rf_reconstruct.c revision 1.27.2.10 1 /* $NetBSD: rf_reconstruct.c,v 1.27.2.10 2002/10/18 02:43:56 nathanw Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.27.2.10 2002/10/18 02:43:56 nathanw Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #if RF_DEBUG_RECON
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* RF_DEBUG_RECON */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* RF_DEBUG_RECON */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 /**************************************************************************
162 *
163 * sets up the parameters that will be used by the reconstruction process
164 * currently there are none, except for those that the layout-specific
165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
166 *
167 * in the kernel, we fire off the recon thread.
168 *
169 **************************************************************************/
170 static void
171 rf_ShutdownReconstruction(ignored)
172 void *ignored;
173 {
174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
176 }
177
178 int
179 rf_ConfigureReconstruction(listp)
180 RF_ShutdownList_t **listp;
181 {
182 int rc;
183
184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
186 if (rf_recond_freelist == NULL)
187 return (ENOMEM);
188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
190 if (rf_rdp_freelist == NULL) {
191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
192 return (ENOMEM);
193 }
194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
195 if (rc) {
196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
197 rf_ShutdownReconstruction(NULL);
198 return (rc);
199 }
200 return (0);
201 }
202
203 static RF_RaidReconDesc_t *
204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
205 RF_Raid_t *raidPtr;
206 RF_RowCol_t row;
207 RF_RowCol_t col;
208 RF_RaidDisk_t *spareDiskPtr;
209 int numDisksDone;
210 RF_RowCol_t srow;
211 RF_RowCol_t scol;
212 {
213
214 RF_RaidReconDesc_t *reconDesc;
215
216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
217
218 reconDesc->raidPtr = raidPtr;
219 reconDesc->row = row;
220 reconDesc->col = col;
221 reconDesc->spareDiskPtr = spareDiskPtr;
222 reconDesc->numDisksDone = numDisksDone;
223 reconDesc->srow = srow;
224 reconDesc->scol = scol;
225 reconDesc->state = 0;
226 reconDesc->next = NULL;
227
228 return (reconDesc);
229 }
230
231 static void
232 FreeReconDesc(reconDesc)
233 RF_RaidReconDesc_t *reconDesc;
234 {
235 #if RF_RECON_STATS > 0
236 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
237 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
238 #endif /* RF_RECON_STATS > 0 */
239 printf("RAIDframe: %lu max exec ticks\n",
240 (long) reconDesc->maxReconExecTicks);
241 #if (RF_RECON_STATS > 0) || defined(KERNEL)
242 printf("\n");
243 #endif /* (RF_RECON_STATS > 0) || KERNEL */
244 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
245 }
246
247
248 /*****************************************************************************
249 *
250 * primary routine to reconstruct a failed disk. This should be called from
251 * within its own thread. It won't return until reconstruction completes,
252 * fails, or is aborted.
253 *****************************************************************************/
254 int
255 rf_ReconstructFailedDisk(raidPtr, row, col)
256 RF_Raid_t *raidPtr;
257 RF_RowCol_t row;
258 RF_RowCol_t col;
259 {
260 RF_LayoutSW_t *lp;
261 int rc;
262
263 lp = raidPtr->Layout.map;
264 if (lp->SubmitReconBuffer) {
265 /*
266 * The current infrastructure only supports reconstructing one
267 * disk at a time for each array.
268 */
269 RF_LOCK_MUTEX(raidPtr->mutex);
270 while (raidPtr->reconInProgress) {
271 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
272 }
273 raidPtr->reconInProgress++;
274 RF_UNLOCK_MUTEX(raidPtr->mutex);
275 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
276 RF_LOCK_MUTEX(raidPtr->mutex);
277 raidPtr->reconInProgress--;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 } else {
280 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
281 lp->parityConfig);
282 rc = EIO;
283 }
284 RF_SIGNAL_COND(raidPtr->waitForReconCond);
285 return (rc);
286 }
287
288 int
289 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
290 RF_Raid_t *raidPtr;
291 RF_RowCol_t row;
292 RF_RowCol_t col;
293 {
294 RF_ComponentLabel_t c_label;
295 RF_RaidDisk_t *spareDiskPtr = NULL;
296 RF_RaidReconDesc_t *reconDesc;
297 RF_RowCol_t srow, scol;
298 int numDisksDone = 0, rc;
299
300 /* first look for a spare drive onto which to reconstruct the data */
301 /* spare disk descriptors are stored in row 0. This may have to
302 * change eventually */
303
304 RF_LOCK_MUTEX(raidPtr->mutex);
305 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
306
307 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
308 if (raidPtr->status[row] != rf_rs_degraded) {
309 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
310 RF_UNLOCK_MUTEX(raidPtr->mutex);
311 return (EINVAL);
312 }
313 srow = row;
314 scol = (-1);
315 } else {
316 srow = 0;
317 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
318 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
319 spareDiskPtr = &raidPtr->Disks[srow][scol];
320 spareDiskPtr->status = rf_ds_used_spare;
321 break;
322 }
323 }
324 if (!spareDiskPtr) {
325 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
326 RF_UNLOCK_MUTEX(raidPtr->mutex);
327 return (ENOSPC);
328 }
329 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
330 }
331 RF_UNLOCK_MUTEX(raidPtr->mutex);
332
333 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
334 raidPtr->reconDesc = (void *) reconDesc;
335 #if RF_RECON_STATS > 0
336 reconDesc->hsStallCount = 0;
337 reconDesc->numReconExecDelays = 0;
338 reconDesc->numReconEventWaits = 0;
339 #endif /* RF_RECON_STATS > 0 */
340 reconDesc->reconExecTimerRunning = 0;
341 reconDesc->reconExecTicks = 0;
342 reconDesc->maxReconExecTicks = 0;
343 rc = rf_ContinueReconstructFailedDisk(reconDesc);
344
345 if (!rc) {
346 /* fix up the component label */
347 /* Don't actually need the read here.. */
348 raidread_component_label(
349 raidPtr->raid_cinfo[srow][scol].ci_dev,
350 raidPtr->raid_cinfo[srow][scol].ci_vp,
351 &c_label);
352
353 raid_init_component_label( raidPtr, &c_label);
354 c_label.row = row;
355 c_label.column = col;
356 c_label.clean = RF_RAID_DIRTY;
357 c_label.status = rf_ds_optimal;
358 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
359
360 /* We've just done a rebuild based on all the other
361 disks, so at this point the parity is known to be
362 clean, even if it wasn't before. */
363
364 /* XXX doesn't hold for RAID 6!!*/
365
366 raidPtr->parity_good = RF_RAID_CLEAN;
367
368 /* XXXX MORE NEEDED HERE */
369
370 raidwrite_component_label(
371 raidPtr->raid_cinfo[srow][scol].ci_dev,
372 raidPtr->raid_cinfo[srow][scol].ci_vp,
373 &c_label);
374
375 }
376 return (rc);
377 }
378
379 /*
380
381 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
382 and you don't get a spare until the next Monday. With this function
383 (and hot-swappable drives) you can now put your new disk containing
384 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
385 rebuild the data "on the spot".
386
387 */
388
389 int
390 rf_ReconstructInPlace(raidPtr, row, col)
391 RF_Raid_t *raidPtr;
392 RF_RowCol_t row;
393 RF_RowCol_t col;
394 {
395 RF_RaidDisk_t *spareDiskPtr = NULL;
396 RF_RaidReconDesc_t *reconDesc;
397 RF_LayoutSW_t *lp;
398 RF_ComponentLabel_t c_label;
399 int numDisksDone = 0, rc;
400 struct partinfo dpart;
401 struct vnode *vp;
402 struct vattr va;
403 struct proc *proc;
404 int retcode;
405 int ac;
406
407 lp = raidPtr->Layout.map;
408 if (lp->SubmitReconBuffer) {
409 /*
410 * The current infrastructure only supports reconstructing one
411 * disk at a time for each array.
412 */
413 RF_LOCK_MUTEX(raidPtr->mutex);
414 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
415 (raidPtr->numFailures > 0)) {
416 /* XXX 0 above shouldn't be constant!!! */
417 /* some component other than this has failed.
418 Let's not make things worse than they already
419 are... */
420 printf("raid%d: Unable to reconstruct to disk at:\n",
421 raidPtr->raidid);
422 printf("raid%d: Row: %d Col: %d Too many failures.\n",
423 raidPtr->raidid, row, col);
424 RF_UNLOCK_MUTEX(raidPtr->mutex);
425 return (EINVAL);
426 }
427 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
428 printf("raid%d: Unable to reconstruct to disk at:\n",
429 raidPtr->raidid);
430 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col);
431
432 RF_UNLOCK_MUTEX(raidPtr->mutex);
433 return (EINVAL);
434 }
435 if (raidPtr->Disks[row][col].status == rf_ds_spared) {
436 RF_UNLOCK_MUTEX(raidPtr->mutex);
437 return (EINVAL);
438 }
439
440 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
441 /* "It's gone..." */
442 raidPtr->numFailures++;
443 raidPtr->Disks[row][col].status = rf_ds_failed;
444 raidPtr->status[row] = rf_rs_degraded;
445 rf_update_component_labels(raidPtr,
446 RF_NORMAL_COMPONENT_UPDATE);
447 }
448
449 while (raidPtr->reconInProgress) {
450 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
451 }
452
453 raidPtr->reconInProgress++;
454
455
456 /* first look for a spare drive onto which to reconstruct
457 the data. spare disk descriptors are stored in row 0.
458 This may have to change eventually */
459
460 /* Actually, we don't care if it's failed or not...
461 On a RAID set with correct parity, this function
462 should be callable on any component without ill affects. */
463 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
464 */
465
466 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
467 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
468
469 raidPtr->reconInProgress--;
470 RF_UNLOCK_MUTEX(raidPtr->mutex);
471 return (EINVAL);
472 }
473
474 proc = raidPtr->engine_thread;
475
476 /* This device may have been opened successfully the
477 first time. Close it before trying to open it again.. */
478
479 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
480 #if 0
481 printf("Closed the open device: %s\n",
482 raidPtr->Disks[row][col].devname);
483 #endif
484 vp = raidPtr->raid_cinfo[row][col].ci_vp;
485 ac = raidPtr->Disks[row][col].auto_configured;
486 rf_close_component(raidPtr, vp, ac);
487 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
488 }
489 /* note that this disk was *not* auto_configured (any longer)*/
490 raidPtr->Disks[row][col].auto_configured = 0;
491
492 #if 0
493 printf("About to (re-)open the device for rebuilding: %s\n",
494 raidPtr->Disks[row][col].devname);
495 #endif
496
497 retcode = raidlookup(raidPtr->Disks[row][col].devname,
498 proc, &vp);
499
500 if (retcode) {
501 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
502 raidPtr->Disks[row][col].devname, retcode);
503
504 /* the component isn't responding properly...
505 must be still dead :-( */
506 raidPtr->reconInProgress--;
507 RF_UNLOCK_MUTEX(raidPtr->mutex);
508 return(retcode);
509
510 } else {
511
512 /* Ok, so we can at least do a lookup...
513 How about actually getting a vp for it? */
514
515 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
516 proc)) != 0) {
517 raidPtr->reconInProgress--;
518 RF_UNLOCK_MUTEX(raidPtr->mutex);
519 return(retcode);
520 }
521 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
522 FREAD, proc->p_ucred, proc);
523 if (retcode) {
524 raidPtr->reconInProgress--;
525 RF_UNLOCK_MUTEX(raidPtr->mutex);
526 return(retcode);
527 }
528 raidPtr->Disks[row][col].blockSize =
529 dpart.disklab->d_secsize;
530
531 raidPtr->Disks[row][col].numBlocks =
532 dpart.part->p_size - rf_protectedSectors;
533
534 raidPtr->raid_cinfo[row][col].ci_vp = vp;
535 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
536
537 raidPtr->Disks[row][col].dev = va.va_rdev;
538
539 /* we allow the user to specify that only a
540 fraction of the disks should be used this is
541 just for debug: it speeds up
542 * the parity scan */
543 raidPtr->Disks[row][col].numBlocks =
544 raidPtr->Disks[row][col].numBlocks *
545 rf_sizePercentage / 100;
546 }
547
548
549
550 spareDiskPtr = &raidPtr->Disks[row][col];
551 spareDiskPtr->status = rf_ds_used_spare;
552
553 printf("raid%d: initiating in-place reconstruction on\n",
554 raidPtr->raidid);
555 printf("raid%d: row %d col %d -> spare at row %d col %d\n",
556 raidPtr->raidid, row, col, row, col);
557
558 RF_UNLOCK_MUTEX(raidPtr->mutex);
559
560 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
561 spareDiskPtr, numDisksDone,
562 row, col);
563 raidPtr->reconDesc = (void *) reconDesc;
564 #if RF_RECON_STATS > 0
565 reconDesc->hsStallCount = 0;
566 reconDesc->numReconExecDelays = 0;
567 reconDesc->numReconEventWaits = 0;
568 #endif /* RF_RECON_STATS > 0 */
569 reconDesc->reconExecTimerRunning = 0;
570 reconDesc->reconExecTicks = 0;
571 reconDesc->maxReconExecTicks = 0;
572 rc = rf_ContinueReconstructFailedDisk(reconDesc);
573
574 RF_LOCK_MUTEX(raidPtr->mutex);
575 raidPtr->reconInProgress--;
576 RF_UNLOCK_MUTEX(raidPtr->mutex);
577
578 } else {
579 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
580 lp->parityConfig);
581 rc = EIO;
582 }
583 RF_LOCK_MUTEX(raidPtr->mutex);
584
585 if (!rc) {
586 /* Need to set these here, as at this point it'll be claiming
587 that the disk is in rf_ds_spared! But we know better :-) */
588
589 raidPtr->Disks[row][col].status = rf_ds_optimal;
590 raidPtr->status[row] = rf_rs_optimal;
591
592 /* fix up the component label */
593 /* Don't actually need the read here.. */
594 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
595 raidPtr->raid_cinfo[row][col].ci_vp,
596 &c_label);
597
598 raid_init_component_label(raidPtr, &c_label);
599
600 c_label.row = row;
601 c_label.column = col;
602
603 /* We've just done a rebuild based on all the other
604 disks, so at this point the parity is known to be
605 clean, even if it wasn't before. */
606
607 /* XXX doesn't hold for RAID 6!!*/
608
609 raidPtr->parity_good = RF_RAID_CLEAN;
610
611 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
612 raidPtr->raid_cinfo[row][col].ci_vp,
613 &c_label);
614
615 }
616 RF_UNLOCK_MUTEX(raidPtr->mutex);
617 RF_SIGNAL_COND(raidPtr->waitForReconCond);
618 return (rc);
619 }
620
621
622 int
623 rf_ContinueReconstructFailedDisk(reconDesc)
624 RF_RaidReconDesc_t *reconDesc;
625 {
626 RF_Raid_t *raidPtr = reconDesc->raidPtr;
627 RF_RowCol_t row = reconDesc->row;
628 RF_RowCol_t col = reconDesc->col;
629 RF_RowCol_t srow = reconDesc->srow;
630 RF_RowCol_t scol = reconDesc->scol;
631 RF_ReconMap_t *mapPtr;
632 RF_ReconCtrl_t *tmp_reconctrl;
633 RF_ReconEvent_t *event;
634 struct timeval etime, elpsd;
635 unsigned long xor_s, xor_resid_us;
636 int retcode, i, ds;
637
638 switch (reconDesc->state) {
639
640
641 case 0:
642
643 raidPtr->accumXorTimeUs = 0;
644
645 /* create one trace record per physical disk */
646 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
647
648 /* quiesce the array prior to starting recon. this is needed
649 * to assure no nasty interactions with pending user writes.
650 * We need to do this before we change the disk or row status. */
651 reconDesc->state = 1;
652
653 Dprintf("RECON: begin request suspend\n");
654 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
655 Dprintf("RECON: end request suspend\n");
656 rf_StartUserStats(raidPtr); /* zero out the stats kept on
657 * user accs */
658
659 /* fall through to state 1 */
660
661 case 1:
662
663 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
664 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol);
665
666 RF_LOCK_MUTEX(raidPtr->mutex);
667
668 /* create the reconstruction control pointer and install it in
669 * the right slot */
670 raidPtr->reconControl[row] = tmp_reconctrl;
671 mapPtr = raidPtr->reconControl[row]->reconMap;
672 raidPtr->status[row] = rf_rs_reconstructing;
673 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
674 raidPtr->Disks[row][col].spareRow = srow;
675 raidPtr->Disks[row][col].spareCol = scol;
676
677 RF_UNLOCK_MUTEX(raidPtr->mutex);
678
679 RF_GETTIME(raidPtr->reconControl[row]->starttime);
680
681 /* now start up the actual reconstruction: issue a read for
682 * each surviving disk */
683
684 reconDesc->numDisksDone = 0;
685 for (i = 0; i < raidPtr->numCol; i++) {
686 if (i != col) {
687 /* find and issue the next I/O on the
688 * indicated disk */
689 if (IssueNextReadRequest(raidPtr, row, i)) {
690 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
691 reconDesc->numDisksDone++;
692 }
693 }
694 }
695
696 case 2:
697 Dprintf("RECON: resume requests\n");
698 rf_ResumeNewRequests(raidPtr);
699
700
701 reconDesc->state = 3;
702
703 case 3:
704
705 /* process reconstruction events until all disks report that
706 * they've completed all work */
707 mapPtr = raidPtr->reconControl[row]->reconMap;
708
709
710
711 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
712
713 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
714 RF_ASSERT(event);
715
716 if (ProcessReconEvent(raidPtr, row, event))
717 reconDesc->numDisksDone++;
718 raidPtr->reconControl[row]->numRUsTotal =
719 mapPtr->totalRUs;
720 raidPtr->reconControl[row]->numRUsComplete =
721 mapPtr->totalRUs -
722 rf_UnitsLeftToReconstruct(mapPtr);
723
724 raidPtr->reconControl[row]->percentComplete =
725 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
726 #if RF_DEBUG_RECON
727 if (rf_prReconSched) {
728 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
729 }
730 #endif
731 }
732
733
734
735 reconDesc->state = 4;
736
737
738 case 4:
739 mapPtr = raidPtr->reconControl[row]->reconMap;
740 if (rf_reconDebug) {
741 printf("RECON: all reads completed\n");
742 }
743 /* at this point all the reads have completed. We now wait
744 * for any pending writes to complete, and then we're done */
745
746 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
747
748 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
749 RF_ASSERT(event);
750
751 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
752 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
753 #if RF_DEBUG_RECON
754 if (rf_prReconSched) {
755 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
756 }
757 #endif
758 }
759 reconDesc->state = 5;
760
761 case 5:
762 /* Success: mark the dead disk as reconstructed. We quiesce
763 * the array here to assure no nasty interactions with pending
764 * user accesses when we free up the psstatus structure as
765 * part of FreeReconControl() */
766
767 reconDesc->state = 6;
768
769 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
770 rf_StopUserStats(raidPtr);
771 rf_PrintUserStats(raidPtr); /* print out the stats on user
772 * accs accumulated during
773 * recon */
774
775 /* fall through to state 6 */
776 case 6:
777
778
779
780 RF_LOCK_MUTEX(raidPtr->mutex);
781 raidPtr->numFailures--;
782 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
783 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
784 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
785 RF_UNLOCK_MUTEX(raidPtr->mutex);
786 RF_GETTIME(etime);
787 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
788
789 /* XXX -- why is state 7 different from state 6 if there is no
790 * return() here? -- XXX Note that I set elpsd above & use it
791 * below, so if you put a return here you'll have to fix this.
792 * (also, FreeReconControl is called below) */
793
794 case 7:
795
796 rf_ResumeNewRequests(raidPtr);
797
798 printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
799 raidPtr->raidid, row, col);
800 xor_s = raidPtr->accumXorTimeUs / 1000000;
801 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
802 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
803 raidPtr->raidid,
804 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
805 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
806 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
807 raidPtr->raidid,
808 (int) raidPtr->reconControl[row]->starttime.tv_sec,
809 (int) raidPtr->reconControl[row]->starttime.tv_usec,
810 (int) etime.tv_sec, (int) etime.tv_usec);
811
812 #if RF_RECON_STATS > 0
813 printf("raid%d: Total head-sep stall count was %d\n",
814 raidPtr->raidid, (int) reconDesc->hsStallCount);
815 #endif /* RF_RECON_STATS > 0 */
816 rf_FreeReconControl(raidPtr, row);
817 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
818 FreeReconDesc(reconDesc);
819
820 }
821
822 SignalReconDone(raidPtr);
823 return (0);
824 }
825 /*****************************************************************************
826 * do the right thing upon each reconstruction event.
827 * returns nonzero if and only if there is nothing left unread on the
828 * indicated disk
829 *****************************************************************************/
830 static int
831 ProcessReconEvent(raidPtr, frow, event)
832 RF_Raid_t *raidPtr;
833 RF_RowCol_t frow;
834 RF_ReconEvent_t *event;
835 {
836 int retcode = 0, submitblocked;
837 RF_ReconBuffer_t *rbuf;
838 RF_SectorCount_t sectorsPerRU;
839
840 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
841 switch (event->type) {
842
843 /* a read I/O has completed */
844 case RF_REVENT_READDONE:
845 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
846 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
847 frow, event->col, rbuf->parityStripeID);
848 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
849 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
850 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
851 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
852 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
853 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
854 if (!submitblocked)
855 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
856 break;
857
858 /* a write I/O has completed */
859 case RF_REVENT_WRITEDONE:
860 #if RF_DEBUG_RECON
861 if (rf_floatingRbufDebug) {
862 rf_CheckFloatingRbufCount(raidPtr, 1);
863 }
864 #endif
865 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
866 rbuf = (RF_ReconBuffer_t *) event->arg;
867 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
868 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
869 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
870 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
871 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
872 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
873
874 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
875 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
876 raidPtr->numFullReconBuffers--;
877 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
878 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
879 } else
880 if (rbuf->type == RF_RBUF_TYPE_FORCED)
881 rf_FreeReconBuffer(rbuf);
882 else
883 RF_ASSERT(0);
884 break;
885
886 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
887 * cleared */
888 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
889 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
890 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
891 * BUFCLEAR event if we
892 * couldn't submit */
893 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
894 break;
895
896 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
897 * blockage has been cleared */
898 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
899 retcode = TryToRead(raidPtr, frow, event->col);
900 break;
901
902 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
903 * reconstruction blockage has been
904 * cleared */
905 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
906 retcode = TryToRead(raidPtr, frow, event->col);
907 break;
908
909 /* a buffer has become ready to write */
910 case RF_REVENT_BUFREADY:
911 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
912 retcode = IssueNextWriteRequest(raidPtr, frow);
913 #if RF_DEBUG_RECON
914 if (rf_floatingRbufDebug) {
915 rf_CheckFloatingRbufCount(raidPtr, 1);
916 }
917 #endif
918 break;
919
920 /* we need to skip the current RU entirely because it got
921 * recon'd while we were waiting for something else to happen */
922 case RF_REVENT_SKIP:
923 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
924 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
925 break;
926
927 /* a forced-reconstruction read access has completed. Just
928 * submit the buffer */
929 case RF_REVENT_FORCEDREADDONE:
930 rbuf = (RF_ReconBuffer_t *) event->arg;
931 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
932 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
933 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
934 RF_ASSERT(!submitblocked);
935 break;
936
937 default:
938 RF_PANIC();
939 }
940 rf_FreeReconEventDesc(event);
941 return (retcode);
942 }
943 /*****************************************************************************
944 *
945 * find the next thing that's needed on the indicated disk, and issue
946 * a read request for it. We assume that the reconstruction buffer
947 * associated with this process is free to receive the data. If
948 * reconstruction is blocked on the indicated RU, we issue a
949 * blockage-release request instead of a physical disk read request.
950 * If the current disk gets too far ahead of the others, we issue a
951 * head-separation wait request and return.
952 *
953 * ctrl->{ru_count, curPSID, diskOffset} and
954 * rbuf->failedDiskSectorOffset are maintained to point to the unit
955 * we're currently accessing. Note that this deviates from the
956 * standard C idiom of having counters point to the next thing to be
957 * accessed. This allows us to easily retry when we're blocked by
958 * head separation or reconstruction-blockage events.
959 *
960 * returns nonzero if and only if there is nothing left unread on the
961 * indicated disk
962 *
963 *****************************************************************************/
964 static int
965 IssueNextReadRequest(raidPtr, row, col)
966 RF_Raid_t *raidPtr;
967 RF_RowCol_t row;
968 RF_RowCol_t col;
969 {
970 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
971 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
972 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
973 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
974 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
975 int do_new_check = 0, retcode = 0, status;
976
977 /* if we are currently the slowest disk, mark that we have to do a new
978 * check */
979 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
980 do_new_check = 1;
981
982 while (1) {
983
984 ctrl->ru_count++;
985 if (ctrl->ru_count < RUsPerPU) {
986 ctrl->diskOffset += sectorsPerRU;
987 rbuf->failedDiskSectorOffset += sectorsPerRU;
988 } else {
989 ctrl->curPSID++;
990 ctrl->ru_count = 0;
991 /* code left over from when head-sep was based on
992 * parity stripe id */
993 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
994 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
995 return (1); /* finito! */
996 }
997 /* find the disk offsets of the start of the parity
998 * stripe on both the current disk and the failed
999 * disk. skip this entire parity stripe if either disk
1000 * does not appear in the indicated PS */
1001 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1002 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1003 if (status) {
1004 ctrl->ru_count = RUsPerPU - 1;
1005 continue;
1006 }
1007 }
1008 rbuf->which_ru = ctrl->ru_count;
1009
1010 /* skip this RU if it's already been reconstructed */
1011 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1012 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1013 continue;
1014 }
1015 break;
1016 }
1017 ctrl->headSepCounter++;
1018 if (do_new_check)
1019 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1020
1021
1022 /* at this point, we have definitely decided what to do, and we have
1023 * only to see if we can actually do it now */
1024 rbuf->parityStripeID = ctrl->curPSID;
1025 rbuf->which_ru = ctrl->ru_count;
1026 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1027 sizeof(raidPtr->recon_tracerecs[col]));
1028 raidPtr->recon_tracerecs[col].reconacc = 1;
1029 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1030 retcode = TryToRead(raidPtr, row, col);
1031 return (retcode);
1032 }
1033
1034 /*
1035 * tries to issue the next read on the indicated disk. We may be
1036 * blocked by (a) the heads being too far apart, or (b) recon on the
1037 * indicated RU being blocked due to a write by a user thread. In
1038 * this case, we issue a head-sep or blockage wait request, which will
1039 * cause this same routine to be invoked again later when the blockage
1040 * has cleared.
1041 */
1042
1043 static int
1044 TryToRead(raidPtr, row, col)
1045 RF_Raid_t *raidPtr;
1046 RF_RowCol_t row;
1047 RF_RowCol_t col;
1048 {
1049 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1050 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1051 RF_StripeNum_t psid = ctrl->curPSID;
1052 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1053 RF_DiskQueueData_t *req;
1054 int status, created = 0;
1055 RF_ReconParityStripeStatus_t *pssPtr;
1056
1057 /* if the current disk is too far ahead of the others, issue a
1058 * head-separation wait and return */
1059 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1060 return (0);
1061 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1062 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1063
1064 /* if recon is blocked on the indicated parity stripe, issue a
1065 * block-wait request and return. this also must mark the indicated RU
1066 * in the stripe as under reconstruction if not blocked. */
1067 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1068 if (status == RF_PSS_RECON_BLOCKED) {
1069 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1070 goto out;
1071 } else
1072 if (status == RF_PSS_FORCED_ON_WRITE) {
1073 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1074 goto out;
1075 }
1076 /* make one last check to be sure that the indicated RU didn't get
1077 * reconstructed while we were waiting for something else to happen.
1078 * This is unfortunate in that it causes us to make this check twice
1079 * in the normal case. Might want to make some attempt to re-work
1080 * this so that we only do this check if we've definitely blocked on
1081 * one of the above checks. When this condition is detected, we may
1082 * have just created a bogus status entry, which we need to delete. */
1083 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1084 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1085 if (created)
1086 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1087 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1088 goto out;
1089 }
1090 /* found something to read. issue the I/O */
1091 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1092 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1093 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1094 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1095 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1096 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1097 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1098
1099 /* should be ok to use a NULL proc pointer here, all the bufs we use
1100 * should be in kernel space */
1101 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1102 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1103
1104 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1105
1106 ctrl->rbuf->arg = (void *) req;
1107 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1108 pssPtr->issued[col] = 1;
1109
1110 out:
1111 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1112 return (0);
1113 }
1114
1115
1116 /*
1117 * given a parity stripe ID, we want to find out whether both the
1118 * current disk and the failed disk exist in that parity stripe. If
1119 * not, we want to skip this whole PS. If so, we want to find the
1120 * disk offset of the start of the PS on both the current disk and the
1121 * failed disk.
1122 *
1123 * this works by getting a list of disks comprising the indicated
1124 * parity stripe, and searching the list for the current and failed
1125 * disks. Once we've decided they both exist in the parity stripe, we
1126 * need to decide whether each is data or parity, so that we'll know
1127 * which mapping function to call to get the corresponding disk
1128 * offsets.
1129 *
1130 * this is kind of unpleasant, but doing it this way allows the
1131 * reconstruction code to use parity stripe IDs rather than physical
1132 * disks address to march through the failed disk, which greatly
1133 * simplifies a lot of code, as well as eliminating the need for a
1134 * reverse-mapping function. I also think it will execute faster,
1135 * since the calls to the mapping module are kept to a minimum.
1136 *
1137 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1138 * THE STRIPE IN THE CORRECT ORDER */
1139
1140
1141 static int
1142 ComputePSDiskOffsets(
1143 RF_Raid_t * raidPtr, /* raid descriptor */
1144 RF_StripeNum_t psid, /* parity stripe identifier */
1145 RF_RowCol_t row, /* row and column of disk to find the offsets
1146 * for */
1147 RF_RowCol_t col,
1148 RF_SectorNum_t * outDiskOffset,
1149 RF_SectorNum_t * outFailedDiskSectorOffset,
1150 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1151 RF_RowCol_t * spCol,
1152 RF_SectorNum_t * spOffset)
1153 { /* OUT: offset into disk containing spare unit */
1154 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1155 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1156 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1157 RF_RowCol_t *diskids;
1158 u_int i, j, k, i_offset, j_offset;
1159 RF_RowCol_t prow, pcol;
1160 int testcol, testrow;
1161 RF_RowCol_t stripe;
1162 RF_SectorNum_t poffset;
1163 char i_is_parity = 0, j_is_parity = 0;
1164 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1165
1166 /* get a listing of the disks comprising that stripe */
1167 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1168 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1169 RF_ASSERT(diskids);
1170
1171 /* reject this entire parity stripe if it does not contain the
1172 * indicated disk or it does not contain the failed disk */
1173 if (row != stripe)
1174 goto skipit;
1175 for (i = 0; i < stripeWidth; i++) {
1176 if (col == diskids[i])
1177 break;
1178 }
1179 if (i == stripeWidth)
1180 goto skipit;
1181 for (j = 0; j < stripeWidth; j++) {
1182 if (fcol == diskids[j])
1183 break;
1184 }
1185 if (j == stripeWidth) {
1186 goto skipit;
1187 }
1188 /* find out which disk the parity is on */
1189 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1190
1191 /* find out if either the current RU or the failed RU is parity */
1192 /* also, if the parity occurs in this stripe prior to the data and/or
1193 * failed col, we need to decrement i and/or j */
1194 for (k = 0; k < stripeWidth; k++)
1195 if (diskids[k] == pcol)
1196 break;
1197 RF_ASSERT(k < stripeWidth);
1198 i_offset = i;
1199 j_offset = j;
1200 if (k < i)
1201 i_offset--;
1202 else
1203 if (k == i) {
1204 i_is_parity = 1;
1205 i_offset = 0;
1206 } /* set offsets to zero to disable multiply
1207 * below */
1208 if (k < j)
1209 j_offset--;
1210 else
1211 if (k == j) {
1212 j_is_parity = 1;
1213 j_offset = 0;
1214 }
1215 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1216 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1217 * tells us how far into the stripe the [current,failed] disk is. */
1218
1219 /* call the mapping routine to get the offset into the current disk,
1220 * repeat for failed disk. */
1221 if (i_is_parity)
1222 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1223 else
1224 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1225
1226 RF_ASSERT(row == testrow && col == testcol);
1227
1228 if (j_is_parity)
1229 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1230 else
1231 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1232 RF_ASSERT(row == testrow && fcol == testcol);
1233
1234 /* now locate the spare unit for the failed unit */
1235 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1236 if (j_is_parity)
1237 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1238 else
1239 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1240 } else {
1241 *spRow = raidPtr->reconControl[row]->spareRow;
1242 *spCol = raidPtr->reconControl[row]->spareCol;
1243 *spOffset = *outFailedDiskSectorOffset;
1244 }
1245
1246 return (0);
1247
1248 skipit:
1249 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1250 psid, row, col);
1251 return (1);
1252 }
1253 /* this is called when a buffer has become ready to write to the replacement disk */
1254 static int
1255 IssueNextWriteRequest(raidPtr, row)
1256 RF_Raid_t *raidPtr;
1257 RF_RowCol_t row;
1258 {
1259 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1260 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1261 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1262 RF_ReconBuffer_t *rbuf;
1263 RF_DiskQueueData_t *req;
1264
1265 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1266 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1267 * have gotten the event that sent us here */
1268 RF_ASSERT(rbuf->pssPtr);
1269
1270 rbuf->pssPtr->writeRbuf = rbuf;
1271 rbuf->pssPtr = NULL;
1272
1273 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1274 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1275 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1276 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1277 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1278 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1279
1280 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1281 * kernel space */
1282 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1283 sectorsPerRU, rbuf->buffer,
1284 rbuf->parityStripeID, rbuf->which_ru,
1285 ReconWriteDoneProc, (void *) rbuf, NULL,
1286 &raidPtr->recon_tracerecs[fcol],
1287 (void *) raidPtr, 0, NULL);
1288
1289 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1290
1291 rbuf->arg = (void *) req;
1292 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1293
1294 return (0);
1295 }
1296
1297 /*
1298 * this gets called upon the completion of a reconstruction read
1299 * operation the arg is a pointer to the per-disk reconstruction
1300 * control structure for the process that just finished a read.
1301 *
1302 * called at interrupt context in the kernel, so don't do anything
1303 * illegal here.
1304 */
1305 static int
1306 ReconReadDoneProc(arg, status)
1307 void *arg;
1308 int status;
1309 {
1310 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1311 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1312
1313 if (status) {
1314 /*
1315 * XXX
1316 */
1317 printf("Recon read failed!\n");
1318 RF_PANIC();
1319 }
1320 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1321 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1322 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1323 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1324 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1325
1326 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1327 return (0);
1328 }
1329 /* this gets called upon the completion of a reconstruction write operation.
1330 * the arg is a pointer to the rbuf that was just written
1331 *
1332 * called at interrupt context in the kernel, so don't do anything illegal here.
1333 */
1334 static int
1335 ReconWriteDoneProc(arg, status)
1336 void *arg;
1337 int status;
1338 {
1339 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1340
1341 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1342 if (status) {
1343 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1344 * write failed!\n"); */
1345 RF_PANIC();
1346 }
1347 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1348 return (0);
1349 }
1350
1351
1352 /*
1353 * computes a new minimum head sep, and wakes up anyone who needs to
1354 * be woken as a result
1355 */
1356 static void
1357 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1358 RF_Raid_t *raidPtr;
1359 RF_RowCol_t row;
1360 RF_HeadSepLimit_t hsCtr;
1361 {
1362 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1363 RF_HeadSepLimit_t new_min;
1364 RF_RowCol_t i;
1365 RF_CallbackDesc_t *p;
1366 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1367 * of a minimum */
1368
1369
1370 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1371
1372 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1373 for (i = 0; i < raidPtr->numCol; i++)
1374 if (i != reconCtrlPtr->fcol) {
1375 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1376 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1377 }
1378 /* set the new minimum and wake up anyone who can now run again */
1379 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1380 reconCtrlPtr->minHeadSepCounter = new_min;
1381 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1382 while (reconCtrlPtr->headSepCBList) {
1383 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1384 break;
1385 p = reconCtrlPtr->headSepCBList;
1386 reconCtrlPtr->headSepCBList = p->next;
1387 p->next = NULL;
1388 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1389 rf_FreeCallbackDesc(p);
1390 }
1391
1392 }
1393 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1394 }
1395
1396 /*
1397 * checks to see that the maximum head separation will not be violated
1398 * if we initiate a reconstruction I/O on the indicated disk.
1399 * Limiting the maximum head separation between two disks eliminates
1400 * the nasty buffer-stall conditions that occur when one disk races
1401 * ahead of the others and consumes all of the floating recon buffers.
1402 * This code is complex and unpleasant but it's necessary to avoid
1403 * some very nasty, albeit fairly rare, reconstruction behavior.
1404 *
1405 * returns non-zero if and only if we have to stop working on the
1406 * indicated disk due to a head-separation delay.
1407 */
1408 static int
1409 CheckHeadSeparation(
1410 RF_Raid_t * raidPtr,
1411 RF_PerDiskReconCtrl_t * ctrl,
1412 RF_RowCol_t row,
1413 RF_RowCol_t col,
1414 RF_HeadSepLimit_t hsCtr,
1415 RF_ReconUnitNum_t which_ru)
1416 {
1417 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1418 RF_CallbackDesc_t *cb, *p, *pt;
1419 int retval = 0;
1420
1421 /* if we're too far ahead of the slowest disk, stop working on this
1422 * disk until the slower ones catch up. We do this by scheduling a
1423 * wakeup callback for the time when the slowest disk has caught up.
1424 * We define "caught up" with 20% hysteresis, i.e. the head separation
1425 * must have fallen to at most 80% of the max allowable head
1426 * separation before we'll wake up.
1427 *
1428 */
1429 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1430 if ((raidPtr->headSepLimit >= 0) &&
1431 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1432 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1433 raidPtr->raidid, row, col, ctrl->headSepCounter,
1434 reconCtrlPtr->minHeadSepCounter,
1435 raidPtr->headSepLimit);
1436 cb = rf_AllocCallbackDesc();
1437 /* the minHeadSepCounter value we have to get to before we'll
1438 * wake up. build in 20% hysteresis. */
1439 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1440 cb->row = row;
1441 cb->col = col;
1442 cb->next = NULL;
1443
1444 /* insert this callback descriptor into the sorted list of
1445 * pending head-sep callbacks */
1446 p = reconCtrlPtr->headSepCBList;
1447 if (!p)
1448 reconCtrlPtr->headSepCBList = cb;
1449 else
1450 if (cb->callbackArg.v < p->callbackArg.v) {
1451 cb->next = reconCtrlPtr->headSepCBList;
1452 reconCtrlPtr->headSepCBList = cb;
1453 } else {
1454 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1455 cb->next = p;
1456 pt->next = cb;
1457 }
1458 retval = 1;
1459 #if RF_RECON_STATS > 0
1460 ctrl->reconCtrl->reconDesc->hsStallCount++;
1461 #endif /* RF_RECON_STATS > 0 */
1462 }
1463 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1464
1465 return (retval);
1466 }
1467 /*
1468 * checks to see if reconstruction has been either forced or blocked
1469 * by a user operation. if forced, we skip this RU entirely. else if
1470 * blocked, put ourselves on the wait list. else return 0.
1471 *
1472 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1473 */
1474 static int
1475 CheckForcedOrBlockedReconstruction(
1476 RF_Raid_t * raidPtr,
1477 RF_ReconParityStripeStatus_t * pssPtr,
1478 RF_PerDiskReconCtrl_t * ctrl,
1479 RF_RowCol_t row,
1480 RF_RowCol_t col,
1481 RF_StripeNum_t psid,
1482 RF_ReconUnitNum_t which_ru)
1483 {
1484 RF_CallbackDesc_t *cb;
1485 int retcode = 0;
1486
1487 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1488 retcode = RF_PSS_FORCED_ON_WRITE;
1489 else
1490 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1491 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1492 cb = rf_AllocCallbackDesc(); /* append ourselves to
1493 * the blockage-wait
1494 * list */
1495 cb->row = row;
1496 cb->col = col;
1497 cb->next = pssPtr->blockWaitList;
1498 pssPtr->blockWaitList = cb;
1499 retcode = RF_PSS_RECON_BLOCKED;
1500 }
1501 if (!retcode)
1502 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1503 * reconstruction */
1504
1505 return (retcode);
1506 }
1507 /*
1508 * if reconstruction is currently ongoing for the indicated stripeID,
1509 * reconstruction is forced to completion and we return non-zero to
1510 * indicate that the caller must wait. If not, then reconstruction is
1511 * blocked on the indicated stripe and the routine returns zero. If
1512 * and only if we return non-zero, we'll cause the cbFunc to get
1513 * invoked with the cbArg when the reconstruction has completed.
1514 */
1515 int
1516 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1517 RF_Raid_t *raidPtr;
1518 RF_AccessStripeMap_t *asmap;
1519 void (*cbFunc) (RF_Raid_t *, void *);
1520 void *cbArg;
1521 {
1522 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1523 * we're working on */
1524 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1525 * forcing recon on */
1526 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1527 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1528 * stripe status structure */
1529 RF_StripeNum_t psid; /* parity stripe id */
1530 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1531 * offset */
1532 RF_RowCol_t *diskids;
1533 RF_RowCol_t stripe;
1534 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1535 RF_RowCol_t fcol, diskno, i;
1536 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1537 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1538 RF_CallbackDesc_t *cb;
1539 int created = 0, nPromoted;
1540
1541 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1542
1543 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1544
1545 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1546
1547 /* if recon is not ongoing on this PS, just return */
1548 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1549 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1550 return (0);
1551 }
1552 /* otherwise, we have to wait for reconstruction to complete on this
1553 * RU. */
1554 /* In order to avoid waiting for a potentially large number of
1555 * low-priority accesses to complete, we force a normal-priority (i.e.
1556 * not low-priority) reconstruction on this RU. */
1557 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1558 DDprintf1("Forcing recon on psid %ld\n", psid);
1559 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1560 * forced recon */
1561 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1562 * that we just set */
1563 fcol = raidPtr->reconControl[row]->fcol;
1564
1565 /* get a listing of the disks comprising the indicated stripe */
1566 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1567 RF_ASSERT(row == stripe);
1568
1569 /* For previously issued reads, elevate them to normal
1570 * priority. If the I/O has already completed, it won't be
1571 * found in the queue, and hence this will be a no-op. For
1572 * unissued reads, allocate buffers and issue new reads. The
1573 * fact that we've set the FORCED bit means that the regular
1574 * recon procs will not re-issue these reqs */
1575 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1576 if ((diskno = diskids[i]) != fcol) {
1577 if (pssPtr->issued[diskno]) {
1578 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1579 if (rf_reconDebug && nPromoted)
1580 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1581 } else {
1582 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1583 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1584 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1585 * location */
1586 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1587 new_rbuf->which_ru = which_ru;
1588 new_rbuf->failedDiskSectorOffset = fd_offset;
1589 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1590
1591 /* use NULL b_proc b/c all addrs
1592 * should be in kernel space */
1593 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1594 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1595 NULL, (void *) raidPtr, 0, NULL);
1596
1597 RF_ASSERT(req); /* XXX -- fix this --
1598 * XXX */
1599
1600 new_rbuf->arg = req;
1601 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1602 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1603 }
1604 }
1605 /* if the write is sitting in the disk queue, elevate its
1606 * priority */
1607 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1608 printf("raid%d: promoted write to row %d col %d\n",
1609 raidPtr->raidid, row, fcol);
1610 }
1611 /* install a callback descriptor to be invoked when recon completes on
1612 * this parity stripe. */
1613 cb = rf_AllocCallbackDesc();
1614 /* XXX the following is bogus.. These functions don't really match!!
1615 * GO */
1616 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1617 cb->callbackArg.p = (void *) cbArg;
1618 cb->next = pssPtr->procWaitList;
1619 pssPtr->procWaitList = cb;
1620 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1621 raidPtr->raidid, psid);
1622
1623 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1624 return (1);
1625 }
1626 /* called upon the completion of a forced reconstruction read.
1627 * all we do is schedule the FORCEDREADONE event.
1628 * called at interrupt context in the kernel, so don't do anything illegal here.
1629 */
1630 static void
1631 ForceReconReadDoneProc(arg, status)
1632 void *arg;
1633 int status;
1634 {
1635 RF_ReconBuffer_t *rbuf = arg;
1636
1637 if (status) {
1638 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1639 * recon read
1640 * failed!\n"); */
1641 RF_PANIC();
1642 }
1643 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1644 }
1645 /* releases a block on the reconstruction of the indicated stripe */
1646 int
1647 rf_UnblockRecon(raidPtr, asmap)
1648 RF_Raid_t *raidPtr;
1649 RF_AccessStripeMap_t *asmap;
1650 {
1651 RF_RowCol_t row = asmap->origRow;
1652 RF_StripeNum_t stripeID = asmap->stripeID;
1653 RF_ReconParityStripeStatus_t *pssPtr;
1654 RF_ReconUnitNum_t which_ru;
1655 RF_StripeNum_t psid;
1656 int created = 0;
1657 RF_CallbackDesc_t *cb;
1658
1659 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1660 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1661 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1662
1663 /* When recon is forced, the pss desc can get deleted before we get
1664 * back to unblock recon. But, this can _only_ happen when recon is
1665 * forced. It would be good to put some kind of sanity check here, but
1666 * how to decide if recon was just forced or not? */
1667 if (!pssPtr) {
1668 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1669 * RU %d\n",psid,which_ru); */
1670 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1671 if (rf_reconDebug || rf_pssDebug)
1672 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1673 #endif
1674 goto out;
1675 }
1676 pssPtr->blockCount--;
1677 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1678 raidPtr->raidid, psid, pssPtr->blockCount);
1679 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1680
1681 /* unblock recon before calling CauseReconEvent in case
1682 * CauseReconEvent causes us to try to issue a new read before
1683 * returning here. */
1684 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1685
1686
1687 while (pssPtr->blockWaitList) {
1688 /* spin through the block-wait list and
1689 release all the waiters */
1690 cb = pssPtr->blockWaitList;
1691 pssPtr->blockWaitList = cb->next;
1692 cb->next = NULL;
1693 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1694 rf_FreeCallbackDesc(cb);
1695 }
1696 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1697 /* if no recon was requested while recon was blocked */
1698 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1699 }
1700 }
1701 out:
1702 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1703 return (0);
1704 }
1705