rf_reconstruct.c revision 1.27.2.2 1 /* $NetBSD: rf_reconstruct.c,v 1.27.2.2 2001/08/24 00:10:39 nathanw Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include "rf_types.h"
36 #include <sys/time.h>
37 #include <sys/buf.h>
38 #include <sys/errno.h>
39
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/proc.h>
44 #include <sys/ioctl.h>
45 #include <sys/fcntl.h>
46 #include <sys/vnode.h>
47
48
49 #include "rf_raid.h"
50 #include "rf_reconutil.h"
51 #include "rf_revent.h"
52 #include "rf_reconbuffer.h"
53 #include "rf_acctrace.h"
54 #include "rf_etimer.h"
55 #include "rf_dag.h"
56 #include "rf_desc.h"
57 #include "rf_general.h"
58 #include "rf_freelist.h"
59 #include "rf_debugprint.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
73 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
74 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
75 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
76
77 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
78 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
79
80 static RF_FreeList_t *rf_recond_freelist;
81 #define RF_MAX_FREE_RECOND 4
82 #define RF_RECOND_INC 1
83
84 static RF_RaidReconDesc_t *
85 AllocRaidReconDesc(RF_Raid_t * raidPtr,
86 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
87 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
88 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
89 static int
90 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
91 RF_ReconEvent_t * event);
92 static int
93 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
94 RF_RowCol_t col);
95 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
96 static int
97 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
98 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
99 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
100 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
101 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
102 static int ReconReadDoneProc(void *arg, int status);
103 static int ReconWriteDoneProc(void *arg, int status);
104 static void
105 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
106 RF_HeadSepLimit_t hsCtr);
107 static int
108 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
109 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
110 RF_ReconUnitNum_t which_ru);
111 static int
112 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
113 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
114 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
115 RF_ReconUnitNum_t which_ru);
116 static void ForceReconReadDoneProc(void *arg, int status);
117
118 static void rf_ShutdownReconstruction(void *);
119
120 struct RF_ReconDoneProc_s {
121 void (*proc) (RF_Raid_t *, void *);
122 void *arg;
123 RF_ReconDoneProc_t *next;
124 };
125
126 static RF_FreeList_t *rf_rdp_freelist;
127 #define RF_MAX_FREE_RDP 4
128 #define RF_RDP_INC 1
129
130 static void
131 SignalReconDone(RF_Raid_t * raidPtr)
132 {
133 RF_ReconDoneProc_t *p;
134
135 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
136 for (p = raidPtr->recon_done_procs; p; p = p->next) {
137 p->proc(raidPtr, p->arg);
138 }
139 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
140 }
141
142 int
143 rf_RegisterReconDoneProc(
144 RF_Raid_t * raidPtr,
145 void (*proc) (RF_Raid_t *, void *),
146 void *arg,
147 RF_ReconDoneProc_t ** handlep)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
152 if (p == NULL)
153 return (ENOMEM);
154 p->proc = proc;
155 p->arg = arg;
156 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
157 p->next = raidPtr->recon_done_procs;
158 raidPtr->recon_done_procs = p;
159 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
160 if (handlep)
161 *handlep = p;
162 return (0);
163 }
164 /**************************************************************************
165 *
166 * sets up the parameters that will be used by the reconstruction process
167 * currently there are none, except for those that the layout-specific
168 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
169 *
170 * in the kernel, we fire off the recon thread.
171 *
172 **************************************************************************/
173 static void
174 rf_ShutdownReconstruction(ignored)
175 void *ignored;
176 {
177 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
178 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
179 }
180
181 int
182 rf_ConfigureReconstruction(listp)
183 RF_ShutdownList_t **listp;
184 {
185 int rc;
186
187 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
188 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
189 if (rf_recond_freelist == NULL)
190 return (ENOMEM);
191 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
192 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
193 if (rf_rdp_freelist == NULL) {
194 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
195 return (ENOMEM);
196 }
197 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
198 if (rc) {
199 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
200 __FILE__, __LINE__, rc);
201 rf_ShutdownReconstruction(NULL);
202 return (rc);
203 }
204 return (0);
205 }
206
207 static RF_RaidReconDesc_t *
208 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
209 RF_Raid_t *raidPtr;
210 RF_RowCol_t row;
211 RF_RowCol_t col;
212 RF_RaidDisk_t *spareDiskPtr;
213 int numDisksDone;
214 RF_RowCol_t srow;
215 RF_RowCol_t scol;
216 {
217
218 RF_RaidReconDesc_t *reconDesc;
219
220 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
221
222 reconDesc->raidPtr = raidPtr;
223 reconDesc->row = row;
224 reconDesc->col = col;
225 reconDesc->spareDiskPtr = spareDiskPtr;
226 reconDesc->numDisksDone = numDisksDone;
227 reconDesc->srow = srow;
228 reconDesc->scol = scol;
229 reconDesc->state = 0;
230 reconDesc->next = NULL;
231
232 return (reconDesc);
233 }
234
235 static void
236 FreeReconDesc(reconDesc)
237 RF_RaidReconDesc_t *reconDesc;
238 {
239 #if RF_RECON_STATS > 0
240 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
241 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
242 #endif /* RF_RECON_STATS > 0 */
243 printf("RAIDframe: %lu max exec ticks\n",
244 (long) reconDesc->maxReconExecTicks);
245 #if (RF_RECON_STATS > 0) || defined(KERNEL)
246 printf("\n");
247 #endif /* (RF_RECON_STATS > 0) || KERNEL */
248 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
249 }
250
251
252 /*****************************************************************************
253 *
254 * primary routine to reconstruct a failed disk. This should be called from
255 * within its own thread. It won't return until reconstruction completes,
256 * fails, or is aborted.
257 *****************************************************************************/
258 int
259 rf_ReconstructFailedDisk(raidPtr, row, col)
260 RF_Raid_t *raidPtr;
261 RF_RowCol_t row;
262 RF_RowCol_t col;
263 {
264 RF_LayoutSW_t *lp;
265 int rc;
266
267 lp = raidPtr->Layout.map;
268 if (lp->SubmitReconBuffer) {
269 /*
270 * The current infrastructure only supports reconstructing one
271 * disk at a time for each array.
272 */
273 RF_LOCK_MUTEX(raidPtr->mutex);
274 while (raidPtr->reconInProgress) {
275 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
276 }
277 raidPtr->reconInProgress++;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
280 RF_LOCK_MUTEX(raidPtr->mutex);
281 raidPtr->reconInProgress--;
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 } else {
284 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
285 lp->parityConfig);
286 rc = EIO;
287 }
288 RF_SIGNAL_COND(raidPtr->waitForReconCond);
289 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
290 * needed at some point... GO */
291 return (rc);
292 }
293
294 int
295 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
296 RF_Raid_t *raidPtr;
297 RF_RowCol_t row;
298 RF_RowCol_t col;
299 {
300 RF_ComponentLabel_t c_label;
301 RF_RaidDisk_t *spareDiskPtr = NULL;
302 RF_RaidReconDesc_t *reconDesc;
303 RF_RowCol_t srow, scol;
304 int numDisksDone = 0, rc;
305
306 /* first look for a spare drive onto which to reconstruct the data */
307 /* spare disk descriptors are stored in row 0. This may have to
308 * change eventually */
309
310 RF_LOCK_MUTEX(raidPtr->mutex);
311 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
312
313 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
314 if (raidPtr->status[row] != rf_rs_degraded) {
315 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317 return (EINVAL);
318 }
319 srow = row;
320 scol = (-1);
321 } else {
322 srow = 0;
323 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
324 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
325 spareDiskPtr = &raidPtr->Disks[srow][scol];
326 spareDiskPtr->status = rf_ds_used_spare;
327 break;
328 }
329 }
330 if (!spareDiskPtr) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (ENOSPC);
334 }
335 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
336 }
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338
339 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
340 raidPtr->reconDesc = (void *) reconDesc;
341 #if RF_RECON_STATS > 0
342 reconDesc->hsStallCount = 0;
343 reconDesc->numReconExecDelays = 0;
344 reconDesc->numReconEventWaits = 0;
345 #endif /* RF_RECON_STATS > 0 */
346 reconDesc->reconExecTimerRunning = 0;
347 reconDesc->reconExecTicks = 0;
348 reconDesc->maxReconExecTicks = 0;
349 rc = rf_ContinueReconstructFailedDisk(reconDesc);
350
351 if (!rc) {
352 /* fix up the component label */
353 /* Don't actually need the read here.. */
354 raidread_component_label(
355 raidPtr->raid_cinfo[srow][scol].ci_dev,
356 raidPtr->raid_cinfo[srow][scol].ci_vp,
357 &c_label);
358
359 raid_init_component_label( raidPtr, &c_label);
360 c_label.row = row;
361 c_label.column = col;
362 c_label.clean = RF_RAID_DIRTY;
363 c_label.status = rf_ds_optimal;
364 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
365
366 /* We've just done a rebuild based on all the other
367 disks, so at this point the parity is known to be
368 clean, even if it wasn't before. */
369
370 /* XXX doesn't hold for RAID 6!!*/
371
372 raidPtr->parity_good = RF_RAID_CLEAN;
373
374 /* XXXX MORE NEEDED HERE */
375
376 raidwrite_component_label(
377 raidPtr->raid_cinfo[srow][scol].ci_dev,
378 raidPtr->raid_cinfo[srow][scol].ci_vp,
379 &c_label);
380
381 }
382 return (rc);
383 }
384
385 /*
386
387 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
388 and you don't get a spare until the next Monday. With this function
389 (and hot-swappable drives) you can now put your new disk containing
390 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
391 rebuild the data "on the spot".
392
393 */
394
395 int
396 rf_ReconstructInPlace(raidPtr, row, col)
397 RF_Raid_t *raidPtr;
398 RF_RowCol_t row;
399 RF_RowCol_t col;
400 {
401 RF_RaidDisk_t *spareDiskPtr = NULL;
402 RF_RaidReconDesc_t *reconDesc;
403 RF_LayoutSW_t *lp;
404 RF_RaidDisk_t *badDisk;
405 RF_ComponentLabel_t c_label;
406 int numDisksDone = 0, rc;
407 struct partinfo dpart;
408 struct vnode *vp;
409 struct vattr va;
410 struct proc *proc;
411 int retcode;
412 int ac;
413
414 lp = raidPtr->Layout.map;
415 if (lp->SubmitReconBuffer) {
416 /*
417 * The current infrastructure only supports reconstructing one
418 * disk at a time for each array.
419 */
420 RF_LOCK_MUTEX(raidPtr->mutex);
421 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
422 (raidPtr->numFailures > 0)) {
423 /* XXX 0 above shouldn't be constant!!! */
424 /* some component other than this has failed.
425 Let's not make things worse than they already
426 are... */
427 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
428 printf(" Row: %d Col: %d Too many failures.\n",
429 row, col);
430 RF_UNLOCK_MUTEX(raidPtr->mutex);
431 return (EINVAL);
432 }
433 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
434 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
435 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
436
437 RF_UNLOCK_MUTEX(raidPtr->mutex);
438 return (EINVAL);
439 }
440
441
442 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
443 /* "It's gone..." */
444 raidPtr->numFailures++;
445 raidPtr->Disks[row][col].status = rf_ds_failed;
446 raidPtr->status[row] = rf_rs_degraded;
447 rf_update_component_labels(raidPtr,
448 RF_NORMAL_COMPONENT_UPDATE);
449 }
450
451 while (raidPtr->reconInProgress) {
452 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
453 }
454
455 raidPtr->reconInProgress++;
456
457
458 /* first look for a spare drive onto which to reconstruct
459 the data. spare disk descriptors are stored in row 0.
460 This may have to change eventually */
461
462 /* Actually, we don't care if it's failed or not...
463 On a RAID set with correct parity, this function
464 should be callable on any component without ill affects. */
465 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
466 */
467
468 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
469 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
470
471 raidPtr->reconInProgress--;
472 RF_UNLOCK_MUTEX(raidPtr->mutex);
473 return (EINVAL);
474 }
475
476 /* XXX need goop here to see if the disk is alive,
477 and, if not, make it so... */
478
479
480
481 badDisk = &raidPtr->Disks[row][col];
482
483 proc = raidPtr->engine_thread;
484
485 /* This device may have been opened successfully the
486 first time. Close it before trying to open it again.. */
487
488 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
489 printf("Closed the open device: %s\n",
490 raidPtr->Disks[row][col].devname);
491 vp = raidPtr->raid_cinfo[row][col].ci_vp;
492 ac = raidPtr->Disks[row][col].auto_configured;
493 rf_close_component(raidPtr, vp, ac);
494 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
495 }
496 /* note that this disk was *not* auto_configured (any longer)*/
497 raidPtr->Disks[row][col].auto_configured = 0;
498
499 printf("About to (re-)open the device for rebuilding: %s\n",
500 raidPtr->Disks[row][col].devname);
501
502 retcode = raidlookup(raidPtr->Disks[row][col].devname,
503 proc, &vp);
504
505 if (retcode) {
506 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
507 raidPtr->Disks[row][col].devname, retcode);
508
509 /* XXX the component isn't responding properly...
510 must be still dead :-( */
511 raidPtr->reconInProgress--;
512 RF_UNLOCK_MUTEX(raidPtr->mutex);
513 return(retcode);
514
515 } else {
516
517 /* Ok, so we can at least do a lookup...
518 How about actually getting a vp for it? */
519
520 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
521 proc)) != 0) {
522 raidPtr->reconInProgress--;
523 RF_UNLOCK_MUTEX(raidPtr->mutex);
524 return(retcode);
525 }
526 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
527 FREAD, proc->p_ucred, proc);
528 if (retcode) {
529 raidPtr->reconInProgress--;
530 RF_UNLOCK_MUTEX(raidPtr->mutex);
531 return(retcode);
532 }
533 raidPtr->Disks[row][col].blockSize =
534 dpart.disklab->d_secsize;
535
536 raidPtr->Disks[row][col].numBlocks =
537 dpart.part->p_size - rf_protectedSectors;
538
539 raidPtr->raid_cinfo[row][col].ci_vp = vp;
540 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
541
542 raidPtr->Disks[row][col].dev = va.va_rdev;
543
544 /* we allow the user to specify that only a
545 fraction of the disks should be used this is
546 just for debug: it speeds up
547 * the parity scan */
548 raidPtr->Disks[row][col].numBlocks =
549 raidPtr->Disks[row][col].numBlocks *
550 rf_sizePercentage / 100;
551 }
552
553
554
555 spareDiskPtr = &raidPtr->Disks[row][col];
556 spareDiskPtr->status = rf_ds_used_spare;
557
558 printf("RECON: initiating in-place reconstruction on\n");
559 printf(" row %d col %d -> spare at row %d col %d\n",
560 row, col, row, col);
561
562 RF_UNLOCK_MUTEX(raidPtr->mutex);
563
564 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
565 spareDiskPtr, numDisksDone,
566 row, col);
567 raidPtr->reconDesc = (void *) reconDesc;
568 #if RF_RECON_STATS > 0
569 reconDesc->hsStallCount = 0;
570 reconDesc->numReconExecDelays = 0;
571 reconDesc->numReconEventWaits = 0;
572 #endif /* RF_RECON_STATS > 0 */
573 reconDesc->reconExecTimerRunning = 0;
574 reconDesc->reconExecTicks = 0;
575 reconDesc->maxReconExecTicks = 0;
576 rc = rf_ContinueReconstructFailedDisk(reconDesc);
577
578 RF_LOCK_MUTEX(raidPtr->mutex);
579 raidPtr->reconInProgress--;
580 RF_UNLOCK_MUTEX(raidPtr->mutex);
581
582 } else {
583 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
584 lp->parityConfig);
585 rc = EIO;
586 }
587 RF_LOCK_MUTEX(raidPtr->mutex);
588
589 if (!rc) {
590 /* Need to set these here, as at this point it'll be claiming
591 that the disk is in rf_ds_spared! But we know better :-) */
592
593 raidPtr->Disks[row][col].status = rf_ds_optimal;
594 raidPtr->status[row] = rf_rs_optimal;
595
596 /* fix up the component label */
597 /* Don't actually need the read here.. */
598 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
599 raidPtr->raid_cinfo[row][col].ci_vp,
600 &c_label);
601
602 raid_init_component_label(raidPtr, &c_label);
603
604 c_label.row = row;
605 c_label.column = col;
606
607 /* We've just done a rebuild based on all the other
608 disks, so at this point the parity is known to be
609 clean, even if it wasn't before. */
610
611 /* XXX doesn't hold for RAID 6!!*/
612
613 raidPtr->parity_good = RF_RAID_CLEAN;
614
615 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
616 raidPtr->raid_cinfo[row][col].ci_vp,
617 &c_label);
618
619 }
620 RF_UNLOCK_MUTEX(raidPtr->mutex);
621 RF_SIGNAL_COND(raidPtr->waitForReconCond);
622 wakeup(&raidPtr->waitForReconCond);
623 return (rc);
624 }
625
626
627 int
628 rf_ContinueReconstructFailedDisk(reconDesc)
629 RF_RaidReconDesc_t *reconDesc;
630 {
631 RF_Raid_t *raidPtr = reconDesc->raidPtr;
632 RF_RowCol_t row = reconDesc->row;
633 RF_RowCol_t col = reconDesc->col;
634 RF_RowCol_t srow = reconDesc->srow;
635 RF_RowCol_t scol = reconDesc->scol;
636 RF_ReconMap_t *mapPtr;
637
638 RF_ReconEvent_t *event;
639 struct timeval etime, elpsd;
640 unsigned long xor_s, xor_resid_us;
641 int retcode, i, ds;
642
643 switch (reconDesc->state) {
644
645
646 case 0:
647
648 raidPtr->accumXorTimeUs = 0;
649
650 /* create one trace record per physical disk */
651 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
652
653 /* quiesce the array prior to starting recon. this is needed
654 * to assure no nasty interactions with pending user writes.
655 * We need to do this before we change the disk or row status. */
656 reconDesc->state = 1;
657
658 Dprintf("RECON: begin request suspend\n");
659 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
660 Dprintf("RECON: end request suspend\n");
661 rf_StartUserStats(raidPtr); /* zero out the stats kept on
662 * user accs */
663
664 /* fall through to state 1 */
665
666 case 1:
667
668 RF_LOCK_MUTEX(raidPtr->mutex);
669
670 /* create the reconstruction control pointer and install it in
671 * the right slot */
672 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
673 mapPtr = raidPtr->reconControl[row]->reconMap;
674 raidPtr->status[row] = rf_rs_reconstructing;
675 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
676 raidPtr->Disks[row][col].spareRow = srow;
677 raidPtr->Disks[row][col].spareCol = scol;
678
679 RF_UNLOCK_MUTEX(raidPtr->mutex);
680
681 RF_GETTIME(raidPtr->reconControl[row]->starttime);
682
683 /* now start up the actual reconstruction: issue a read for
684 * each surviving disk */
685
686 reconDesc->numDisksDone = 0;
687 for (i = 0; i < raidPtr->numCol; i++) {
688 if (i != col) {
689 /* find and issue the next I/O on the
690 * indicated disk */
691 if (IssueNextReadRequest(raidPtr, row, i)) {
692 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
693 reconDesc->numDisksDone++;
694 }
695 }
696 }
697
698 case 2:
699 Dprintf("RECON: resume requests\n");
700 rf_ResumeNewRequests(raidPtr);
701
702
703 reconDesc->state = 3;
704
705 case 3:
706
707 /* process reconstruction events until all disks report that
708 * they've completed all work */
709 mapPtr = raidPtr->reconControl[row]->reconMap;
710
711
712
713 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
714
715 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
716 RF_ASSERT(event);
717
718 if (ProcessReconEvent(raidPtr, row, event))
719 reconDesc->numDisksDone++;
720 raidPtr->reconControl[row]->numRUsTotal =
721 mapPtr->totalRUs;
722 raidPtr->reconControl[row]->numRUsComplete =
723 mapPtr->totalRUs -
724 rf_UnitsLeftToReconstruct(mapPtr);
725
726 raidPtr->reconControl[row]->percentComplete =
727 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
728 if (rf_prReconSched) {
729 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
730 }
731 }
732
733
734
735 reconDesc->state = 4;
736
737
738 case 4:
739 mapPtr = raidPtr->reconControl[row]->reconMap;
740 if (rf_reconDebug) {
741 printf("RECON: all reads completed\n");
742 }
743 /* at this point all the reads have completed. We now wait
744 * for any pending writes to complete, and then we're done */
745
746 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
747
748 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
749 RF_ASSERT(event);
750
751 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
752 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
753 if (rf_prReconSched) {
754 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
755 }
756 }
757 reconDesc->state = 5;
758
759 case 5:
760 /* Success: mark the dead disk as reconstructed. We quiesce
761 * the array here to assure no nasty interactions with pending
762 * user accesses when we free up the psstatus structure as
763 * part of FreeReconControl() */
764
765 reconDesc->state = 6;
766
767 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
768 rf_StopUserStats(raidPtr);
769 rf_PrintUserStats(raidPtr); /* print out the stats on user
770 * accs accumulated during
771 * recon */
772
773 /* fall through to state 6 */
774 case 6:
775
776
777
778 RF_LOCK_MUTEX(raidPtr->mutex);
779 raidPtr->numFailures--;
780 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
781 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
782 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
783 RF_UNLOCK_MUTEX(raidPtr->mutex);
784 RF_GETTIME(etime);
785 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
786
787 /* XXX -- why is state 7 different from state 6 if there is no
788 * return() here? -- XXX Note that I set elpsd above & use it
789 * below, so if you put a return here you'll have to fix this.
790 * (also, FreeReconControl is called below) */
791
792 case 7:
793
794 rf_ResumeNewRequests(raidPtr);
795
796 printf("Reconstruction of disk at row %d col %d completed\n",
797 row, col);
798 xor_s = raidPtr->accumXorTimeUs / 1000000;
799 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
800 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
801 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
802 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
803 (int) raidPtr->reconControl[row]->starttime.tv_sec,
804 (int) raidPtr->reconControl[row]->starttime.tv_usec,
805 (int) etime.tv_sec, (int) etime.tv_usec);
806
807 #if RF_RECON_STATS > 0
808 printf("Total head-sep stall count was %d\n",
809 (int) reconDesc->hsStallCount);
810 #endif /* RF_RECON_STATS > 0 */
811 rf_FreeReconControl(raidPtr, row);
812 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
813 FreeReconDesc(reconDesc);
814
815 }
816
817 SignalReconDone(raidPtr);
818 return (0);
819 }
820 /*****************************************************************************
821 * do the right thing upon each reconstruction event.
822 * returns nonzero if and only if there is nothing left unread on the
823 * indicated disk
824 *****************************************************************************/
825 static int
826 ProcessReconEvent(raidPtr, frow, event)
827 RF_Raid_t *raidPtr;
828 RF_RowCol_t frow;
829 RF_ReconEvent_t *event;
830 {
831 int retcode = 0, submitblocked;
832 RF_ReconBuffer_t *rbuf;
833 RF_SectorCount_t sectorsPerRU;
834
835 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
836 switch (event->type) {
837
838 /* a read I/O has completed */
839 case RF_REVENT_READDONE:
840 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
841 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
842 frow, event->col, rbuf->parityStripeID);
843 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
844 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
845 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
846 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
847 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
848 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
849 if (!submitblocked)
850 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
851 break;
852
853 /* a write I/O has completed */
854 case RF_REVENT_WRITEDONE:
855 if (rf_floatingRbufDebug) {
856 rf_CheckFloatingRbufCount(raidPtr, 1);
857 }
858 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
859 rbuf = (RF_ReconBuffer_t *) event->arg;
860 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
861 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
862 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
863 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
864 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
865 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
866
867 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
868 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
869 raidPtr->numFullReconBuffers--;
870 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
871 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
872 } else
873 if (rbuf->type == RF_RBUF_TYPE_FORCED)
874 rf_FreeReconBuffer(rbuf);
875 else
876 RF_ASSERT(0);
877 break;
878
879 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
880 * cleared */
881 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
882 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
883 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
884 * BUFCLEAR event if we
885 * couldn't submit */
886 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
887 break;
888
889 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
890 * blockage has been cleared */
891 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
892 retcode = TryToRead(raidPtr, frow, event->col);
893 break;
894
895 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
896 * reconstruction blockage has been
897 * cleared */
898 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
899 retcode = TryToRead(raidPtr, frow, event->col);
900 break;
901
902 /* a buffer has become ready to write */
903 case RF_REVENT_BUFREADY:
904 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
905 retcode = IssueNextWriteRequest(raidPtr, frow);
906 if (rf_floatingRbufDebug) {
907 rf_CheckFloatingRbufCount(raidPtr, 1);
908 }
909 break;
910
911 /* we need to skip the current RU entirely because it got
912 * recon'd while we were waiting for something else to happen */
913 case RF_REVENT_SKIP:
914 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
915 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
916 break;
917
918 /* a forced-reconstruction read access has completed. Just
919 * submit the buffer */
920 case RF_REVENT_FORCEDREADDONE:
921 rbuf = (RF_ReconBuffer_t *) event->arg;
922 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
923 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
924 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
925 RF_ASSERT(!submitblocked);
926 break;
927
928 default:
929 RF_PANIC();
930 }
931 rf_FreeReconEventDesc(event);
932 return (retcode);
933 }
934 /*****************************************************************************
935 *
936 * find the next thing that's needed on the indicated disk, and issue
937 * a read request for it. We assume that the reconstruction buffer
938 * associated with this process is free to receive the data. If
939 * reconstruction is blocked on the indicated RU, we issue a
940 * blockage-release request instead of a physical disk read request.
941 * If the current disk gets too far ahead of the others, we issue a
942 * head-separation wait request and return.
943 *
944 * ctrl->{ru_count, curPSID, diskOffset} and
945 * rbuf->failedDiskSectorOffset are maintained to point to the unit
946 * we're currently accessing. Note that this deviates from the
947 * standard C idiom of having counters point to the next thing to be
948 * accessed. This allows us to easily retry when we're blocked by
949 * head separation or reconstruction-blockage events.
950 *
951 * returns nonzero if and only if there is nothing left unread on the
952 * indicated disk
953 *
954 *****************************************************************************/
955 static int
956 IssueNextReadRequest(raidPtr, row, col)
957 RF_Raid_t *raidPtr;
958 RF_RowCol_t row;
959 RF_RowCol_t col;
960 {
961 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
962 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
963 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
964 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
965 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
966 int do_new_check = 0, retcode = 0, status;
967
968 /* if we are currently the slowest disk, mark that we have to do a new
969 * check */
970 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
971 do_new_check = 1;
972
973 while (1) {
974
975 ctrl->ru_count++;
976 if (ctrl->ru_count < RUsPerPU) {
977 ctrl->diskOffset += sectorsPerRU;
978 rbuf->failedDiskSectorOffset += sectorsPerRU;
979 } else {
980 ctrl->curPSID++;
981 ctrl->ru_count = 0;
982 /* code left over from when head-sep was based on
983 * parity stripe id */
984 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
985 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
986 return (1); /* finito! */
987 }
988 /* find the disk offsets of the start of the parity
989 * stripe on both the current disk and the failed
990 * disk. skip this entire parity stripe if either disk
991 * does not appear in the indicated PS */
992 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
993 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
994 if (status) {
995 ctrl->ru_count = RUsPerPU - 1;
996 continue;
997 }
998 }
999 rbuf->which_ru = ctrl->ru_count;
1000
1001 /* skip this RU if it's already been reconstructed */
1002 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1003 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1004 continue;
1005 }
1006 break;
1007 }
1008 ctrl->headSepCounter++;
1009 if (do_new_check)
1010 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1011
1012
1013 /* at this point, we have definitely decided what to do, and we have
1014 * only to see if we can actually do it now */
1015 rbuf->parityStripeID = ctrl->curPSID;
1016 rbuf->which_ru = ctrl->ru_count;
1017 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1018 sizeof(raidPtr->recon_tracerecs[col]));
1019 raidPtr->recon_tracerecs[col].reconacc = 1;
1020 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1021 retcode = TryToRead(raidPtr, row, col);
1022 return (retcode);
1023 }
1024
1025 /*
1026 * tries to issue the next read on the indicated disk. We may be
1027 * blocked by (a) the heads being too far apart, or (b) recon on the
1028 * indicated RU being blocked due to a write by a user thread. In
1029 * this case, we issue a head-sep or blockage wait request, which will
1030 * cause this same routine to be invoked again later when the blockage
1031 * has cleared.
1032 */
1033
1034 static int
1035 TryToRead(raidPtr, row, col)
1036 RF_Raid_t *raidPtr;
1037 RF_RowCol_t row;
1038 RF_RowCol_t col;
1039 {
1040 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1041 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1042 RF_StripeNum_t psid = ctrl->curPSID;
1043 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1044 RF_DiskQueueData_t *req;
1045 int status, created = 0;
1046 RF_ReconParityStripeStatus_t *pssPtr;
1047
1048 /* if the current disk is too far ahead of the others, issue a
1049 * head-separation wait and return */
1050 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1051 return (0);
1052 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1053 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1054
1055 /* if recon is blocked on the indicated parity stripe, issue a
1056 * block-wait request and return. this also must mark the indicated RU
1057 * in the stripe as under reconstruction if not blocked. */
1058 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1059 if (status == RF_PSS_RECON_BLOCKED) {
1060 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1061 goto out;
1062 } else
1063 if (status == RF_PSS_FORCED_ON_WRITE) {
1064 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1065 goto out;
1066 }
1067 /* make one last check to be sure that the indicated RU didn't get
1068 * reconstructed while we were waiting for something else to happen.
1069 * This is unfortunate in that it causes us to make this check twice
1070 * in the normal case. Might want to make some attempt to re-work
1071 * this so that we only do this check if we've definitely blocked on
1072 * one of the above checks. When this condition is detected, we may
1073 * have just created a bogus status entry, which we need to delete. */
1074 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1075 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1076 if (created)
1077 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1078 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1079 goto out;
1080 }
1081 /* found something to read. issue the I/O */
1082 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1083 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1084 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1085 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1086 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1087 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1088 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1089
1090 /* should be ok to use a NULL proc pointer here, all the bufs we use
1091 * should be in kernel space */
1092 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1093 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1094
1095 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1096
1097 ctrl->rbuf->arg = (void *) req;
1098 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1099 pssPtr->issued[col] = 1;
1100
1101 out:
1102 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1103 return (0);
1104 }
1105
1106
1107 /*
1108 * given a parity stripe ID, we want to find out whether both the
1109 * current disk and the failed disk exist in that parity stripe. If
1110 * not, we want to skip this whole PS. If so, we want to find the
1111 * disk offset of the start of the PS on both the current disk and the
1112 * failed disk.
1113 *
1114 * this works by getting a list of disks comprising the indicated
1115 * parity stripe, and searching the list for the current and failed
1116 * disks. Once we've decided they both exist in the parity stripe, we
1117 * need to decide whether each is data or parity, so that we'll know
1118 * which mapping function to call to get the corresponding disk
1119 * offsets.
1120 *
1121 * this is kind of unpleasant, but doing it this way allows the
1122 * reconstruction code to use parity stripe IDs rather than physical
1123 * disks address to march through the failed disk, which greatly
1124 * simplifies a lot of code, as well as eliminating the need for a
1125 * reverse-mapping function. I also think it will execute faster,
1126 * since the calls to the mapping module are kept to a minimum.
1127 *
1128 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1129 * THE STRIPE IN THE CORRECT ORDER */
1130
1131
1132 static int
1133 ComputePSDiskOffsets(
1134 RF_Raid_t * raidPtr, /* raid descriptor */
1135 RF_StripeNum_t psid, /* parity stripe identifier */
1136 RF_RowCol_t row, /* row and column of disk to find the offsets
1137 * for */
1138 RF_RowCol_t col,
1139 RF_SectorNum_t * outDiskOffset,
1140 RF_SectorNum_t * outFailedDiskSectorOffset,
1141 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1142 RF_RowCol_t * spCol,
1143 RF_SectorNum_t * spOffset)
1144 { /* OUT: offset into disk containing spare unit */
1145 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1146 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1147 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1148 RF_RowCol_t *diskids;
1149 u_int i, j, k, i_offset, j_offset;
1150 RF_RowCol_t prow, pcol;
1151 int testcol, testrow;
1152 RF_RowCol_t stripe;
1153 RF_SectorNum_t poffset;
1154 char i_is_parity = 0, j_is_parity = 0;
1155 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1156
1157 /* get a listing of the disks comprising that stripe */
1158 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1159 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1160 RF_ASSERT(diskids);
1161
1162 /* reject this entire parity stripe if it does not contain the
1163 * indicated disk or it does not contain the failed disk */
1164 if (row != stripe)
1165 goto skipit;
1166 for (i = 0; i < stripeWidth; i++) {
1167 if (col == diskids[i])
1168 break;
1169 }
1170 if (i == stripeWidth)
1171 goto skipit;
1172 for (j = 0; j < stripeWidth; j++) {
1173 if (fcol == diskids[j])
1174 break;
1175 }
1176 if (j == stripeWidth) {
1177 goto skipit;
1178 }
1179 /* find out which disk the parity is on */
1180 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1181
1182 /* find out if either the current RU or the failed RU is parity */
1183 /* also, if the parity occurs in this stripe prior to the data and/or
1184 * failed col, we need to decrement i and/or j */
1185 for (k = 0; k < stripeWidth; k++)
1186 if (diskids[k] == pcol)
1187 break;
1188 RF_ASSERT(k < stripeWidth);
1189 i_offset = i;
1190 j_offset = j;
1191 if (k < i)
1192 i_offset--;
1193 else
1194 if (k == i) {
1195 i_is_parity = 1;
1196 i_offset = 0;
1197 } /* set offsets to zero to disable multiply
1198 * below */
1199 if (k < j)
1200 j_offset--;
1201 else
1202 if (k == j) {
1203 j_is_parity = 1;
1204 j_offset = 0;
1205 }
1206 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1207 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1208 * tells us how far into the stripe the [current,failed] disk is. */
1209
1210 /* call the mapping routine to get the offset into the current disk,
1211 * repeat for failed disk. */
1212 if (i_is_parity)
1213 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1214 else
1215 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1216
1217 RF_ASSERT(row == testrow && col == testcol);
1218
1219 if (j_is_parity)
1220 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1221 else
1222 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1223 RF_ASSERT(row == testrow && fcol == testcol);
1224
1225 /* now locate the spare unit for the failed unit */
1226 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1227 if (j_is_parity)
1228 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1229 else
1230 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1231 } else {
1232 *spRow = raidPtr->reconControl[row]->spareRow;
1233 *spCol = raidPtr->reconControl[row]->spareCol;
1234 *spOffset = *outFailedDiskSectorOffset;
1235 }
1236
1237 return (0);
1238
1239 skipit:
1240 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1241 psid, row, col);
1242 return (1);
1243 }
1244 /* this is called when a buffer has become ready to write to the replacement disk */
1245 static int
1246 IssueNextWriteRequest(raidPtr, row)
1247 RF_Raid_t *raidPtr;
1248 RF_RowCol_t row;
1249 {
1250 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1251 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1252 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1253 RF_ReconBuffer_t *rbuf;
1254 RF_DiskQueueData_t *req;
1255
1256 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1257 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1258 * have gotten the event that sent us here */
1259 RF_ASSERT(rbuf->pssPtr);
1260
1261 rbuf->pssPtr->writeRbuf = rbuf;
1262 rbuf->pssPtr = NULL;
1263
1264 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1265 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1266 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1267 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1268 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1269 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1270
1271 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1272 * kernel space */
1273 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1274 sectorsPerRU, rbuf->buffer,
1275 rbuf->parityStripeID, rbuf->which_ru,
1276 ReconWriteDoneProc, (void *) rbuf, NULL,
1277 &raidPtr->recon_tracerecs[fcol],
1278 (void *) raidPtr, 0, NULL);
1279
1280 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1281
1282 rbuf->arg = (void *) req;
1283 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1284
1285 return (0);
1286 }
1287
1288 /*
1289 * this gets called upon the completion of a reconstruction read
1290 * operation the arg is a pointer to the per-disk reconstruction
1291 * control structure for the process that just finished a read.
1292 *
1293 * called at interrupt context in the kernel, so don't do anything
1294 * illegal here.
1295 */
1296 static int
1297 ReconReadDoneProc(arg, status)
1298 void *arg;
1299 int status;
1300 {
1301 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1302 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1303
1304 if (status) {
1305 /*
1306 * XXX
1307 */
1308 printf("Recon read failed!\n");
1309 RF_PANIC();
1310 }
1311 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1312 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1313 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1314 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1315 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1316
1317 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1318 return (0);
1319 }
1320 /* this gets called upon the completion of a reconstruction write operation.
1321 * the arg is a pointer to the rbuf that was just written
1322 *
1323 * called at interrupt context in the kernel, so don't do anything illegal here.
1324 */
1325 static int
1326 ReconWriteDoneProc(arg, status)
1327 void *arg;
1328 int status;
1329 {
1330 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1331
1332 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1333 if (status) {
1334 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1335 * write failed!\n"); */
1336 RF_PANIC();
1337 }
1338 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1339 return (0);
1340 }
1341
1342
1343 /*
1344 * computes a new minimum head sep, and wakes up anyone who needs to
1345 * be woken as a result
1346 */
1347 static void
1348 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1349 RF_Raid_t *raidPtr;
1350 RF_RowCol_t row;
1351 RF_HeadSepLimit_t hsCtr;
1352 {
1353 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1354 RF_HeadSepLimit_t new_min;
1355 RF_RowCol_t i;
1356 RF_CallbackDesc_t *p;
1357 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1358 * of a minimum */
1359
1360
1361 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1362
1363 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1364 for (i = 0; i < raidPtr->numCol; i++)
1365 if (i != reconCtrlPtr->fcol) {
1366 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1367 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1368 }
1369 /* set the new minimum and wake up anyone who can now run again */
1370 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1371 reconCtrlPtr->minHeadSepCounter = new_min;
1372 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1373 while (reconCtrlPtr->headSepCBList) {
1374 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1375 break;
1376 p = reconCtrlPtr->headSepCBList;
1377 reconCtrlPtr->headSepCBList = p->next;
1378 p->next = NULL;
1379 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1380 rf_FreeCallbackDesc(p);
1381 }
1382
1383 }
1384 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1385 }
1386
1387 /*
1388 * checks to see that the maximum head separation will not be violated
1389 * if we initiate a reconstruction I/O on the indicated disk.
1390 * Limiting the maximum head separation between two disks eliminates
1391 * the nasty buffer-stall conditions that occur when one disk races
1392 * ahead of the others and consumes all of the floating recon buffers.
1393 * This code is complex and unpleasant but it's necessary to avoid
1394 * some very nasty, albeit fairly rare, reconstruction behavior.
1395 *
1396 * returns non-zero if and only if we have to stop working on the
1397 * indicated disk due to a head-separation delay.
1398 */
1399 static int
1400 CheckHeadSeparation(
1401 RF_Raid_t * raidPtr,
1402 RF_PerDiskReconCtrl_t * ctrl,
1403 RF_RowCol_t row,
1404 RF_RowCol_t col,
1405 RF_HeadSepLimit_t hsCtr,
1406 RF_ReconUnitNum_t which_ru)
1407 {
1408 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1409 RF_CallbackDesc_t *cb, *p, *pt;
1410 int retval = 0;
1411
1412 /* if we're too far ahead of the slowest disk, stop working on this
1413 * disk until the slower ones catch up. We do this by scheduling a
1414 * wakeup callback for the time when the slowest disk has caught up.
1415 * We define "caught up" with 20% hysteresis, i.e. the head separation
1416 * must have fallen to at most 80% of the max allowable head
1417 * separation before we'll wake up.
1418 *
1419 */
1420 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1421 if ((raidPtr->headSepLimit >= 0) &&
1422 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1423 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1424 raidPtr->raidid, row, col, ctrl->headSepCounter,
1425 reconCtrlPtr->minHeadSepCounter,
1426 raidPtr->headSepLimit);
1427 cb = rf_AllocCallbackDesc();
1428 /* the minHeadSepCounter value we have to get to before we'll
1429 * wake up. build in 20% hysteresis. */
1430 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1431 cb->row = row;
1432 cb->col = col;
1433 cb->next = NULL;
1434
1435 /* insert this callback descriptor into the sorted list of
1436 * pending head-sep callbacks */
1437 p = reconCtrlPtr->headSepCBList;
1438 if (!p)
1439 reconCtrlPtr->headSepCBList = cb;
1440 else
1441 if (cb->callbackArg.v < p->callbackArg.v) {
1442 cb->next = reconCtrlPtr->headSepCBList;
1443 reconCtrlPtr->headSepCBList = cb;
1444 } else {
1445 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1446 cb->next = p;
1447 pt->next = cb;
1448 }
1449 retval = 1;
1450 #if RF_RECON_STATS > 0
1451 ctrl->reconCtrl->reconDesc->hsStallCount++;
1452 #endif /* RF_RECON_STATS > 0 */
1453 }
1454 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1455
1456 return (retval);
1457 }
1458 /*
1459 * checks to see if reconstruction has been either forced or blocked
1460 * by a user operation. if forced, we skip this RU entirely. else if
1461 * blocked, put ourselves on the wait list. else return 0.
1462 *
1463 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1464 */
1465 static int
1466 CheckForcedOrBlockedReconstruction(
1467 RF_Raid_t * raidPtr,
1468 RF_ReconParityStripeStatus_t * pssPtr,
1469 RF_PerDiskReconCtrl_t * ctrl,
1470 RF_RowCol_t row,
1471 RF_RowCol_t col,
1472 RF_StripeNum_t psid,
1473 RF_ReconUnitNum_t which_ru)
1474 {
1475 RF_CallbackDesc_t *cb;
1476 int retcode = 0;
1477
1478 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1479 retcode = RF_PSS_FORCED_ON_WRITE;
1480 else
1481 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1482 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1483 cb = rf_AllocCallbackDesc(); /* append ourselves to
1484 * the blockage-wait
1485 * list */
1486 cb->row = row;
1487 cb->col = col;
1488 cb->next = pssPtr->blockWaitList;
1489 pssPtr->blockWaitList = cb;
1490 retcode = RF_PSS_RECON_BLOCKED;
1491 }
1492 if (!retcode)
1493 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1494 * reconstruction */
1495
1496 return (retcode);
1497 }
1498 /*
1499 * if reconstruction is currently ongoing for the indicated stripeID,
1500 * reconstruction is forced to completion and we return non-zero to
1501 * indicate that the caller must wait. If not, then reconstruction is
1502 * blocked on the indicated stripe and the routine returns zero. If
1503 * and only if we return non-zero, we'll cause the cbFunc to get
1504 * invoked with the cbArg when the reconstruction has completed.
1505 */
1506 int
1507 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1508 RF_Raid_t *raidPtr;
1509 RF_AccessStripeMap_t *asmap;
1510 void (*cbFunc) (RF_Raid_t *, void *);
1511 void *cbArg;
1512 {
1513 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1514 * we're working on */
1515 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1516 * forcing recon on */
1517 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1518 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1519 * stripe status structure */
1520 RF_StripeNum_t psid; /* parity stripe id */
1521 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1522 * offset */
1523 RF_RowCol_t *diskids;
1524 RF_RowCol_t stripe;
1525 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1526 RF_RowCol_t fcol, diskno, i;
1527 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1528 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1529 RF_CallbackDesc_t *cb;
1530 int created = 0, nPromoted;
1531
1532 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1533
1534 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1535
1536 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1537
1538 /* if recon is not ongoing on this PS, just return */
1539 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1540 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1541 return (0);
1542 }
1543 /* otherwise, we have to wait for reconstruction to complete on this
1544 * RU. */
1545 /* In order to avoid waiting for a potentially large number of
1546 * low-priority accesses to complete, we force a normal-priority (i.e.
1547 * not low-priority) reconstruction on this RU. */
1548 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1549 DDprintf1("Forcing recon on psid %ld\n", psid);
1550 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1551 * forced recon */
1552 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1553 * that we just set */
1554 fcol = raidPtr->reconControl[row]->fcol;
1555
1556 /* get a listing of the disks comprising the indicated stripe */
1557 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1558 RF_ASSERT(row == stripe);
1559
1560 /* For previously issued reads, elevate them to normal
1561 * priority. If the I/O has already completed, it won't be
1562 * found in the queue, and hence this will be a no-op. For
1563 * unissued reads, allocate buffers and issue new reads. The
1564 * fact that we've set the FORCED bit means that the regular
1565 * recon procs will not re-issue these reqs */
1566 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1567 if ((diskno = diskids[i]) != fcol) {
1568 if (pssPtr->issued[diskno]) {
1569 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1570 if (rf_reconDebug && nPromoted)
1571 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1572 } else {
1573 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1574 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1575 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1576 * location */
1577 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1578 new_rbuf->which_ru = which_ru;
1579 new_rbuf->failedDiskSectorOffset = fd_offset;
1580 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1581
1582 /* use NULL b_proc b/c all addrs
1583 * should be in kernel space */
1584 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1585 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1586 NULL, (void *) raidPtr, 0, NULL);
1587
1588 RF_ASSERT(req); /* XXX -- fix this --
1589 * XXX */
1590
1591 new_rbuf->arg = req;
1592 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1593 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1594 }
1595 }
1596 /* if the write is sitting in the disk queue, elevate its
1597 * priority */
1598 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1599 printf("raid%d: promoted write to row %d col %d\n",
1600 raidPtr->raidid, row, fcol);
1601 }
1602 /* install a callback descriptor to be invoked when recon completes on
1603 * this parity stripe. */
1604 cb = rf_AllocCallbackDesc();
1605 /* XXX the following is bogus.. These functions don't really match!!
1606 * GO */
1607 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1608 cb->callbackArg.p = (void *) cbArg;
1609 cb->next = pssPtr->procWaitList;
1610 pssPtr->procWaitList = cb;
1611 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1612 raidPtr->raidid, psid);
1613
1614 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1615 return (1);
1616 }
1617 /* called upon the completion of a forced reconstruction read.
1618 * all we do is schedule the FORCEDREADONE event.
1619 * called at interrupt context in the kernel, so don't do anything illegal here.
1620 */
1621 static void
1622 ForceReconReadDoneProc(arg, status)
1623 void *arg;
1624 int status;
1625 {
1626 RF_ReconBuffer_t *rbuf = arg;
1627
1628 if (status) {
1629 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1630 * recon read
1631 * failed!\n"); */
1632 RF_PANIC();
1633 }
1634 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1635 }
1636 /* releases a block on the reconstruction of the indicated stripe */
1637 int
1638 rf_UnblockRecon(raidPtr, asmap)
1639 RF_Raid_t *raidPtr;
1640 RF_AccessStripeMap_t *asmap;
1641 {
1642 RF_RowCol_t row = asmap->origRow;
1643 RF_StripeNum_t stripeID = asmap->stripeID;
1644 RF_ReconParityStripeStatus_t *pssPtr;
1645 RF_ReconUnitNum_t which_ru;
1646 RF_StripeNum_t psid;
1647 int created = 0;
1648 RF_CallbackDesc_t *cb;
1649
1650 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1651 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1652 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1653
1654 /* When recon is forced, the pss desc can get deleted before we get
1655 * back to unblock recon. But, this can _only_ happen when recon is
1656 * forced. It would be good to put some kind of sanity check here, but
1657 * how to decide if recon was just forced or not? */
1658 if (!pssPtr) {
1659 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1660 * RU %d\n",psid,which_ru); */
1661 if (rf_reconDebug || rf_pssDebug)
1662 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1663 goto out;
1664 }
1665 pssPtr->blockCount--;
1666 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1667 raidPtr->raidid, psid, pssPtr->blockCount);
1668 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1669
1670 /* unblock recon before calling CauseReconEvent in case
1671 * CauseReconEvent causes us to try to issue a new read before
1672 * returning here. */
1673 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1674
1675
1676 while (pssPtr->blockWaitList) {
1677 /* spin through the block-wait list and
1678 release all the waiters */
1679 cb = pssPtr->blockWaitList;
1680 pssPtr->blockWaitList = cb->next;
1681 cb->next = NULL;
1682 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1683 rf_FreeCallbackDesc(cb);
1684 }
1685 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1686 /* if no recon was requested while recon was blocked */
1687 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1688 }
1689 }
1690 out:
1691 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1692 return (0);
1693 }
1694