */
1669 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1670 }
1671 }
1672 out:
1673 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1674 return (0);
1675 }
1676