rf_reconstruct.c revision 1.24 1 /* $NetBSD: rf_reconstruct.c,v 1.24 2000/05/28 03:42:23 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364
365 /* XXXX MORE NEEDED HERE */
366
367 raidwrite_component_label(
368 raidPtr->raid_cinfo[srow][scol].ci_dev,
369 raidPtr->raid_cinfo[srow][scol].ci_vp,
370 &c_label);
371
372 }
373 return (rc);
374 }
375
376 /*
377
378 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
379 and you don't get a spare until the next Monday. With this function
380 (and hot-swappable drives) you can now put your new disk containing
381 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
382 rebuild the data "on the spot".
383
384 */
385
386 int
387 rf_ReconstructInPlace(raidPtr, row, col)
388 RF_Raid_t *raidPtr;
389 RF_RowCol_t row;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 RF_LayoutSW_t *lp;
395 RF_RaidDisk_t *badDisk;
396 RF_ComponentLabel_t c_label;
397 int numDisksDone = 0, rc;
398 struct partinfo dpart;
399 struct vnode *vp;
400 struct vattr va;
401 struct proc *proc;
402 int retcode;
403 int ac;
404
405 lp = raidPtr->Layout.map;
406 if (lp->SubmitReconBuffer) {
407 /*
408 * The current infrastructure only supports reconstructing one
409 * disk at a time for each array.
410 */
411 RF_LOCK_MUTEX(raidPtr->mutex);
412 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
413 (raidPtr->numFailures > 0)) {
414 /* XXX 0 above shouldn't be constant!!! */
415 /* some component other than this has failed.
416 Let's not make things worse than they already
417 are... */
418 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
419 printf(" Row: %d Col: %d Too many failures.\n",
420 row, col);
421 RF_UNLOCK_MUTEX(raidPtr->mutex);
422 return (EINVAL);
423 }
424 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
425 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
426 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
427
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 return (EINVAL);
430 }
431
432
433 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
434 /* "It's gone..." */
435 raidPtr->numFailures++;
436 raidPtr->Disks[row][col].status = rf_ds_failed;
437 raidPtr->status[row] = rf_rs_degraded;
438 rf_update_component_labels(raidPtr);
439 }
440
441 while (raidPtr->reconInProgress) {
442 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
443 }
444
445 raidPtr->reconInProgress++;
446
447
448 /* first look for a spare drive onto which to reconstruct
449 the data. spare disk descriptors are stored in row 0.
450 This may have to change eventually */
451
452 /* Actually, we don't care if it's failed or not...
453 On a RAID set with correct parity, this function
454 should be callable on any component without ill affects. */
455 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
456 */
457
458 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
459 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
460
461 raidPtr->reconInProgress--;
462 RF_UNLOCK_MUTEX(raidPtr->mutex);
463 return (EINVAL);
464 }
465
466 /* XXX need goop here to see if the disk is alive,
467 and, if not, make it so... */
468
469
470
471 badDisk = &raidPtr->Disks[row][col];
472
473 proc = raidPtr->engine_thread;
474
475 /* This device may have been opened successfully the
476 first time. Close it before trying to open it again.. */
477
478 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
479 printf("Closed the open device: %s\n",
480 raidPtr->Disks[row][col].devname);
481 vp = raidPtr->raid_cinfo[row][col].ci_vp;
482 ac = raidPtr->Disks[row][col].auto_configured;
483 rf_close_component(raidPtr, vp, ac);
484 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
485 }
486 /* note that this disk was *not* auto_configured (any longer)*/
487 raidPtr->Disks[row][col].auto_configured = 0;
488
489 printf("About to (re-)open the device for rebuilding: %s\n",
490 raidPtr->Disks[row][col].devname);
491
492 retcode = raidlookup(raidPtr->Disks[row][col].devname,
493 proc, &vp);
494
495 if (retcode) {
496 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
497 raidPtr->Disks[row][col].devname, retcode);
498
499 /* XXX the component isn't responding properly...
500 must be still dead :-( */
501 raidPtr->reconInProgress--;
502 RF_UNLOCK_MUTEX(raidPtr->mutex);
503 return(retcode);
504
505 } else {
506
507 /* Ok, so we can at least do a lookup...
508 How about actually getting a vp for it? */
509
510 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
511 proc)) != 0) {
512 raidPtr->reconInProgress--;
513 RF_UNLOCK_MUTEX(raidPtr->mutex);
514 return(retcode);
515 }
516 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
517 FREAD, proc->p_ucred, proc);
518 if (retcode) {
519 raidPtr->reconInProgress--;
520 RF_UNLOCK_MUTEX(raidPtr->mutex);
521 return(retcode);
522 }
523 raidPtr->Disks[row][col].blockSize =
524 dpart.disklab->d_secsize;
525
526 raidPtr->Disks[row][col].numBlocks =
527 dpart.part->p_size - rf_protectedSectors;
528
529 raidPtr->raid_cinfo[row][col].ci_vp = vp;
530 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
531
532 raidPtr->Disks[row][col].dev = va.va_rdev;
533
534 /* we allow the user to specify that only a
535 fraction of the disks should be used this is
536 just for debug: it speeds up
537 * the parity scan */
538 raidPtr->Disks[row][col].numBlocks =
539 raidPtr->Disks[row][col].numBlocks *
540 rf_sizePercentage / 100;
541 }
542
543
544
545 spareDiskPtr = &raidPtr->Disks[row][col];
546 spareDiskPtr->status = rf_ds_used_spare;
547
548 printf("RECON: initiating in-place reconstruction on\n");
549 printf(" row %d col %d -> spare at row %d col %d\n",
550 row, col, row, col);
551
552 RF_UNLOCK_MUTEX(raidPtr->mutex);
553
554 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
555 spareDiskPtr, numDisksDone,
556 row, col);
557 raidPtr->reconDesc = (void *) reconDesc;
558 #if RF_RECON_STATS > 0
559 reconDesc->hsStallCount = 0;
560 reconDesc->numReconExecDelays = 0;
561 reconDesc->numReconEventWaits = 0;
562 #endif /* RF_RECON_STATS > 0 */
563 reconDesc->reconExecTimerRunning = 0;
564 reconDesc->reconExecTicks = 0;
565 reconDesc->maxReconExecTicks = 0;
566 rc = rf_ContinueReconstructFailedDisk(reconDesc);
567
568 RF_LOCK_MUTEX(raidPtr->mutex);
569 raidPtr->reconInProgress--;
570 RF_UNLOCK_MUTEX(raidPtr->mutex);
571
572 } else {
573 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
574 lp->parityConfig);
575 rc = EIO;
576 }
577 RF_LOCK_MUTEX(raidPtr->mutex);
578
579 if (!rc) {
580 /* Need to set these here, as at this point it'll be claiming
581 that the disk is in rf_ds_spared! But we know better :-) */
582
583 raidPtr->Disks[row][col].status = rf_ds_optimal;
584 raidPtr->status[row] = rf_rs_optimal;
585
586 /* fix up the component label */
587 /* Don't actually need the read here.. */
588 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
589 raidPtr->raid_cinfo[row][col].ci_vp,
590 &c_label);
591
592 raid_init_component_label(raidPtr, &c_label);
593
594 c_label.row = row;
595 c_label.column = col;
596
597 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
598 raidPtr->raid_cinfo[row][col].ci_vp,
599 &c_label);
600
601 }
602 RF_UNLOCK_MUTEX(raidPtr->mutex);
603 RF_SIGNAL_COND(raidPtr->waitForReconCond);
604 wakeup(&raidPtr->waitForReconCond);
605 return (rc);
606 }
607
608
609 int
610 rf_ContinueReconstructFailedDisk(reconDesc)
611 RF_RaidReconDesc_t *reconDesc;
612 {
613 RF_Raid_t *raidPtr = reconDesc->raidPtr;
614 RF_RowCol_t row = reconDesc->row;
615 RF_RowCol_t col = reconDesc->col;
616 RF_RowCol_t srow = reconDesc->srow;
617 RF_RowCol_t scol = reconDesc->scol;
618 RF_ReconMap_t *mapPtr;
619
620 RF_ReconEvent_t *event;
621 struct timeval etime, elpsd;
622 unsigned long xor_s, xor_resid_us;
623 int retcode, i, ds;
624
625 switch (reconDesc->state) {
626
627
628 case 0:
629
630 raidPtr->accumXorTimeUs = 0;
631
632 /* create one trace record per physical disk */
633 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
634
635 /* quiesce the array prior to starting recon. this is needed
636 * to assure no nasty interactions with pending user writes.
637 * We need to do this before we change the disk or row status. */
638 reconDesc->state = 1;
639
640 Dprintf("RECON: begin request suspend\n");
641 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
642 Dprintf("RECON: end request suspend\n");
643 rf_StartUserStats(raidPtr); /* zero out the stats kept on
644 * user accs */
645
646 /* fall through to state 1 */
647
648 case 1:
649
650 RF_LOCK_MUTEX(raidPtr->mutex);
651
652 /* create the reconstruction control pointer and install it in
653 * the right slot */
654 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
655 mapPtr = raidPtr->reconControl[row]->reconMap;
656 raidPtr->status[row] = rf_rs_reconstructing;
657 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
658 raidPtr->Disks[row][col].spareRow = srow;
659 raidPtr->Disks[row][col].spareCol = scol;
660
661 RF_UNLOCK_MUTEX(raidPtr->mutex);
662
663 RF_GETTIME(raidPtr->reconControl[row]->starttime);
664
665 /* now start up the actual reconstruction: issue a read for
666 * each surviving disk */
667
668 reconDesc->numDisksDone = 0;
669 for (i = 0; i < raidPtr->numCol; i++) {
670 if (i != col) {
671 /* find and issue the next I/O on the
672 * indicated disk */
673 if (IssueNextReadRequest(raidPtr, row, i)) {
674 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
675 reconDesc->numDisksDone++;
676 }
677 }
678 }
679
680 case 2:
681 Dprintf("RECON: resume requests\n");
682 rf_ResumeNewRequests(raidPtr);
683
684
685 reconDesc->state = 3;
686
687 case 3:
688
689 /* process reconstruction events until all disks report that
690 * they've completed all work */
691 mapPtr = raidPtr->reconControl[row]->reconMap;
692
693
694
695 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
696
697 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
698 RF_ASSERT(event);
699
700 if (ProcessReconEvent(raidPtr, row, event))
701 reconDesc->numDisksDone++;
702 raidPtr->reconControl[row]->numRUsTotal =
703 mapPtr->totalRUs;
704 raidPtr->reconControl[row]->numRUsComplete =
705 mapPtr->totalRUs -
706 rf_UnitsLeftToReconstruct(mapPtr);
707
708 raidPtr->reconControl[row]->percentComplete =
709 100 - (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
710 if (rf_prReconSched) {
711 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
712 }
713 }
714
715
716
717 reconDesc->state = 4;
718
719
720 case 4:
721 mapPtr = raidPtr->reconControl[row]->reconMap;
722 if (rf_reconDebug) {
723 printf("RECON: all reads completed\n");
724 }
725 /* at this point all the reads have completed. We now wait
726 * for any pending writes to complete, and then we're done */
727
728 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
729
730 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
731 RF_ASSERT(event);
732
733 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
734 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
735 if (rf_prReconSched) {
736 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
737 }
738 }
739 reconDesc->state = 5;
740
741 case 5:
742 /* Success: mark the dead disk as reconstructed. We quiesce
743 * the array here to assure no nasty interactions with pending
744 * user accesses when we free up the psstatus structure as
745 * part of FreeReconControl() */
746
747 reconDesc->state = 6;
748
749 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
750 rf_StopUserStats(raidPtr);
751 rf_PrintUserStats(raidPtr); /* print out the stats on user
752 * accs accumulated during
753 * recon */
754
755 /* fall through to state 6 */
756 case 6:
757
758
759
760 RF_LOCK_MUTEX(raidPtr->mutex);
761 raidPtr->numFailures--;
762 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
763 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
764 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
765 RF_UNLOCK_MUTEX(raidPtr->mutex);
766 RF_GETTIME(etime);
767 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
768
769 /* XXX -- why is state 7 different from state 6 if there is no
770 * return() here? -- XXX Note that I set elpsd above & use it
771 * below, so if you put a return here you'll have to fix this.
772 * (also, FreeReconControl is called below) */
773
774 case 7:
775
776 rf_ResumeNewRequests(raidPtr);
777
778 printf("Reconstruction of disk at row %d col %d completed\n",
779 row, col);
780 xor_s = raidPtr->accumXorTimeUs / 1000000;
781 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
782 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
783 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
784 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
785 (int) raidPtr->reconControl[row]->starttime.tv_sec,
786 (int) raidPtr->reconControl[row]->starttime.tv_usec,
787 (int) etime.tv_sec, (int) etime.tv_usec);
788
789 #if RF_RECON_STATS > 0
790 printf("Total head-sep stall count was %d\n",
791 (int) reconDesc->hsStallCount);
792 #endif /* RF_RECON_STATS > 0 */
793 rf_FreeReconControl(raidPtr, row);
794 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
795 FreeReconDesc(reconDesc);
796
797 }
798
799 SignalReconDone(raidPtr);
800 return (0);
801 }
802 /*****************************************************************************
803 * do the right thing upon each reconstruction event.
804 * returns nonzero if and only if there is nothing left unread on the
805 * indicated disk
806 *****************************************************************************/
807 static int
808 ProcessReconEvent(raidPtr, frow, event)
809 RF_Raid_t *raidPtr;
810 RF_RowCol_t frow;
811 RF_ReconEvent_t *event;
812 {
813 int retcode = 0, submitblocked;
814 RF_ReconBuffer_t *rbuf;
815 RF_SectorCount_t sectorsPerRU;
816
817 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
818 switch (event->type) {
819
820 /* a read I/O has completed */
821 case RF_REVENT_READDONE:
822 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
823 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
824 frow, event->col, rbuf->parityStripeID);
825 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
826 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
827 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
828 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
829 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
830 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
831 if (!submitblocked)
832 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
833 break;
834
835 /* a write I/O has completed */
836 case RF_REVENT_WRITEDONE:
837 if (rf_floatingRbufDebug) {
838 rf_CheckFloatingRbufCount(raidPtr, 1);
839 }
840 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
841 rbuf = (RF_ReconBuffer_t *) event->arg;
842 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
843 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
844 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
845 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
846 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
847 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
848
849 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
850 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
851 raidPtr->numFullReconBuffers--;
852 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
853 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
854 } else
855 if (rbuf->type == RF_RBUF_TYPE_FORCED)
856 rf_FreeReconBuffer(rbuf);
857 else
858 RF_ASSERT(0);
859 break;
860
861 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
862 * cleared */
863 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
864 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
865 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
866 * BUFCLEAR event if we
867 * couldn't submit */
868 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
869 break;
870
871 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
872 * blockage has been cleared */
873 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
874 retcode = TryToRead(raidPtr, frow, event->col);
875 break;
876
877 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
878 * reconstruction blockage has been
879 * cleared */
880 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
881 retcode = TryToRead(raidPtr, frow, event->col);
882 break;
883
884 /* a buffer has become ready to write */
885 case RF_REVENT_BUFREADY:
886 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
887 retcode = IssueNextWriteRequest(raidPtr, frow);
888 if (rf_floatingRbufDebug) {
889 rf_CheckFloatingRbufCount(raidPtr, 1);
890 }
891 break;
892
893 /* we need to skip the current RU entirely because it got
894 * recon'd while we were waiting for something else to happen */
895 case RF_REVENT_SKIP:
896 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
897 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
898 break;
899
900 /* a forced-reconstruction read access has completed. Just
901 * submit the buffer */
902 case RF_REVENT_FORCEDREADDONE:
903 rbuf = (RF_ReconBuffer_t *) event->arg;
904 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
905 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
906 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
907 RF_ASSERT(!submitblocked);
908 break;
909
910 default:
911 RF_PANIC();
912 }
913 rf_FreeReconEventDesc(event);
914 return (retcode);
915 }
916 /*****************************************************************************
917 *
918 * find the next thing that's needed on the indicated disk, and issue
919 * a read request for it. We assume that the reconstruction buffer
920 * associated with this process is free to receive the data. If
921 * reconstruction is blocked on the indicated RU, we issue a
922 * blockage-release request instead of a physical disk read request.
923 * If the current disk gets too far ahead of the others, we issue a
924 * head-separation wait request and return.
925 *
926 * ctrl->{ru_count, curPSID, diskOffset} and
927 * rbuf->failedDiskSectorOffset are maintained to point to the unit
928 * we're currently accessing. Note that this deviates from the
929 * standard C idiom of having counters point to the next thing to be
930 * accessed. This allows us to easily retry when we're blocked by
931 * head separation or reconstruction-blockage events.
932 *
933 * returns nonzero if and only if there is nothing left unread on the
934 * indicated disk
935 *
936 *****************************************************************************/
937 static int
938 IssueNextReadRequest(raidPtr, row, col)
939 RF_Raid_t *raidPtr;
940 RF_RowCol_t row;
941 RF_RowCol_t col;
942 {
943 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
944 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
945 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
946 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
947 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
948 int do_new_check = 0, retcode = 0, status;
949
950 /* if we are currently the slowest disk, mark that we have to do a new
951 * check */
952 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
953 do_new_check = 1;
954
955 while (1) {
956
957 ctrl->ru_count++;
958 if (ctrl->ru_count < RUsPerPU) {
959 ctrl->diskOffset += sectorsPerRU;
960 rbuf->failedDiskSectorOffset += sectorsPerRU;
961 } else {
962 ctrl->curPSID++;
963 ctrl->ru_count = 0;
964 /* code left over from when head-sep was based on
965 * parity stripe id */
966 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
967 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
968 return (1); /* finito! */
969 }
970 /* find the disk offsets of the start of the parity
971 * stripe on both the current disk and the failed
972 * disk. skip this entire parity stripe if either disk
973 * does not appear in the indicated PS */
974 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
975 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
976 if (status) {
977 ctrl->ru_count = RUsPerPU - 1;
978 continue;
979 }
980 }
981 rbuf->which_ru = ctrl->ru_count;
982
983 /* skip this RU if it's already been reconstructed */
984 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
985 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
986 continue;
987 }
988 break;
989 }
990 ctrl->headSepCounter++;
991 if (do_new_check)
992 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
993
994
995 /* at this point, we have definitely decided what to do, and we have
996 * only to see if we can actually do it now */
997 rbuf->parityStripeID = ctrl->curPSID;
998 rbuf->which_ru = ctrl->ru_count;
999 bzero((char *) &raidPtr->recon_tracerecs[col], sizeof(raidPtr->recon_tracerecs[col]));
1000 raidPtr->recon_tracerecs[col].reconacc = 1;
1001 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1002 retcode = TryToRead(raidPtr, row, col);
1003 return (retcode);
1004 }
1005
1006 /*
1007 * tries to issue the next read on the indicated disk. We may be
1008 * blocked by (a) the heads being too far apart, or (b) recon on the
1009 * indicated RU being blocked due to a write by a user thread. In
1010 * this case, we issue a head-sep or blockage wait request, which will
1011 * cause this same routine to be invoked again later when the blockage
1012 * has cleared.
1013 */
1014
1015 static int
1016 TryToRead(raidPtr, row, col)
1017 RF_Raid_t *raidPtr;
1018 RF_RowCol_t row;
1019 RF_RowCol_t col;
1020 {
1021 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1022 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1023 RF_StripeNum_t psid = ctrl->curPSID;
1024 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1025 RF_DiskQueueData_t *req;
1026 int status, created = 0;
1027 RF_ReconParityStripeStatus_t *pssPtr;
1028
1029 /* if the current disk is too far ahead of the others, issue a
1030 * head-separation wait and return */
1031 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1032 return (0);
1033 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1034 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1035
1036 /* if recon is blocked on the indicated parity stripe, issue a
1037 * block-wait request and return. this also must mark the indicated RU
1038 * in the stripe as under reconstruction if not blocked. */
1039 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1040 if (status == RF_PSS_RECON_BLOCKED) {
1041 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1042 goto out;
1043 } else
1044 if (status == RF_PSS_FORCED_ON_WRITE) {
1045 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1046 goto out;
1047 }
1048 /* make one last check to be sure that the indicated RU didn't get
1049 * reconstructed while we were waiting for something else to happen.
1050 * This is unfortunate in that it causes us to make this check twice
1051 * in the normal case. Might want to make some attempt to re-work
1052 * this so that we only do this check if we've definitely blocked on
1053 * one of the above checks. When this condition is detected, we may
1054 * have just created a bogus status entry, which we need to delete. */
1055 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1056 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1057 if (created)
1058 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1059 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1060 goto out;
1061 }
1062 /* found something to read. issue the I/O */
1063 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1064 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1065 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1066 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1067 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1068 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1069 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1070
1071 /* should be ok to use a NULL proc pointer here, all the bufs we use
1072 * should be in kernel space */
1073 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1074 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1075
1076 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1077
1078 ctrl->rbuf->arg = (void *) req;
1079 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1080 pssPtr->issued[col] = 1;
1081
1082 out:
1083 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1084 return (0);
1085 }
1086
1087
1088 /*
1089 * given a parity stripe ID, we want to find out whether both the
1090 * current disk and the failed disk exist in that parity stripe. If
1091 * not, we want to skip this whole PS. If so, we want to find the
1092 * disk offset of the start of the PS on both the current disk and the
1093 * failed disk.
1094 *
1095 * this works by getting a list of disks comprising the indicated
1096 * parity stripe, and searching the list for the current and failed
1097 * disks. Once we've decided they both exist in the parity stripe, we
1098 * need to decide whether each is data or parity, so that we'll know
1099 * which mapping function to call to get the corresponding disk
1100 * offsets.
1101 *
1102 * this is kind of unpleasant, but doing it this way allows the
1103 * reconstruction code to use parity stripe IDs rather than physical
1104 * disks address to march through the failed disk, which greatly
1105 * simplifies a lot of code, as well as eliminating the need for a
1106 * reverse-mapping function. I also think it will execute faster,
1107 * since the calls to the mapping module are kept to a minimum.
1108 *
1109 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1110 * THE STRIPE IN THE CORRECT ORDER */
1111
1112
1113 static int
1114 ComputePSDiskOffsets(
1115 RF_Raid_t * raidPtr, /* raid descriptor */
1116 RF_StripeNum_t psid, /* parity stripe identifier */
1117 RF_RowCol_t row, /* row and column of disk to find the offsets
1118 * for */
1119 RF_RowCol_t col,
1120 RF_SectorNum_t * outDiskOffset,
1121 RF_SectorNum_t * outFailedDiskSectorOffset,
1122 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1123 RF_RowCol_t * spCol,
1124 RF_SectorNum_t * spOffset)
1125 { /* OUT: offset into disk containing spare unit */
1126 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1127 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1128 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1129 RF_RowCol_t *diskids;
1130 u_int i, j, k, i_offset, j_offset;
1131 RF_RowCol_t prow, pcol;
1132 int testcol, testrow;
1133 RF_RowCol_t stripe;
1134 RF_SectorNum_t poffset;
1135 char i_is_parity = 0, j_is_parity = 0;
1136 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1137
1138 /* get a listing of the disks comprising that stripe */
1139 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1140 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1141 RF_ASSERT(diskids);
1142
1143 /* reject this entire parity stripe if it does not contain the
1144 * indicated disk or it does not contain the failed disk */
1145 if (row != stripe)
1146 goto skipit;
1147 for (i = 0; i < stripeWidth; i++) {
1148 if (col == diskids[i])
1149 break;
1150 }
1151 if (i == stripeWidth)
1152 goto skipit;
1153 for (j = 0; j < stripeWidth; j++) {
1154 if (fcol == diskids[j])
1155 break;
1156 }
1157 if (j == stripeWidth) {
1158 goto skipit;
1159 }
1160 /* find out which disk the parity is on */
1161 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1162
1163 /* find out if either the current RU or the failed RU is parity */
1164 /* also, if the parity occurs in this stripe prior to the data and/or
1165 * failed col, we need to decrement i and/or j */
1166 for (k = 0; k < stripeWidth; k++)
1167 if (diskids[k] == pcol)
1168 break;
1169 RF_ASSERT(k < stripeWidth);
1170 i_offset = i;
1171 j_offset = j;
1172 if (k < i)
1173 i_offset--;
1174 else
1175 if (k == i) {
1176 i_is_parity = 1;
1177 i_offset = 0;
1178 } /* set offsets to zero to disable multiply
1179 * below */
1180 if (k < j)
1181 j_offset--;
1182 else
1183 if (k == j) {
1184 j_is_parity = 1;
1185 j_offset = 0;
1186 }
1187 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1188 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1189 * tells us how far into the stripe the [current,failed] disk is. */
1190
1191 /* call the mapping routine to get the offset into the current disk,
1192 * repeat for failed disk. */
1193 if (i_is_parity)
1194 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1195 else
1196 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1197
1198 RF_ASSERT(row == testrow && col == testcol);
1199
1200 if (j_is_parity)
1201 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1202 else
1203 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1204 RF_ASSERT(row == testrow && fcol == testcol);
1205
1206 /* now locate the spare unit for the failed unit */
1207 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1208 if (j_is_parity)
1209 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1210 else
1211 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1212 } else {
1213 *spRow = raidPtr->reconControl[row]->spareRow;
1214 *spCol = raidPtr->reconControl[row]->spareCol;
1215 *spOffset = *outFailedDiskSectorOffset;
1216 }
1217
1218 return (0);
1219
1220 skipit:
1221 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1222 psid, row, col);
1223 return (1);
1224 }
1225 /* this is called when a buffer has become ready to write to the replacement disk */
1226 static int
1227 IssueNextWriteRequest(raidPtr, row)
1228 RF_Raid_t *raidPtr;
1229 RF_RowCol_t row;
1230 {
1231 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1232 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1233 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1234 RF_ReconBuffer_t *rbuf;
1235 RF_DiskQueueData_t *req;
1236
1237 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1238 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1239 * have gotten the event that sent us here */
1240 RF_ASSERT(rbuf->pssPtr);
1241
1242 rbuf->pssPtr->writeRbuf = rbuf;
1243 rbuf->pssPtr = NULL;
1244
1245 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1246 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1247 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1248 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1249 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1250 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1251
1252 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1253 * kernel space */
1254 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1255 sectorsPerRU, rbuf->buffer,
1256 rbuf->parityStripeID, rbuf->which_ru,
1257 ReconWriteDoneProc, (void *) rbuf, NULL,
1258 &raidPtr->recon_tracerecs[fcol],
1259 (void *) raidPtr, 0, NULL);
1260
1261 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1262
1263 rbuf->arg = (void *) req;
1264 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1265
1266 return (0);
1267 }
1268
1269 /*
1270 * this gets called upon the completion of a reconstruction read
1271 * operation the arg is a pointer to the per-disk reconstruction
1272 * control structure for the process that just finished a read.
1273 *
1274 * called at interrupt context in the kernel, so don't do anything
1275 * illegal here.
1276 */
1277 static int
1278 ReconReadDoneProc(arg, status)
1279 void *arg;
1280 int status;
1281 {
1282 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1283 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1284
1285 if (status) {
1286 /*
1287 * XXX
1288 */
1289 printf("Recon read failed!\n");
1290 RF_PANIC();
1291 }
1292 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1293 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1294 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1295 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1296 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1297
1298 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1299 return (0);
1300 }
1301 /* this gets called upon the completion of a reconstruction write operation.
1302 * the arg is a pointer to the rbuf that was just written
1303 *
1304 * called at interrupt context in the kernel, so don't do anything illegal here.
1305 */
1306 static int
1307 ReconWriteDoneProc(arg, status)
1308 void *arg;
1309 int status;
1310 {
1311 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1312
1313 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1314 if (status) {
1315 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1316 * write failed!\n"); */
1317 RF_PANIC();
1318 }
1319 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1320 return (0);
1321 }
1322
1323
1324 /*
1325 * computes a new minimum head sep, and wakes up anyone who needs to
1326 * be woken as a result
1327 */
1328 static void
1329 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1330 RF_Raid_t *raidPtr;
1331 RF_RowCol_t row;
1332 RF_HeadSepLimit_t hsCtr;
1333 {
1334 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1335 RF_HeadSepLimit_t new_min;
1336 RF_RowCol_t i;
1337 RF_CallbackDesc_t *p;
1338 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1339 * of a minimum */
1340
1341
1342 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1343
1344 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1345 for (i = 0; i < raidPtr->numCol; i++)
1346 if (i != reconCtrlPtr->fcol) {
1347 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1348 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1349 }
1350 /* set the new minimum and wake up anyone who can now run again */
1351 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1352 reconCtrlPtr->minHeadSepCounter = new_min;
1353 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1354 while (reconCtrlPtr->headSepCBList) {
1355 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1356 break;
1357 p = reconCtrlPtr->headSepCBList;
1358 reconCtrlPtr->headSepCBList = p->next;
1359 p->next = NULL;
1360 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1361 rf_FreeCallbackDesc(p);
1362 }
1363
1364 }
1365 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1366 }
1367
1368 /*
1369 * checks to see that the maximum head separation will not be violated
1370 * if we initiate a reconstruction I/O on the indicated disk.
1371 * Limiting the maximum head separation between two disks eliminates
1372 * the nasty buffer-stall conditions that occur when one disk races
1373 * ahead of the others and consumes all of the floating recon buffers.
1374 * This code is complex and unpleasant but it's necessary to avoid
1375 * some very nasty, albeit fairly rare, reconstruction behavior.
1376 *
1377 * returns non-zero if and only if we have to stop working on the
1378 * indicated disk due to a head-separation delay.
1379 */
1380 static int
1381 CheckHeadSeparation(
1382 RF_Raid_t * raidPtr,
1383 RF_PerDiskReconCtrl_t * ctrl,
1384 RF_RowCol_t row,
1385 RF_RowCol_t col,
1386 RF_HeadSepLimit_t hsCtr,
1387 RF_ReconUnitNum_t which_ru)
1388 {
1389 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1390 RF_CallbackDesc_t *cb, *p, *pt;
1391 int retval = 0;
1392
1393 /* if we're too far ahead of the slowest disk, stop working on this
1394 * disk until the slower ones catch up. We do this by scheduling a
1395 * wakeup callback for the time when the slowest disk has caught up.
1396 * We define "caught up" with 20% hysteresis, i.e. the head separation
1397 * must have fallen to at most 80% of the max allowable head
1398 * separation before we'll wake up.
1399 *
1400 */
1401 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1402 if ((raidPtr->headSepLimit >= 0) &&
1403 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1404 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1405 raidPtr->raidid, row, col, ctrl->headSepCounter,
1406 reconCtrlPtr->minHeadSepCounter,
1407 raidPtr->headSepLimit);
1408 cb = rf_AllocCallbackDesc();
1409 /* the minHeadSepCounter value we have to get to before we'll
1410 * wake up. build in 20% hysteresis. */
1411 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1412 cb->row = row;
1413 cb->col = col;
1414 cb->next = NULL;
1415
1416 /* insert this callback descriptor into the sorted list of
1417 * pending head-sep callbacks */
1418 p = reconCtrlPtr->headSepCBList;
1419 if (!p)
1420 reconCtrlPtr->headSepCBList = cb;
1421 else
1422 if (cb->callbackArg.v < p->callbackArg.v) {
1423 cb->next = reconCtrlPtr->headSepCBList;
1424 reconCtrlPtr->headSepCBList = cb;
1425 } else {
1426 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1427 cb->next = p;
1428 pt->next = cb;
1429 }
1430 retval = 1;
1431 #if RF_RECON_STATS > 0
1432 ctrl->reconCtrl->reconDesc->hsStallCount++;
1433 #endif /* RF_RECON_STATS > 0 */
1434 }
1435 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1436
1437 return (retval);
1438 }
1439 /*
1440 * checks to see if reconstruction has been either forced or blocked
1441 * by a user operation. if forced, we skip this RU entirely. else if
1442 * blocked, put ourselves on the wait list. else return 0.
1443 *
1444 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1445 */
1446 static int
1447 CheckForcedOrBlockedReconstruction(
1448 RF_Raid_t * raidPtr,
1449 RF_ReconParityStripeStatus_t * pssPtr,
1450 RF_PerDiskReconCtrl_t * ctrl,
1451 RF_RowCol_t row,
1452 RF_RowCol_t col,
1453 RF_StripeNum_t psid,
1454 RF_ReconUnitNum_t which_ru)
1455 {
1456 RF_CallbackDesc_t *cb;
1457 int retcode = 0;
1458
1459 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1460 retcode = RF_PSS_FORCED_ON_WRITE;
1461 else
1462 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1463 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1464 cb = rf_AllocCallbackDesc(); /* append ourselves to
1465 * the blockage-wait
1466 * list */
1467 cb->row = row;
1468 cb->col = col;
1469 cb->next = pssPtr->blockWaitList;
1470 pssPtr->blockWaitList = cb;
1471 retcode = RF_PSS_RECON_BLOCKED;
1472 }
1473 if (!retcode)
1474 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1475 * reconstruction */
1476
1477 return (retcode);
1478 }
1479 /*
1480 * if reconstruction is currently ongoing for the indicated stripeID,
1481 * reconstruction is forced to completion and we return non-zero to
1482 * indicate that the caller must wait. If not, then reconstruction is
1483 * blocked on the indicated stripe and the routine returns zero. If
1484 * and only if we return non-zero, we'll cause the cbFunc to get
1485 * invoked with the cbArg when the reconstruction has completed.
1486 */
1487 int
1488 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1489 RF_Raid_t *raidPtr;
1490 RF_AccessStripeMap_t *asmap;
1491 void (*cbFunc) (RF_Raid_t *, void *);
1492 void *cbArg;
1493 {
1494 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1495 * we're working on */
1496 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1497 * forcing recon on */
1498 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1499 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1500 * stripe status structure */
1501 RF_StripeNum_t psid; /* parity stripe id */
1502 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1503 * offset */
1504 RF_RowCol_t *diskids;
1505 RF_RowCol_t stripe;
1506 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1507 RF_RowCol_t fcol, diskno, i;
1508 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1509 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1510 RF_CallbackDesc_t *cb;
1511 int created = 0, nPromoted;
1512
1513 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1514
1515 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1516
1517 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1518
1519 /* if recon is not ongoing on this PS, just return */
1520 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1521 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1522 return (0);
1523 }
1524 /* otherwise, we have to wait for reconstruction to complete on this
1525 * RU. */
1526 /* In order to avoid waiting for a potentially large number of
1527 * low-priority accesses to complete, we force a normal-priority (i.e.
1528 * not low-priority) reconstruction on this RU. */
1529 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1530 DDprintf1("Forcing recon on psid %ld\n", psid);
1531 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1532 * forced recon */
1533 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1534 * that we just set */
1535 fcol = raidPtr->reconControl[row]->fcol;
1536
1537 /* get a listing of the disks comprising the indicated stripe */
1538 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1539 RF_ASSERT(row == stripe);
1540
1541 /* For previously issued reads, elevate them to normal
1542 * priority. If the I/O has already completed, it won't be
1543 * found in the queue, and hence this will be a no-op. For
1544 * unissued reads, allocate buffers and issue new reads. The
1545 * fact that we've set the FORCED bit means that the regular
1546 * recon procs will not re-issue these reqs */
1547 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1548 if ((diskno = diskids[i]) != fcol) {
1549 if (pssPtr->issued[diskno]) {
1550 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1551 if (rf_reconDebug && nPromoted)
1552 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1553 } else {
1554 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1555 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1556 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1557 * location */
1558 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1559 new_rbuf->which_ru = which_ru;
1560 new_rbuf->failedDiskSectorOffset = fd_offset;
1561 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1562
1563 /* use NULL b_proc b/c all addrs
1564 * should be in kernel space */
1565 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1566 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1567 NULL, (void *) raidPtr, 0, NULL);
1568
1569 RF_ASSERT(req); /* XXX -- fix this --
1570 * XXX */
1571
1572 new_rbuf->arg = req;
1573 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1574 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1575 }
1576 }
1577 /* if the write is sitting in the disk queue, elevate its
1578 * priority */
1579 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1580 printf("raid%d: promoted write to row %d col %d\n",
1581 raidPtr->raidid, row, fcol);
1582 }
1583 /* install a callback descriptor to be invoked when recon completes on
1584 * this parity stripe. */
1585 cb = rf_AllocCallbackDesc();
1586 /* XXX the following is bogus.. These functions don't really match!!
1587 * GO */
1588 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1589 cb->callbackArg.p = (void *) cbArg;
1590 cb->next = pssPtr->procWaitList;
1591 pssPtr->procWaitList = cb;
1592 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1593 raidPtr->raidid, psid);
1594
1595 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1596 return (1);
1597 }
1598 /* called upon the completion of a forced reconstruction read.
1599 * all we do is schedule the FORCEDREADONE event.
1600 * called at interrupt context in the kernel, so don't do anything illegal here.
1601 */
1602 static void
1603 ForceReconReadDoneProc(arg, status)
1604 void *arg;
1605 int status;
1606 {
1607 RF_ReconBuffer_t *rbuf = arg;
1608
1609 if (status) {
1610 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1611 * recon read
1612 * failed!\n"); */
1613 RF_PANIC();
1614 }
1615 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1616 }
1617 /* releases a block on the reconstruction of the indicated stripe */
1618 int
1619 rf_UnblockRecon(raidPtr, asmap)
1620 RF_Raid_t *raidPtr;
1621 RF_AccessStripeMap_t *asmap;
1622 {
1623 RF_RowCol_t row = asmap->origRow;
1624 RF_StripeNum_t stripeID = asmap->stripeID;
1625 RF_ReconParityStripeStatus_t *pssPtr;
1626 RF_ReconUnitNum_t which_ru;
1627 RF_StripeNum_t psid;
1628 int created = 0;
1629 RF_CallbackDesc_t *cb;
1630
1631 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1632 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1633 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1634
1635 /* When recon is forced, the pss desc can get deleted before we get
1636 * back to unblock recon. But, this can _only_ happen when recon is
1637 * forced. It would be good to put some kind of sanity check here, but
1638 * how to decide if recon was just forced or not? */
1639 if (!pssPtr) {
1640 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1641 * RU %d\n",psid,which_ru); */
1642 if (rf_reconDebug || rf_pssDebug)
1643 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1644 goto out;
1645 }
1646 pssPtr->blockCount--;
1647 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1648 raidPtr->raidid, psid, pssPtr->blockCount);
1649 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1650
1651 /* unblock recon before calling CauseReconEvent in case
1652 * CauseReconEvent causes us to try to issue a new read before
1653 * returning here. */
1654 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1655
1656
1657 while (pssPtr->blockWaitList) {
1658 /* spin through the block-wait list and
1659 release all the waiters */
1660 cb = pssPtr->blockWaitList;
1661 pssPtr->blockWaitList = cb->next;
1662 cb->next = NULL;
1663 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1664 rf_FreeCallbackDesc(cb);
1665 }
1666 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1667 /* if no recon was requested while recon was blocked */
1668 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1669 }
1670 }
1671 out:
1672 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1673 return (0);
1674 }
1675