Home | History | Annotate | Line # | Download | only in raidframe
rf_reconstruct.c revision 1.27.2.10
      1 /*	$NetBSD: rf_reconstruct.c,v 1.27.2.10 2002/10/18 02:43:56 nathanw Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /************************************************************
     30  *
     31  * rf_reconstruct.c -- code to perform on-line reconstruction
     32  *
     33  ************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.27.2.10 2002/10/18 02:43:56 nathanw Exp $");
     37 
     38 #include <sys/time.h>
     39 #include <sys/buf.h>
     40 #include <sys/errno.h>
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/ioctl.h>
     46 #include <sys/fcntl.h>
     47 #include <sys/vnode.h>
     48 #include <dev/raidframe/raidframevar.h>
     49 
     50 #include "rf_raid.h"
     51 #include "rf_reconutil.h"
     52 #include "rf_revent.h"
     53 #include "rf_reconbuffer.h"
     54 #include "rf_acctrace.h"
     55 #include "rf_etimer.h"
     56 #include "rf_dag.h"
     57 #include "rf_desc.h"
     58 #include "rf_debugprint.h"
     59 #include "rf_general.h"
     60 #include "rf_freelist.h"
     61 #include "rf_driver.h"
     62 #include "rf_utils.h"
     63 #include "rf_shutdown.h"
     64 
     65 #include "rf_kintf.h"
     66 
     67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
     68 
     69 #if RF_DEBUG_RECON
     70 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     71 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     72 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     73 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     74 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
     75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
     76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
     77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
     78 
     79 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     80 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     81 
     82 #else /* RF_DEBUG_RECON */
     83 
     84 #define Dprintf(s) {}
     85 #define Dprintf1(s,a) {}
     86 #define Dprintf2(s,a,b) {}
     87 #define Dprintf3(s,a,b,c) {}
     88 #define Dprintf4(s,a,b,c,d) {}
     89 #define Dprintf5(s,a,b,c,d,e) {}
     90 #define Dprintf6(s,a,b,c,d,e,f) {}
     91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
     92 
     93 #define DDprintf1(s,a) {}
     94 #define DDprintf2(s,a,b) {}
     95 
     96 #endif /* RF_DEBUG_RECON */
     97 
     98 
     99 static RF_FreeList_t *rf_recond_freelist;
    100 #define RF_MAX_FREE_RECOND  4
    101 #define RF_RECOND_INC       1
    102 
    103 static RF_RaidReconDesc_t *
    104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
    105     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
    106     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
    107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
    108 static int
    109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
    110     RF_ReconEvent_t * event);
    111 static int
    112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
    113     RF_RowCol_t col);
    114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
    115 static int
    116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
    117     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
    118     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
    119     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
    120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
    121 static int ReconReadDoneProc(void *arg, int status);
    122 static int ReconWriteDoneProc(void *arg, int status);
    123 static void
    124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
    125     RF_HeadSepLimit_t hsCtr);
    126 static int
    127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
    128     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
    129     RF_ReconUnitNum_t which_ru);
    130 static int
    131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
    132     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
    133     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
    134     RF_ReconUnitNum_t which_ru);
    135 static void ForceReconReadDoneProc(void *arg, int status);
    136 
    137 static void rf_ShutdownReconstruction(void *);
    138 
    139 struct RF_ReconDoneProc_s {
    140 	void    (*proc) (RF_Raid_t *, void *);
    141 	void   *arg;
    142 	RF_ReconDoneProc_t *next;
    143 };
    144 
    145 static RF_FreeList_t *rf_rdp_freelist;
    146 #define RF_MAX_FREE_RDP 4
    147 #define RF_RDP_INC      1
    148 
    149 static void
    150 SignalReconDone(RF_Raid_t * raidPtr)
    151 {
    152 	RF_ReconDoneProc_t *p;
    153 
    154 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
    155 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
    156 		p->proc(raidPtr, p->arg);
    157 	}
    158 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
    159 }
    160 
    161 /**************************************************************************
    162  *
    163  * sets up the parameters that will be used by the reconstruction process
    164  * currently there are none, except for those that the layout-specific
    165  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
    166  *
    167  * in the kernel, we fire off the recon thread.
    168  *
    169  **************************************************************************/
    170 static void
    171 rf_ShutdownReconstruction(ignored)
    172 	void   *ignored;
    173 {
    174 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
    175 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
    176 }
    177 
    178 int
    179 rf_ConfigureReconstruction(listp)
    180 	RF_ShutdownList_t **listp;
    181 {
    182 	int     rc;
    183 
    184 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
    185 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
    186 	if (rf_recond_freelist == NULL)
    187 		return (ENOMEM);
    188 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
    189 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
    190 	if (rf_rdp_freelist == NULL) {
    191 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
    192 		return (ENOMEM);
    193 	}
    194 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
    195 	if (rc) {
    196 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    197 		rf_ShutdownReconstruction(NULL);
    198 		return (rc);
    199 	}
    200 	return (0);
    201 }
    202 
    203 static RF_RaidReconDesc_t *
    204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
    205 	RF_Raid_t *raidPtr;
    206 	RF_RowCol_t row;
    207 	RF_RowCol_t col;
    208 	RF_RaidDisk_t *spareDiskPtr;
    209 	int     numDisksDone;
    210 	RF_RowCol_t srow;
    211 	RF_RowCol_t scol;
    212 {
    213 
    214 	RF_RaidReconDesc_t *reconDesc;
    215 
    216 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
    217 
    218 	reconDesc->raidPtr = raidPtr;
    219 	reconDesc->row = row;
    220 	reconDesc->col = col;
    221 	reconDesc->spareDiskPtr = spareDiskPtr;
    222 	reconDesc->numDisksDone = numDisksDone;
    223 	reconDesc->srow = srow;
    224 	reconDesc->scol = scol;
    225 	reconDesc->state = 0;
    226 	reconDesc->next = NULL;
    227 
    228 	return (reconDesc);
    229 }
    230 
    231 static void
    232 FreeReconDesc(reconDesc)
    233 	RF_RaidReconDesc_t *reconDesc;
    234 {
    235 #if RF_RECON_STATS > 0
    236 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
    237 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
    238 #endif				/* RF_RECON_STATS > 0 */
    239 	printf("RAIDframe: %lu max exec ticks\n",
    240 	    (long) reconDesc->maxReconExecTicks);
    241 #if (RF_RECON_STATS > 0) || defined(KERNEL)
    242 	printf("\n");
    243 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
    244 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
    245 }
    246 
    247 
    248 /*****************************************************************************
    249  *
    250  * primary routine to reconstruct a failed disk.  This should be called from
    251  * within its own thread.  It won't return until reconstruction completes,
    252  * fails, or is aborted.
    253  *****************************************************************************/
    254 int
    255 rf_ReconstructFailedDisk(raidPtr, row, col)
    256 	RF_Raid_t *raidPtr;
    257 	RF_RowCol_t row;
    258 	RF_RowCol_t col;
    259 {
    260 	RF_LayoutSW_t *lp;
    261 	int     rc;
    262 
    263 	lp = raidPtr->Layout.map;
    264 	if (lp->SubmitReconBuffer) {
    265 		/*
    266 	         * The current infrastructure only supports reconstructing one
    267 	         * disk at a time for each array.
    268 	         */
    269 		RF_LOCK_MUTEX(raidPtr->mutex);
    270 		while (raidPtr->reconInProgress) {
    271 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    272 		}
    273 		raidPtr->reconInProgress++;
    274 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    275 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
    276 		RF_LOCK_MUTEX(raidPtr->mutex);
    277 		raidPtr->reconInProgress--;
    278 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    279 	} else {
    280 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    281 		    lp->parityConfig);
    282 		rc = EIO;
    283 	}
    284 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    285 	return (rc);
    286 }
    287 
    288 int
    289 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
    290 	RF_Raid_t *raidPtr;
    291 	RF_RowCol_t row;
    292 	RF_RowCol_t col;
    293 {
    294 	RF_ComponentLabel_t c_label;
    295 	RF_RaidDisk_t *spareDiskPtr = NULL;
    296 	RF_RaidReconDesc_t *reconDesc;
    297 	RF_RowCol_t srow, scol;
    298 	int     numDisksDone = 0, rc;
    299 
    300 	/* first look for a spare drive onto which to reconstruct the data */
    301 	/* spare disk descriptors are stored in row 0.  This may have to
    302 	 * change eventually */
    303 
    304 	RF_LOCK_MUTEX(raidPtr->mutex);
    305 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
    306 
    307 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    308 		if (raidPtr->status[row] != rf_rs_degraded) {
    309 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
    310 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    311 			return (EINVAL);
    312 		}
    313 		srow = row;
    314 		scol = (-1);
    315 	} else {
    316 		srow = 0;
    317 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
    318 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
    319 				spareDiskPtr = &raidPtr->Disks[srow][scol];
    320 				spareDiskPtr->status = rf_ds_used_spare;
    321 				break;
    322 			}
    323 		}
    324 		if (!spareDiskPtr) {
    325 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
    326 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    327 			return (ENOSPC);
    328 		}
    329 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
    330 	}
    331 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    332 
    333 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
    334 	raidPtr->reconDesc = (void *) reconDesc;
    335 #if RF_RECON_STATS > 0
    336 	reconDesc->hsStallCount = 0;
    337 	reconDesc->numReconExecDelays = 0;
    338 	reconDesc->numReconEventWaits = 0;
    339 #endif				/* RF_RECON_STATS > 0 */
    340 	reconDesc->reconExecTimerRunning = 0;
    341 	reconDesc->reconExecTicks = 0;
    342 	reconDesc->maxReconExecTicks = 0;
    343 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    344 
    345 	if (!rc) {
    346 		/* fix up the component label */
    347 		/* Don't actually need the read here.. */
    348 		raidread_component_label(
    349                         raidPtr->raid_cinfo[srow][scol].ci_dev,
    350 			raidPtr->raid_cinfo[srow][scol].ci_vp,
    351 			&c_label);
    352 
    353 		raid_init_component_label( raidPtr, &c_label);
    354 		c_label.row = row;
    355 		c_label.column = col;
    356 		c_label.clean = RF_RAID_DIRTY;
    357 		c_label.status = rf_ds_optimal;
    358 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
    359 
    360 		/* We've just done a rebuild based on all the other
    361 		   disks, so at this point the parity is known to be
    362 		   clean, even if it wasn't before. */
    363 
    364 		/* XXX doesn't hold for RAID 6!!*/
    365 
    366 		raidPtr->parity_good = RF_RAID_CLEAN;
    367 
    368 		/* XXXX MORE NEEDED HERE */
    369 
    370 		raidwrite_component_label(
    371                         raidPtr->raid_cinfo[srow][scol].ci_dev,
    372 			raidPtr->raid_cinfo[srow][scol].ci_vp,
    373 			&c_label);
    374 
    375 	}
    376 	return (rc);
    377 }
    378 
    379 /*
    380 
    381    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
    382    and you don't get a spare until the next Monday.  With this function
    383    (and hot-swappable drives) you can now put your new disk containing
    384    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
    385    rebuild the data "on the spot".
    386 
    387 */
    388 
    389 int
    390 rf_ReconstructInPlace(raidPtr, row, col)
    391 	RF_Raid_t *raidPtr;
    392 	RF_RowCol_t row;
    393 	RF_RowCol_t col;
    394 {
    395 	RF_RaidDisk_t *spareDiskPtr = NULL;
    396 	RF_RaidReconDesc_t *reconDesc;
    397 	RF_LayoutSW_t *lp;
    398 	RF_ComponentLabel_t c_label;
    399 	int     numDisksDone = 0, rc;
    400 	struct partinfo dpart;
    401 	struct vnode *vp;
    402 	struct vattr va;
    403 	struct proc *proc;
    404 	int retcode;
    405 	int ac;
    406 
    407 	lp = raidPtr->Layout.map;
    408 	if (lp->SubmitReconBuffer) {
    409 		/*
    410 	         * The current infrastructure only supports reconstructing one
    411 	         * disk at a time for each array.
    412 	         */
    413 		RF_LOCK_MUTEX(raidPtr->mutex);
    414 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
    415 		    (raidPtr->numFailures > 0)) {
    416 			/* XXX 0 above shouldn't be constant!!! */
    417 			/* some component other than this has failed.
    418 			   Let's not make things worse than they already
    419 			   are... */
    420 			printf("raid%d: Unable to reconstruct to disk at:\n",
    421 			       raidPtr->raidid);
    422 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
    423 			       raidPtr->raidid, row, col);
    424 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    425 			return (EINVAL);
    426 		}
    427 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
    428 			printf("raid%d: Unable to reconstruct to disk at:\n",
    429 			       raidPtr->raidid);
    430 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, col);
    431 
    432 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    433 			return (EINVAL);
    434 		}
    435 		if (raidPtr->Disks[row][col].status == rf_ds_spared) {
    436 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    437 			return (EINVAL);
    438 		}
    439 
    440 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
    441 			/* "It's gone..." */
    442 			raidPtr->numFailures++;
    443 			raidPtr->Disks[row][col].status = rf_ds_failed;
    444 			raidPtr->status[row] = rf_rs_degraded;
    445 			rf_update_component_labels(raidPtr,
    446 						   RF_NORMAL_COMPONENT_UPDATE);
    447 		}
    448 
    449 		while (raidPtr->reconInProgress) {
    450 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    451 		}
    452 
    453 		raidPtr->reconInProgress++;
    454 
    455 
    456 		/* first look for a spare drive onto which to reconstruct
    457 		   the data.  spare disk descriptors are stored in row 0.
    458 		   This may have to change eventually */
    459 
    460 		/* Actually, we don't care if it's failed or not...
    461 		   On a RAID set with correct parity, this function
    462 		   should be callable on any component without ill affects. */
    463 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
    464 		 */
    465 
    466 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    467 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
    468 
    469 			raidPtr->reconInProgress--;
    470 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    471 			return (EINVAL);
    472 		}
    473 
    474 		proc = raidPtr->engine_thread;
    475 
    476 		/* This device may have been opened successfully the
    477 		   first time. Close it before trying to open it again.. */
    478 
    479 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
    480 #if 0
    481 			printf("Closed the open device: %s\n",
    482 			       raidPtr->Disks[row][col].devname);
    483 #endif
    484 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
    485 			ac = raidPtr->Disks[row][col].auto_configured;
    486 			rf_close_component(raidPtr, vp, ac);
    487 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
    488 		}
    489 		/* note that this disk was *not* auto_configured (any longer)*/
    490 		raidPtr->Disks[row][col].auto_configured = 0;
    491 
    492 #if 0
    493 		printf("About to (re-)open the device for rebuilding: %s\n",
    494 		       raidPtr->Disks[row][col].devname);
    495 #endif
    496 
    497 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
    498 				     proc, &vp);
    499 
    500 		if (retcode) {
    501 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
    502 			       raidPtr->Disks[row][col].devname, retcode);
    503 
    504 			/* the component isn't responding properly...
    505 			   must be still dead :-( */
    506 			raidPtr->reconInProgress--;
    507 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    508 			return(retcode);
    509 
    510 		} else {
    511 
    512 			/* Ok, so we can at least do a lookup...
    513 			   How about actually getting a vp for it? */
    514 
    515 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
    516 						   proc)) != 0) {
    517 				raidPtr->reconInProgress--;
    518 				RF_UNLOCK_MUTEX(raidPtr->mutex);
    519 				return(retcode);
    520 			}
    521 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
    522 					    FREAD, proc->p_ucred, proc);
    523 			if (retcode) {
    524 				raidPtr->reconInProgress--;
    525 				RF_UNLOCK_MUTEX(raidPtr->mutex);
    526 				return(retcode);
    527 			}
    528 			raidPtr->Disks[row][col].blockSize =
    529 				dpart.disklab->d_secsize;
    530 
    531 			raidPtr->Disks[row][col].numBlocks =
    532 				dpart.part->p_size - rf_protectedSectors;
    533 
    534 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
    535 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
    536 
    537 			raidPtr->Disks[row][col].dev = va.va_rdev;
    538 
    539 			/* we allow the user to specify that only a
    540 			   fraction of the disks should be used this is
    541 			   just for debug:  it speeds up
    542 			 * the parity scan */
    543 			raidPtr->Disks[row][col].numBlocks =
    544 				raidPtr->Disks[row][col].numBlocks *
    545 				rf_sizePercentage / 100;
    546 		}
    547 
    548 
    549 
    550 		spareDiskPtr = &raidPtr->Disks[row][col];
    551 		spareDiskPtr->status = rf_ds_used_spare;
    552 
    553 		printf("raid%d: initiating in-place reconstruction on\n",
    554 		       raidPtr->raidid);
    555 		printf("raid%d:    row %d col %d -> spare at row %d col %d\n",
    556 		       raidPtr->raidid, row, col, row, col);
    557 
    558 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    559 
    560 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
    561 					       spareDiskPtr, numDisksDone,
    562 					       row, col);
    563 		raidPtr->reconDesc = (void *) reconDesc;
    564 #if RF_RECON_STATS > 0
    565 		reconDesc->hsStallCount = 0;
    566 		reconDesc->numReconExecDelays = 0;
    567 		reconDesc->numReconEventWaits = 0;
    568 #endif				/* RF_RECON_STATS > 0 */
    569 		reconDesc->reconExecTimerRunning = 0;
    570 		reconDesc->reconExecTicks = 0;
    571 		reconDesc->maxReconExecTicks = 0;
    572 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
    573 
    574 		RF_LOCK_MUTEX(raidPtr->mutex);
    575 		raidPtr->reconInProgress--;
    576 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    577 
    578 	} else {
    579 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    580 			     lp->parityConfig);
    581 		rc = EIO;
    582 	}
    583 	RF_LOCK_MUTEX(raidPtr->mutex);
    584 
    585 	if (!rc) {
    586 		/* Need to set these here, as at this point it'll be claiming
    587 		   that the disk is in rf_ds_spared!  But we know better :-) */
    588 
    589 		raidPtr->Disks[row][col].status = rf_ds_optimal;
    590 		raidPtr->status[row] = rf_rs_optimal;
    591 
    592 		/* fix up the component label */
    593 		/* Don't actually need the read here.. */
    594 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
    595 					 raidPtr->raid_cinfo[row][col].ci_vp,
    596 					 &c_label);
    597 
    598 		raid_init_component_label(raidPtr, &c_label);
    599 
    600 		c_label.row = row;
    601 		c_label.column = col;
    602 
    603 		/* We've just done a rebuild based on all the other
    604 		   disks, so at this point the parity is known to be
    605 		   clean, even if it wasn't before. */
    606 
    607 		/* XXX doesn't hold for RAID 6!!*/
    608 
    609 		raidPtr->parity_good = RF_RAID_CLEAN;
    610 
    611 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
    612 					  raidPtr->raid_cinfo[row][col].ci_vp,
    613 					  &c_label);
    614 
    615 	}
    616 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    617 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    618 	return (rc);
    619 }
    620 
    621 
    622 int
    623 rf_ContinueReconstructFailedDisk(reconDesc)
    624 	RF_RaidReconDesc_t *reconDesc;
    625 {
    626 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
    627 	RF_RowCol_t row = reconDesc->row;
    628 	RF_RowCol_t col = reconDesc->col;
    629 	RF_RowCol_t srow = reconDesc->srow;
    630 	RF_RowCol_t scol = reconDesc->scol;
    631 	RF_ReconMap_t *mapPtr;
    632 	RF_ReconCtrl_t *tmp_reconctrl;
    633 	RF_ReconEvent_t *event;
    634 	struct timeval etime, elpsd;
    635 	unsigned long xor_s, xor_resid_us;
    636 	int     retcode, i, ds;
    637 
    638 	switch (reconDesc->state) {
    639 
    640 
    641 	case 0:
    642 
    643 		raidPtr->accumXorTimeUs = 0;
    644 
    645 		/* create one trace record per physical disk */
    646 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    647 
    648 		/* quiesce the array prior to starting recon.  this is needed
    649 		 * to assure no nasty interactions with pending user writes.
    650 		 * We need to do this before we change the disk or row status. */
    651 		reconDesc->state = 1;
    652 
    653 		Dprintf("RECON: begin request suspend\n");
    654 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
    655 		Dprintf("RECON: end request suspend\n");
    656 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
    657 						 * user accs */
    658 
    659 		/* fall through to state 1 */
    660 
    661 	case 1:
    662 
    663 		/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
    664 		tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol);
    665 
    666 		RF_LOCK_MUTEX(raidPtr->mutex);
    667 
    668 		/* create the reconstruction control pointer and install it in
    669 		 * the right slot */
    670 		raidPtr->reconControl[row] = tmp_reconctrl;
    671 		mapPtr = raidPtr->reconControl[row]->reconMap;
    672 		raidPtr->status[row] = rf_rs_reconstructing;
    673 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
    674 		raidPtr->Disks[row][col].spareRow = srow;
    675 		raidPtr->Disks[row][col].spareCol = scol;
    676 
    677 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    678 
    679 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
    680 
    681 		/* now start up the actual reconstruction: issue a read for
    682 		 * each surviving disk */
    683 
    684 		reconDesc->numDisksDone = 0;
    685 		for (i = 0; i < raidPtr->numCol; i++) {
    686 			if (i != col) {
    687 				/* find and issue the next I/O on the
    688 				 * indicated disk */
    689 				if (IssueNextReadRequest(raidPtr, row, i)) {
    690 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
    691 					reconDesc->numDisksDone++;
    692 				}
    693 			}
    694 		}
    695 
    696 	case 2:
    697 		Dprintf("RECON: resume requests\n");
    698 		rf_ResumeNewRequests(raidPtr);
    699 
    700 
    701 		reconDesc->state = 3;
    702 
    703 	case 3:
    704 
    705 		/* process reconstruction events until all disks report that
    706 		 * they've completed all work */
    707 		mapPtr = raidPtr->reconControl[row]->reconMap;
    708 
    709 
    710 
    711 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
    712 
    713 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
    714 			RF_ASSERT(event);
    715 
    716 			if (ProcessReconEvent(raidPtr, row, event))
    717 				reconDesc->numDisksDone++;
    718 			raidPtr->reconControl[row]->numRUsTotal =
    719 				mapPtr->totalRUs;
    720 			raidPtr->reconControl[row]->numRUsComplete =
    721 				mapPtr->totalRUs -
    722 				rf_UnitsLeftToReconstruct(mapPtr);
    723 
    724 			raidPtr->reconControl[row]->percentComplete =
    725 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
    726 #if RF_DEBUG_RECON
    727 			if (rf_prReconSched) {
    728 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
    729 			}
    730 #endif
    731 		}
    732 
    733 
    734 
    735 		reconDesc->state = 4;
    736 
    737 
    738 	case 4:
    739 		mapPtr = raidPtr->reconControl[row]->reconMap;
    740 		if (rf_reconDebug) {
    741 			printf("RECON: all reads completed\n");
    742 		}
    743 		/* at this point all the reads have completed.  We now wait
    744 		 * for any pending writes to complete, and then we're done */
    745 
    746 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
    747 
    748 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
    749 			RF_ASSERT(event);
    750 
    751 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
    752 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
    753 #if RF_DEBUG_RECON
    754 			if (rf_prReconSched) {
    755 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
    756 			}
    757 #endif
    758 		}
    759 		reconDesc->state = 5;
    760 
    761 	case 5:
    762 		/* Success:  mark the dead disk as reconstructed.  We quiesce
    763 		 * the array here to assure no nasty interactions with pending
    764 		 * user accesses when we free up the psstatus structure as
    765 		 * part of FreeReconControl() */
    766 
    767 		reconDesc->state = 6;
    768 
    769 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
    770 		rf_StopUserStats(raidPtr);
    771 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
    772 						 * accs accumulated during
    773 						 * recon */
    774 
    775 		/* fall through to state 6 */
    776 	case 6:
    777 
    778 
    779 
    780 		RF_LOCK_MUTEX(raidPtr->mutex);
    781 		raidPtr->numFailures--;
    782 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
    783 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
    784 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
    785 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    786 		RF_GETTIME(etime);
    787 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
    788 
    789 		/* XXX -- why is state 7 different from state 6 if there is no
    790 		 * return() here? -- XXX Note that I set elpsd above & use it
    791 		 * below, so if you put a return here you'll have to fix this.
    792 		 * (also, FreeReconControl is called below) */
    793 
    794 	case 7:
    795 
    796 		rf_ResumeNewRequests(raidPtr);
    797 
    798 		printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
    799 		       raidPtr->raidid, row, col);
    800 		xor_s = raidPtr->accumXorTimeUs / 1000000;
    801 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
    802 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
    803 		       raidPtr->raidid,
    804 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
    805 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
    806 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
    807 		       raidPtr->raidid,
    808 		       (int) raidPtr->reconControl[row]->starttime.tv_sec,
    809 		       (int) raidPtr->reconControl[row]->starttime.tv_usec,
    810 		       (int) etime.tv_sec, (int) etime.tv_usec);
    811 
    812 #if RF_RECON_STATS > 0
    813 		printf("raid%d: Total head-sep stall count was %d\n",
    814 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
    815 #endif				/* RF_RECON_STATS > 0 */
    816 		rf_FreeReconControl(raidPtr, row);
    817 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    818 		FreeReconDesc(reconDesc);
    819 
    820 	}
    821 
    822 	SignalReconDone(raidPtr);
    823 	return (0);
    824 }
    825 /*****************************************************************************
    826  * do the right thing upon each reconstruction event.
    827  * returns nonzero if and only if there is nothing left unread on the
    828  * indicated disk
    829  *****************************************************************************/
    830 static int
    831 ProcessReconEvent(raidPtr, frow, event)
    832 	RF_Raid_t *raidPtr;
    833 	RF_RowCol_t frow;
    834 	RF_ReconEvent_t *event;
    835 {
    836 	int     retcode = 0, submitblocked;
    837 	RF_ReconBuffer_t *rbuf;
    838 	RF_SectorCount_t sectorsPerRU;
    839 
    840 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
    841 	switch (event->type) {
    842 
    843 		/* a read I/O has completed */
    844 	case RF_REVENT_READDONE:
    845 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
    846 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
    847 		    frow, event->col, rbuf->parityStripeID);
    848 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
    849 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
    850 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
    851 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    852 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
    853 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
    854 		if (!submitblocked)
    855 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
    856 		break;
    857 
    858 		/* a write I/O has completed */
    859 	case RF_REVENT_WRITEDONE:
    860 #if RF_DEBUG_RECON
    861 		if (rf_floatingRbufDebug) {
    862 			rf_CheckFloatingRbufCount(raidPtr, 1);
    863 		}
    864 #endif
    865 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
    866 		rbuf = (RF_ReconBuffer_t *) event->arg;
    867 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    868 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
    869 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
    870 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
    871 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
    872 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
    873 
    874 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
    875 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
    876 			raidPtr->numFullReconBuffers--;
    877 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
    878 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
    879 		} else
    880 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
    881 				rf_FreeReconBuffer(rbuf);
    882 			else
    883 				RF_ASSERT(0);
    884 		break;
    885 
    886 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
    887 					 * cleared */
    888 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
    889 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
    890 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
    891 						 * BUFCLEAR event if we
    892 						 * couldn't submit */
    893 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
    894 		break;
    895 
    896 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
    897 					 * blockage has been cleared */
    898 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
    899 		retcode = TryToRead(raidPtr, frow, event->col);
    900 		break;
    901 
    902 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
    903 					 * reconstruction blockage has been
    904 					 * cleared */
    905 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
    906 		retcode = TryToRead(raidPtr, frow, event->col);
    907 		break;
    908 
    909 		/* a buffer has become ready to write */
    910 	case RF_REVENT_BUFREADY:
    911 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
    912 		retcode = IssueNextWriteRequest(raidPtr, frow);
    913 #if RF_DEBUG_RECON
    914 		if (rf_floatingRbufDebug) {
    915 			rf_CheckFloatingRbufCount(raidPtr, 1);
    916 		}
    917 #endif
    918 		break;
    919 
    920 		/* we need to skip the current RU entirely because it got
    921 		 * recon'd while we were waiting for something else to happen */
    922 	case RF_REVENT_SKIP:
    923 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
    924 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
    925 		break;
    926 
    927 		/* a forced-reconstruction read access has completed.  Just
    928 		 * submit the buffer */
    929 	case RF_REVENT_FORCEDREADDONE:
    930 		rbuf = (RF_ReconBuffer_t *) event->arg;
    931 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    932 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
    933 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
    934 		RF_ASSERT(!submitblocked);
    935 		break;
    936 
    937 	default:
    938 		RF_PANIC();
    939 	}
    940 	rf_FreeReconEventDesc(event);
    941 	return (retcode);
    942 }
    943 /*****************************************************************************
    944  *
    945  * find the next thing that's needed on the indicated disk, and issue
    946  * a read request for it.  We assume that the reconstruction buffer
    947  * associated with this process is free to receive the data.  If
    948  * reconstruction is blocked on the indicated RU, we issue a
    949  * blockage-release request instead of a physical disk read request.
    950  * If the current disk gets too far ahead of the others, we issue a
    951  * head-separation wait request and return.
    952  *
    953  * ctrl->{ru_count, curPSID, diskOffset} and
    954  * rbuf->failedDiskSectorOffset are maintained to point to the unit
    955  * we're currently accessing.  Note that this deviates from the
    956  * standard C idiom of having counters point to the next thing to be
    957  * accessed.  This allows us to easily retry when we're blocked by
    958  * head separation or reconstruction-blockage events.
    959  *
    960  * returns nonzero if and only if there is nothing left unread on the
    961  * indicated disk
    962  *
    963  *****************************************************************************/
    964 static int
    965 IssueNextReadRequest(raidPtr, row, col)
    966 	RF_Raid_t *raidPtr;
    967 	RF_RowCol_t row;
    968 	RF_RowCol_t col;
    969 {
    970 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
    971 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    972 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
    973 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
    974 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
    975 	int     do_new_check = 0, retcode = 0, status;
    976 
    977 	/* if we are currently the slowest disk, mark that we have to do a new
    978 	 * check */
    979 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
    980 		do_new_check = 1;
    981 
    982 	while (1) {
    983 
    984 		ctrl->ru_count++;
    985 		if (ctrl->ru_count < RUsPerPU) {
    986 			ctrl->diskOffset += sectorsPerRU;
    987 			rbuf->failedDiskSectorOffset += sectorsPerRU;
    988 		} else {
    989 			ctrl->curPSID++;
    990 			ctrl->ru_count = 0;
    991 			/* code left over from when head-sep was based on
    992 			 * parity stripe id */
    993 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
    994 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
    995 				return (1);	/* finito! */
    996 			}
    997 			/* find the disk offsets of the start of the parity
    998 			 * stripe on both the current disk and the failed
    999 			 * disk. skip this entire parity stripe if either disk
   1000 			 * does not appear in the indicated PS */
   1001 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
   1002 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
   1003 			if (status) {
   1004 				ctrl->ru_count = RUsPerPU - 1;
   1005 				continue;
   1006 			}
   1007 		}
   1008 		rbuf->which_ru = ctrl->ru_count;
   1009 
   1010 		/* skip this RU if it's already been reconstructed */
   1011 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
   1012 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
   1013 			continue;
   1014 		}
   1015 		break;
   1016 	}
   1017 	ctrl->headSepCounter++;
   1018 	if (do_new_check)
   1019 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
   1020 
   1021 
   1022 	/* at this point, we have definitely decided what to do, and we have
   1023 	 * only to see if we can actually do it now */
   1024 	rbuf->parityStripeID = ctrl->curPSID;
   1025 	rbuf->which_ru = ctrl->ru_count;
   1026 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
   1027 	    sizeof(raidPtr->recon_tracerecs[col]));
   1028 	raidPtr->recon_tracerecs[col].reconacc = 1;
   1029 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1030 	retcode = TryToRead(raidPtr, row, col);
   1031 	return (retcode);
   1032 }
   1033 
   1034 /*
   1035  * tries to issue the next read on the indicated disk.  We may be
   1036  * blocked by (a) the heads being too far apart, or (b) recon on the
   1037  * indicated RU being blocked due to a write by a user thread.  In
   1038  * this case, we issue a head-sep or blockage wait request, which will
   1039  * cause this same routine to be invoked again later when the blockage
   1040  * has cleared.
   1041  */
   1042 
   1043 static int
   1044 TryToRead(raidPtr, row, col)
   1045 	RF_Raid_t *raidPtr;
   1046 	RF_RowCol_t row;
   1047 	RF_RowCol_t col;
   1048 {
   1049 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
   1050 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
   1051 	RF_StripeNum_t psid = ctrl->curPSID;
   1052 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
   1053 	RF_DiskQueueData_t *req;
   1054 	int     status, created = 0;
   1055 	RF_ReconParityStripeStatus_t *pssPtr;
   1056 
   1057 	/* if the current disk is too far ahead of the others, issue a
   1058 	 * head-separation wait and return */
   1059 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
   1060 		return (0);
   1061 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
   1062 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
   1063 
   1064 	/* if recon is blocked on the indicated parity stripe, issue a
   1065 	 * block-wait request and return. this also must mark the indicated RU
   1066 	 * in the stripe as under reconstruction if not blocked. */
   1067 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
   1068 	if (status == RF_PSS_RECON_BLOCKED) {
   1069 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
   1070 		goto out;
   1071 	} else
   1072 		if (status == RF_PSS_FORCED_ON_WRITE) {
   1073 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
   1074 			goto out;
   1075 		}
   1076 	/* make one last check to be sure that the indicated RU didn't get
   1077 	 * reconstructed while we were waiting for something else to happen.
   1078 	 * This is unfortunate in that it causes us to make this check twice
   1079 	 * in the normal case.  Might want to make some attempt to re-work
   1080 	 * this so that we only do this check if we've definitely blocked on
   1081 	 * one of the above checks.  When this condition is detected, we may
   1082 	 * have just created a bogus status entry, which we need to delete. */
   1083 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
   1084 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
   1085 		if (created)
   1086 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
   1087 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
   1088 		goto out;
   1089 	}
   1090 	/* found something to read.  issue the I/O */
   1091 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
   1092 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
   1093 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
   1094 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
   1095 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
   1096 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
   1097 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1098 
   1099 	/* should be ok to use a NULL proc pointer here, all the bufs we use
   1100 	 * should be in kernel space */
   1101 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
   1102 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
   1103 
   1104 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
   1105 
   1106 	ctrl->rbuf->arg = (void *) req;
   1107 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
   1108 	pssPtr->issued[col] = 1;
   1109 
   1110 out:
   1111 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1112 	return (0);
   1113 }
   1114 
   1115 
   1116 /*
   1117  * given a parity stripe ID, we want to find out whether both the
   1118  * current disk and the failed disk exist in that parity stripe.  If
   1119  * not, we want to skip this whole PS.  If so, we want to find the
   1120  * disk offset of the start of the PS on both the current disk and the
   1121  * failed disk.
   1122  *
   1123  * this works by getting a list of disks comprising the indicated
   1124  * parity stripe, and searching the list for the current and failed
   1125  * disks.  Once we've decided they both exist in the parity stripe, we
   1126  * need to decide whether each is data or parity, so that we'll know
   1127  * which mapping function to call to get the corresponding disk
   1128  * offsets.
   1129  *
   1130  * this is kind of unpleasant, but doing it this way allows the
   1131  * reconstruction code to use parity stripe IDs rather than physical
   1132  * disks address to march through the failed disk, which greatly
   1133  * simplifies a lot of code, as well as eliminating the need for a
   1134  * reverse-mapping function.  I also think it will execute faster,
   1135  * since the calls to the mapping module are kept to a minimum.
   1136  *
   1137  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
   1138  * THE STRIPE IN THE CORRECT ORDER */
   1139 
   1140 
   1141 static int
   1142 ComputePSDiskOffsets(
   1143     RF_Raid_t * raidPtr,	/* raid descriptor */
   1144     RF_StripeNum_t psid,	/* parity stripe identifier */
   1145     RF_RowCol_t row,		/* row and column of disk to find the offsets
   1146 				 * for */
   1147     RF_RowCol_t col,
   1148     RF_SectorNum_t * outDiskOffset,
   1149     RF_SectorNum_t * outFailedDiskSectorOffset,
   1150     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
   1151     RF_RowCol_t * spCol,
   1152     RF_SectorNum_t * spOffset)
   1153 {				/* OUT: offset into disk containing spare unit */
   1154 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1155 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
   1156 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
   1157 	RF_RowCol_t *diskids;
   1158 	u_int   i, j, k, i_offset, j_offset;
   1159 	RF_RowCol_t prow, pcol;
   1160 	int     testcol, testrow;
   1161 	RF_RowCol_t stripe;
   1162 	RF_SectorNum_t poffset;
   1163 	char    i_is_parity = 0, j_is_parity = 0;
   1164 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
   1165 
   1166 	/* get a listing of the disks comprising that stripe */
   1167 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
   1168 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
   1169 	RF_ASSERT(diskids);
   1170 
   1171 	/* reject this entire parity stripe if it does not contain the
   1172 	 * indicated disk or it does not contain the failed disk */
   1173 	if (row != stripe)
   1174 		goto skipit;
   1175 	for (i = 0; i < stripeWidth; i++) {
   1176 		if (col == diskids[i])
   1177 			break;
   1178 	}
   1179 	if (i == stripeWidth)
   1180 		goto skipit;
   1181 	for (j = 0; j < stripeWidth; j++) {
   1182 		if (fcol == diskids[j])
   1183 			break;
   1184 	}
   1185 	if (j == stripeWidth) {
   1186 		goto skipit;
   1187 	}
   1188 	/* find out which disk the parity is on */
   1189 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
   1190 
   1191 	/* find out if either the current RU or the failed RU is parity */
   1192 	/* also, if the parity occurs in this stripe prior to the data and/or
   1193 	 * failed col, we need to decrement i and/or j */
   1194 	for (k = 0; k < stripeWidth; k++)
   1195 		if (diskids[k] == pcol)
   1196 			break;
   1197 	RF_ASSERT(k < stripeWidth);
   1198 	i_offset = i;
   1199 	j_offset = j;
   1200 	if (k < i)
   1201 		i_offset--;
   1202 	else
   1203 		if (k == i) {
   1204 			i_is_parity = 1;
   1205 			i_offset = 0;
   1206 		}		/* set offsets to zero to disable multiply
   1207 				 * below */
   1208 	if (k < j)
   1209 		j_offset--;
   1210 	else
   1211 		if (k == j) {
   1212 			j_is_parity = 1;
   1213 			j_offset = 0;
   1214 		}
   1215 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
   1216 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
   1217 	 * tells us how far into the stripe the [current,failed] disk is. */
   1218 
   1219 	/* call the mapping routine to get the offset into the current disk,
   1220 	 * repeat for failed disk. */
   1221 	if (i_is_parity)
   1222 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
   1223 	else
   1224 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
   1225 
   1226 	RF_ASSERT(row == testrow && col == testcol);
   1227 
   1228 	if (j_is_parity)
   1229 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1230 	else
   1231 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1232 	RF_ASSERT(row == testrow && fcol == testcol);
   1233 
   1234 	/* now locate the spare unit for the failed unit */
   1235 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
   1236 		if (j_is_parity)
   1237 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
   1238 		else
   1239 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
   1240 	} else {
   1241 		*spRow = raidPtr->reconControl[row]->spareRow;
   1242 		*spCol = raidPtr->reconControl[row]->spareCol;
   1243 		*spOffset = *outFailedDiskSectorOffset;
   1244 	}
   1245 
   1246 	return (0);
   1247 
   1248 skipit:
   1249 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
   1250 	    psid, row, col);
   1251 	return (1);
   1252 }
   1253 /* this is called when a buffer has become ready to write to the replacement disk */
   1254 static int
   1255 IssueNextWriteRequest(raidPtr, row)
   1256 	RF_Raid_t *raidPtr;
   1257 	RF_RowCol_t row;
   1258 {
   1259 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1260 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1261 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
   1262 	RF_ReconBuffer_t *rbuf;
   1263 	RF_DiskQueueData_t *req;
   1264 
   1265 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
   1266 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
   1267 				 * have gotten the event that sent us here */
   1268 	RF_ASSERT(rbuf->pssPtr);
   1269 
   1270 	rbuf->pssPtr->writeRbuf = rbuf;
   1271 	rbuf->pssPtr = NULL;
   1272 
   1273 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
   1274 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
   1275 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
   1276 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
   1277 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
   1278 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
   1279 
   1280 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
   1281 	 * kernel space */
   1282 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
   1283 	    sectorsPerRU, rbuf->buffer,
   1284 	    rbuf->parityStripeID, rbuf->which_ru,
   1285 	    ReconWriteDoneProc, (void *) rbuf, NULL,
   1286 	    &raidPtr->recon_tracerecs[fcol],
   1287 	    (void *) raidPtr, 0, NULL);
   1288 
   1289 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
   1290 
   1291 	rbuf->arg = (void *) req;
   1292 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
   1293 
   1294 	return (0);
   1295 }
   1296 
   1297 /*
   1298  * this gets called upon the completion of a reconstruction read
   1299  * operation the arg is a pointer to the per-disk reconstruction
   1300  * control structure for the process that just finished a read.
   1301  *
   1302  * called at interrupt context in the kernel, so don't do anything
   1303  * illegal here.
   1304  */
   1305 static int
   1306 ReconReadDoneProc(arg, status)
   1307 	void   *arg;
   1308 	int     status;
   1309 {
   1310 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
   1311 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
   1312 
   1313 	if (status) {
   1314 		/*
   1315 	         * XXX
   1316 	         */
   1317 		printf("Recon read failed!\n");
   1318 		RF_PANIC();
   1319 	}
   1320 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1321 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1322 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
   1323 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1324 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1325 
   1326 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
   1327 	return (0);
   1328 }
   1329 /* this gets called upon the completion of a reconstruction write operation.
   1330  * the arg is a pointer to the rbuf that was just written
   1331  *
   1332  * called at interrupt context in the kernel, so don't do anything illegal here.
   1333  */
   1334 static int
   1335 ReconWriteDoneProc(arg, status)
   1336 	void   *arg;
   1337 	int     status;
   1338 {
   1339 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
   1340 
   1341 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
   1342 	if (status) {
   1343 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
   1344 							 * write failed!\n"); */
   1345 		RF_PANIC();
   1346 	}
   1347 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
   1348 	return (0);
   1349 }
   1350 
   1351 
   1352 /*
   1353  * computes a new minimum head sep, and wakes up anyone who needs to
   1354  * be woken as a result
   1355  */
   1356 static void
   1357 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
   1358 	RF_Raid_t *raidPtr;
   1359 	RF_RowCol_t row;
   1360 	RF_HeadSepLimit_t hsCtr;
   1361 {
   1362 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
   1363 	RF_HeadSepLimit_t new_min;
   1364 	RF_RowCol_t i;
   1365 	RF_CallbackDesc_t *p;
   1366 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
   1367 								 * of a minimum */
   1368 
   1369 
   1370 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1371 
   1372 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
   1373 	for (i = 0; i < raidPtr->numCol; i++)
   1374 		if (i != reconCtrlPtr->fcol) {
   1375 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
   1376 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
   1377 		}
   1378 	/* set the new minimum and wake up anyone who can now run again */
   1379 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
   1380 		reconCtrlPtr->minHeadSepCounter = new_min;
   1381 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
   1382 		while (reconCtrlPtr->headSepCBList) {
   1383 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
   1384 				break;
   1385 			p = reconCtrlPtr->headSepCBList;
   1386 			reconCtrlPtr->headSepCBList = p->next;
   1387 			p->next = NULL;
   1388 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1389 			rf_FreeCallbackDesc(p);
   1390 		}
   1391 
   1392 	}
   1393 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1394 }
   1395 
   1396 /*
   1397  * checks to see that the maximum head separation will not be violated
   1398  * if we initiate a reconstruction I/O on the indicated disk.
   1399  * Limiting the maximum head separation between two disks eliminates
   1400  * the nasty buffer-stall conditions that occur when one disk races
   1401  * ahead of the others and consumes all of the floating recon buffers.
   1402  * This code is complex and unpleasant but it's necessary to avoid
   1403  * some very nasty, albeit fairly rare, reconstruction behavior.
   1404  *
   1405  * returns non-zero if and only if we have to stop working on the
   1406  * indicated disk due to a head-separation delay.
   1407  */
   1408 static int
   1409 CheckHeadSeparation(
   1410     RF_Raid_t * raidPtr,
   1411     RF_PerDiskReconCtrl_t * ctrl,
   1412     RF_RowCol_t row,
   1413     RF_RowCol_t col,
   1414     RF_HeadSepLimit_t hsCtr,
   1415     RF_ReconUnitNum_t which_ru)
   1416 {
   1417 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
   1418 	RF_CallbackDesc_t *cb, *p, *pt;
   1419 	int     retval = 0;
   1420 
   1421 	/* if we're too far ahead of the slowest disk, stop working on this
   1422 	 * disk until the slower ones catch up.  We do this by scheduling a
   1423 	 * wakeup callback for the time when the slowest disk has caught up.
   1424 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
   1425 	 * must have fallen to at most 80% of the max allowable head
   1426 	 * separation before we'll wake up.
   1427 	 *
   1428 	 */
   1429 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1430 	if ((raidPtr->headSepLimit >= 0) &&
   1431 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
   1432 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
   1433 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
   1434 			 reconCtrlPtr->minHeadSepCounter,
   1435 			 raidPtr->headSepLimit);
   1436 		cb = rf_AllocCallbackDesc();
   1437 		/* the minHeadSepCounter value we have to get to before we'll
   1438 		 * wake up.  build in 20% hysteresis. */
   1439 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
   1440 		cb->row = row;
   1441 		cb->col = col;
   1442 		cb->next = NULL;
   1443 
   1444 		/* insert this callback descriptor into the sorted list of
   1445 		 * pending head-sep callbacks */
   1446 		p = reconCtrlPtr->headSepCBList;
   1447 		if (!p)
   1448 			reconCtrlPtr->headSepCBList = cb;
   1449 		else
   1450 			if (cb->callbackArg.v < p->callbackArg.v) {
   1451 				cb->next = reconCtrlPtr->headSepCBList;
   1452 				reconCtrlPtr->headSepCBList = cb;
   1453 			} else {
   1454 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
   1455 				cb->next = p;
   1456 				pt->next = cb;
   1457 			}
   1458 		retval = 1;
   1459 #if RF_RECON_STATS > 0
   1460 		ctrl->reconCtrl->reconDesc->hsStallCount++;
   1461 #endif				/* RF_RECON_STATS > 0 */
   1462 	}
   1463 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1464 
   1465 	return (retval);
   1466 }
   1467 /*
   1468  * checks to see if reconstruction has been either forced or blocked
   1469  * by a user operation.  if forced, we skip this RU entirely.  else if
   1470  * blocked, put ourselves on the wait list.  else return 0.
   1471  *
   1472  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
   1473  */
   1474 static int
   1475 CheckForcedOrBlockedReconstruction(
   1476     RF_Raid_t * raidPtr,
   1477     RF_ReconParityStripeStatus_t * pssPtr,
   1478     RF_PerDiskReconCtrl_t * ctrl,
   1479     RF_RowCol_t row,
   1480     RF_RowCol_t col,
   1481     RF_StripeNum_t psid,
   1482     RF_ReconUnitNum_t which_ru)
   1483 {
   1484 	RF_CallbackDesc_t *cb;
   1485 	int     retcode = 0;
   1486 
   1487 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
   1488 		retcode = RF_PSS_FORCED_ON_WRITE;
   1489 	else
   1490 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
   1491 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
   1492 			cb = rf_AllocCallbackDesc();	/* append ourselves to
   1493 							 * the blockage-wait
   1494 							 * list */
   1495 			cb->row = row;
   1496 			cb->col = col;
   1497 			cb->next = pssPtr->blockWaitList;
   1498 			pssPtr->blockWaitList = cb;
   1499 			retcode = RF_PSS_RECON_BLOCKED;
   1500 		}
   1501 	if (!retcode)
   1502 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
   1503 							 * reconstruction */
   1504 
   1505 	return (retcode);
   1506 }
   1507 /*
   1508  * if reconstruction is currently ongoing for the indicated stripeID,
   1509  * reconstruction is forced to completion and we return non-zero to
   1510  * indicate that the caller must wait.  If not, then reconstruction is
   1511  * blocked on the indicated stripe and the routine returns zero.  If
   1512  * and only if we return non-zero, we'll cause the cbFunc to get
   1513  * invoked with the cbArg when the reconstruction has completed.
   1514  */
   1515 int
   1516 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
   1517 	RF_Raid_t *raidPtr;
   1518 	RF_AccessStripeMap_t *asmap;
   1519 	void    (*cbFunc) (RF_Raid_t *, void *);
   1520 	void   *cbArg;
   1521 {
   1522 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
   1523 						 * we're working on */
   1524 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
   1525 							 * forcing recon on */
   1526 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
   1527 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
   1528 						 * stripe status structure */
   1529 	RF_StripeNum_t psid;	/* parity stripe id */
   1530 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
   1531 						 * offset */
   1532 	RF_RowCol_t *diskids;
   1533 	RF_RowCol_t stripe;
   1534 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
   1535 	RF_RowCol_t fcol, diskno, i;
   1536 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
   1537 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
   1538 	RF_CallbackDesc_t *cb;
   1539 	int     created = 0, nPromoted;
   1540 
   1541 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1542 
   1543 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
   1544 
   1545 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
   1546 
   1547 	/* if recon is not ongoing on this PS, just return */
   1548 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1549 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1550 		return (0);
   1551 	}
   1552 	/* otherwise, we have to wait for reconstruction to complete on this
   1553 	 * RU. */
   1554 	/* In order to avoid waiting for a potentially large number of
   1555 	 * low-priority accesses to complete, we force a normal-priority (i.e.
   1556 	 * not low-priority) reconstruction on this RU. */
   1557 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
   1558 		DDprintf1("Forcing recon on psid %ld\n", psid);
   1559 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
   1560 								 * forced recon */
   1561 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
   1562 							 * that we just set */
   1563 		fcol = raidPtr->reconControl[row]->fcol;
   1564 
   1565 		/* get a listing of the disks comprising the indicated stripe */
   1566 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
   1567 		RF_ASSERT(row == stripe);
   1568 
   1569 		/* For previously issued reads, elevate them to normal
   1570 		 * priority.  If the I/O has already completed, it won't be
   1571 		 * found in the queue, and hence this will be a no-op. For
   1572 		 * unissued reads, allocate buffers and issue new reads.  The
   1573 		 * fact that we've set the FORCED bit means that the regular
   1574 		 * recon procs will not re-issue these reqs */
   1575 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
   1576 			if ((diskno = diskids[i]) != fcol) {
   1577 				if (pssPtr->issued[diskno]) {
   1578 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
   1579 					if (rf_reconDebug && nPromoted)
   1580 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
   1581 				} else {
   1582 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
   1583 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
   1584 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
   1585 													 * location */
   1586 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
   1587 					new_rbuf->which_ru = which_ru;
   1588 					new_rbuf->failedDiskSectorOffset = fd_offset;
   1589 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
   1590 
   1591 					/* use NULL b_proc b/c all addrs
   1592 					 * should be in kernel space */
   1593 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
   1594 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
   1595 					    NULL, (void *) raidPtr, 0, NULL);
   1596 
   1597 					RF_ASSERT(req);	/* XXX -- fix this --
   1598 							 * XXX */
   1599 
   1600 					new_rbuf->arg = req;
   1601 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
   1602 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
   1603 				}
   1604 			}
   1605 		/* if the write is sitting in the disk queue, elevate its
   1606 		 * priority */
   1607 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
   1608 			printf("raid%d: promoted write to row %d col %d\n",
   1609 			       raidPtr->raidid, row, fcol);
   1610 	}
   1611 	/* install a callback descriptor to be invoked when recon completes on
   1612 	 * this parity stripe. */
   1613 	cb = rf_AllocCallbackDesc();
   1614 	/* XXX the following is bogus.. These functions don't really match!!
   1615 	 * GO */
   1616 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
   1617 	cb->callbackArg.p = (void *) cbArg;
   1618 	cb->next = pssPtr->procWaitList;
   1619 	pssPtr->procWaitList = cb;
   1620 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
   1621 		  raidPtr->raidid, psid);
   1622 
   1623 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1624 	return (1);
   1625 }
   1626 /* called upon the completion of a forced reconstruction read.
   1627  * all we do is schedule the FORCEDREADONE event.
   1628  * called at interrupt context in the kernel, so don't do anything illegal here.
   1629  */
   1630 static void
   1631 ForceReconReadDoneProc(arg, status)
   1632 	void   *arg;
   1633 	int     status;
   1634 {
   1635 	RF_ReconBuffer_t *rbuf = arg;
   1636 
   1637 	if (status) {
   1638 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
   1639 							 *  recon read
   1640 							 * failed!\n"); */
   1641 		RF_PANIC();
   1642 	}
   1643 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
   1644 }
   1645 /* releases a block on the reconstruction of the indicated stripe */
   1646 int
   1647 rf_UnblockRecon(raidPtr, asmap)
   1648 	RF_Raid_t *raidPtr;
   1649 	RF_AccessStripeMap_t *asmap;
   1650 {
   1651 	RF_RowCol_t row = asmap->origRow;
   1652 	RF_StripeNum_t stripeID = asmap->stripeID;
   1653 	RF_ReconParityStripeStatus_t *pssPtr;
   1654 	RF_ReconUnitNum_t which_ru;
   1655 	RF_StripeNum_t psid;
   1656 	int     created = 0;
   1657 	RF_CallbackDesc_t *cb;
   1658 
   1659 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1660 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
   1661 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
   1662 
   1663 	/* When recon is forced, the pss desc can get deleted before we get
   1664 	 * back to unblock recon. But, this can _only_ happen when recon is
   1665 	 * forced. It would be good to put some kind of sanity check here, but
   1666 	 * how to decide if recon was just forced or not? */
   1667 	if (!pssPtr) {
   1668 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
   1669 		 * RU %d\n",psid,which_ru); */
   1670 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
   1671 		if (rf_reconDebug || rf_pssDebug)
   1672 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
   1673 #endif
   1674 		goto out;
   1675 	}
   1676 	pssPtr->blockCount--;
   1677 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
   1678 		 raidPtr->raidid, psid, pssPtr->blockCount);
   1679 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
   1680 
   1681 		/* unblock recon before calling CauseReconEvent in case
   1682 		 * CauseReconEvent causes us to try to issue a new read before
   1683 		 * returning here. */
   1684 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
   1685 
   1686 
   1687 		while (pssPtr->blockWaitList) {
   1688 			/* spin through the block-wait list and
   1689 			   release all the waiters */
   1690 			cb = pssPtr->blockWaitList;
   1691 			pssPtr->blockWaitList = cb->next;
   1692 			cb->next = NULL;
   1693 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
   1694 			rf_FreeCallbackDesc(cb);
   1695 		}
   1696 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1697 			/* if no recon was requested while recon was blocked */
   1698 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
   1699 		}
   1700 	}
   1701 out:
   1702 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1703 	return (0);
   1704 }
   1705