rf_reconstruct.c revision 1.28.2.2 1 /* $NetBSD: rf_reconstruct.c,v 1.28.2.2 2002/01/10 19:57:58 thorpej Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.28.2.2 2002/01/10 19:57:58 thorpej Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_general.h"
59 #include "rf_freelist.h"
60 #include "rf_debugprint.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #ifdef DEBUG
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* DEBUG */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* DEBUG */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 int
162 rf_RegisterReconDoneProc(
163 RF_Raid_t * raidPtr,
164 void (*proc) (RF_Raid_t *, void *),
165 void *arg,
166 RF_ReconDoneProc_t ** handlep)
167 {
168 RF_ReconDoneProc_t *p;
169
170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 if (p == NULL)
172 return (ENOMEM);
173 p->proc = proc;
174 p->arg = arg;
175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 p->next = raidPtr->recon_done_procs;
177 raidPtr->recon_done_procs = p;
178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 if (handlep)
180 *handlep = p;
181 return (0);
182 }
183 /**************************************************************************
184 *
185 * sets up the parameters that will be used by the reconstruction process
186 * currently there are none, except for those that the layout-specific
187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188 *
189 * in the kernel, we fire off the recon thread.
190 *
191 **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 void *ignored;
195 {
196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199
200 int
201 rf_ConfigureReconstruction(listp)
202 RF_ShutdownList_t **listp;
203 {
204 int rc;
205
206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 if (rf_recond_freelist == NULL)
209 return (ENOMEM);
210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 if (rf_rdp_freelist == NULL) {
213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 return (ENOMEM);
215 }
216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 if (rc) {
218 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
219 __FILE__, __LINE__, rc);
220 rf_ShutdownReconstruction(NULL);
221 return (rc);
222 }
223 return (0);
224 }
225
226 static RF_RaidReconDesc_t *
227 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
228 RF_Raid_t *raidPtr;
229 RF_RowCol_t row;
230 RF_RowCol_t col;
231 RF_RaidDisk_t *spareDiskPtr;
232 int numDisksDone;
233 RF_RowCol_t srow;
234 RF_RowCol_t scol;
235 {
236
237 RF_RaidReconDesc_t *reconDesc;
238
239 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
240
241 reconDesc->raidPtr = raidPtr;
242 reconDesc->row = row;
243 reconDesc->col = col;
244 reconDesc->spareDiskPtr = spareDiskPtr;
245 reconDesc->numDisksDone = numDisksDone;
246 reconDesc->srow = srow;
247 reconDesc->scol = scol;
248 reconDesc->state = 0;
249 reconDesc->next = NULL;
250
251 return (reconDesc);
252 }
253
254 static void
255 FreeReconDesc(reconDesc)
256 RF_RaidReconDesc_t *reconDesc;
257 {
258 #if RF_RECON_STATS > 0
259 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
260 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
261 #endif /* RF_RECON_STATS > 0 */
262 printf("RAIDframe: %lu max exec ticks\n",
263 (long) reconDesc->maxReconExecTicks);
264 #if (RF_RECON_STATS > 0) || defined(KERNEL)
265 printf("\n");
266 #endif /* (RF_RECON_STATS > 0) || KERNEL */
267 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
268 }
269
270
271 /*****************************************************************************
272 *
273 * primary routine to reconstruct a failed disk. This should be called from
274 * within its own thread. It won't return until reconstruction completes,
275 * fails, or is aborted.
276 *****************************************************************************/
277 int
278 rf_ReconstructFailedDisk(raidPtr, row, col)
279 RF_Raid_t *raidPtr;
280 RF_RowCol_t row;
281 RF_RowCol_t col;
282 {
283 RF_LayoutSW_t *lp;
284 int rc;
285
286 lp = raidPtr->Layout.map;
287 if (lp->SubmitReconBuffer) {
288 /*
289 * The current infrastructure only supports reconstructing one
290 * disk at a time for each array.
291 */
292 RF_LOCK_MUTEX(raidPtr->mutex);
293 while (raidPtr->reconInProgress) {
294 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
295 }
296 raidPtr->reconInProgress++;
297 RF_UNLOCK_MUTEX(raidPtr->mutex);
298 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
299 RF_LOCK_MUTEX(raidPtr->mutex);
300 raidPtr->reconInProgress--;
301 RF_UNLOCK_MUTEX(raidPtr->mutex);
302 } else {
303 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
304 lp->parityConfig);
305 rc = EIO;
306 }
307 RF_SIGNAL_COND(raidPtr->waitForReconCond);
308 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
309 * needed at some point... GO */
310 return (rc);
311 }
312
313 int
314 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
315 RF_Raid_t *raidPtr;
316 RF_RowCol_t row;
317 RF_RowCol_t col;
318 {
319 RF_ComponentLabel_t c_label;
320 RF_RaidDisk_t *spareDiskPtr = NULL;
321 RF_RaidReconDesc_t *reconDesc;
322 RF_RowCol_t srow, scol;
323 int numDisksDone = 0, rc;
324
325 /* first look for a spare drive onto which to reconstruct the data */
326 /* spare disk descriptors are stored in row 0. This may have to
327 * change eventually */
328
329 RF_LOCK_MUTEX(raidPtr->mutex);
330 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
331
332 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
333 if (raidPtr->status[row] != rf_rs_degraded) {
334 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
335 RF_UNLOCK_MUTEX(raidPtr->mutex);
336 return (EINVAL);
337 }
338 srow = row;
339 scol = (-1);
340 } else {
341 srow = 0;
342 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
343 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
344 spareDiskPtr = &raidPtr->Disks[srow][scol];
345 spareDiskPtr->status = rf_ds_used_spare;
346 break;
347 }
348 }
349 if (!spareDiskPtr) {
350 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
351 RF_UNLOCK_MUTEX(raidPtr->mutex);
352 return (ENOSPC);
353 }
354 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
355 }
356 RF_UNLOCK_MUTEX(raidPtr->mutex);
357
358 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
359 raidPtr->reconDesc = (void *) reconDesc;
360 #if RF_RECON_STATS > 0
361 reconDesc->hsStallCount = 0;
362 reconDesc->numReconExecDelays = 0;
363 reconDesc->numReconEventWaits = 0;
364 #endif /* RF_RECON_STATS > 0 */
365 reconDesc->reconExecTimerRunning = 0;
366 reconDesc->reconExecTicks = 0;
367 reconDesc->maxReconExecTicks = 0;
368 rc = rf_ContinueReconstructFailedDisk(reconDesc);
369
370 if (!rc) {
371 /* fix up the component label */
372 /* Don't actually need the read here.. */
373 raidread_component_label(
374 raidPtr->raid_cinfo[srow][scol].ci_dev,
375 raidPtr->raid_cinfo[srow][scol].ci_vp,
376 &c_label);
377
378 raid_init_component_label( raidPtr, &c_label);
379 c_label.row = row;
380 c_label.column = col;
381 c_label.clean = RF_RAID_DIRTY;
382 c_label.status = rf_ds_optimal;
383 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
384
385 /* We've just done a rebuild based on all the other
386 disks, so at this point the parity is known to be
387 clean, even if it wasn't before. */
388
389 /* XXX doesn't hold for RAID 6!!*/
390
391 raidPtr->parity_good = RF_RAID_CLEAN;
392
393 /* XXXX MORE NEEDED HERE */
394
395 raidwrite_component_label(
396 raidPtr->raid_cinfo[srow][scol].ci_dev,
397 raidPtr->raid_cinfo[srow][scol].ci_vp,
398 &c_label);
399
400 }
401 return (rc);
402 }
403
404 /*
405
406 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
407 and you don't get a spare until the next Monday. With this function
408 (and hot-swappable drives) you can now put your new disk containing
409 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
410 rebuild the data "on the spot".
411
412 */
413
414 int
415 rf_ReconstructInPlace(raidPtr, row, col)
416 RF_Raid_t *raidPtr;
417 RF_RowCol_t row;
418 RF_RowCol_t col;
419 {
420 RF_RaidDisk_t *spareDiskPtr = NULL;
421 RF_RaidReconDesc_t *reconDesc;
422 RF_LayoutSW_t *lp;
423 RF_RaidDisk_t *badDisk;
424 RF_ComponentLabel_t c_label;
425 int numDisksDone = 0, rc;
426 struct partinfo dpart;
427 struct vnode *vp;
428 struct vattr va;
429 struct proc *proc;
430 int retcode;
431 int ac;
432
433 lp = raidPtr->Layout.map;
434 if (lp->SubmitReconBuffer) {
435 /*
436 * The current infrastructure only supports reconstructing one
437 * disk at a time for each array.
438 */
439 RF_LOCK_MUTEX(raidPtr->mutex);
440 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
441 (raidPtr->numFailures > 0)) {
442 /* XXX 0 above shouldn't be constant!!! */
443 /* some component other than this has failed.
444 Let's not make things worse than they already
445 are... */
446 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
447 printf(" Row: %d Col: %d Too many failures.\n",
448 row, col);
449 RF_UNLOCK_MUTEX(raidPtr->mutex);
450 return (EINVAL);
451 }
452 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
453 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
454 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
455
456 RF_UNLOCK_MUTEX(raidPtr->mutex);
457 return (EINVAL);
458 }
459
460
461 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
462 /* "It's gone..." */
463 raidPtr->numFailures++;
464 raidPtr->Disks[row][col].status = rf_ds_failed;
465 raidPtr->status[row] = rf_rs_degraded;
466 rf_update_component_labels(raidPtr,
467 RF_NORMAL_COMPONENT_UPDATE);
468 }
469
470 while (raidPtr->reconInProgress) {
471 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
472 }
473
474 raidPtr->reconInProgress++;
475
476
477 /* first look for a spare drive onto which to reconstruct
478 the data. spare disk descriptors are stored in row 0.
479 This may have to change eventually */
480
481 /* Actually, we don't care if it's failed or not...
482 On a RAID set with correct parity, this function
483 should be callable on any component without ill affects. */
484 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
485 */
486
487 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
488 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
489
490 raidPtr->reconInProgress--;
491 RF_UNLOCK_MUTEX(raidPtr->mutex);
492 return (EINVAL);
493 }
494
495 /* XXX need goop here to see if the disk is alive,
496 and, if not, make it so... */
497
498
499
500 badDisk = &raidPtr->Disks[row][col];
501
502 proc = raidPtr->engine_thread;
503
504 /* This device may have been opened successfully the
505 first time. Close it before trying to open it again.. */
506
507 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
508 printf("Closed the open device: %s\n",
509 raidPtr->Disks[row][col].devname);
510 vp = raidPtr->raid_cinfo[row][col].ci_vp;
511 ac = raidPtr->Disks[row][col].auto_configured;
512 rf_close_component(raidPtr, vp, ac);
513 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
514 }
515 /* note that this disk was *not* auto_configured (any longer)*/
516 raidPtr->Disks[row][col].auto_configured = 0;
517
518 printf("About to (re-)open the device for rebuilding: %s\n",
519 raidPtr->Disks[row][col].devname);
520
521 retcode = raidlookup(raidPtr->Disks[row][col].devname,
522 proc, &vp);
523
524 if (retcode) {
525 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
526 raidPtr->Disks[row][col].devname, retcode);
527
528 /* XXX the component isn't responding properly...
529 must be still dead :-( */
530 raidPtr->reconInProgress--;
531 RF_UNLOCK_MUTEX(raidPtr->mutex);
532 return(retcode);
533
534 } else {
535
536 /* Ok, so we can at least do a lookup...
537 How about actually getting a vp for it? */
538
539 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
540 proc)) != 0) {
541 raidPtr->reconInProgress--;
542 RF_UNLOCK_MUTEX(raidPtr->mutex);
543 return(retcode);
544 }
545 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
546 FREAD, proc->p_ucred, proc);
547 if (retcode) {
548 raidPtr->reconInProgress--;
549 RF_UNLOCK_MUTEX(raidPtr->mutex);
550 return(retcode);
551 }
552 raidPtr->Disks[row][col].blockSize =
553 dpart.disklab->d_secsize;
554
555 raidPtr->Disks[row][col].numBlocks =
556 dpart.part->p_size - rf_protectedSectors;
557
558 raidPtr->raid_cinfo[row][col].ci_vp = vp;
559 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
560
561 raidPtr->Disks[row][col].dev = va.va_rdev;
562
563 /* we allow the user to specify that only a
564 fraction of the disks should be used this is
565 just for debug: it speeds up
566 * the parity scan */
567 raidPtr->Disks[row][col].numBlocks =
568 raidPtr->Disks[row][col].numBlocks *
569 rf_sizePercentage / 100;
570 }
571
572
573
574 spareDiskPtr = &raidPtr->Disks[row][col];
575 spareDiskPtr->status = rf_ds_used_spare;
576
577 printf("RECON: initiating in-place reconstruction on\n");
578 printf(" row %d col %d -> spare at row %d col %d\n",
579 row, col, row, col);
580
581 RF_UNLOCK_MUTEX(raidPtr->mutex);
582
583 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
584 spareDiskPtr, numDisksDone,
585 row, col);
586 raidPtr->reconDesc = (void *) reconDesc;
587 #if RF_RECON_STATS > 0
588 reconDesc->hsStallCount = 0;
589 reconDesc->numReconExecDelays = 0;
590 reconDesc->numReconEventWaits = 0;
591 #endif /* RF_RECON_STATS > 0 */
592 reconDesc->reconExecTimerRunning = 0;
593 reconDesc->reconExecTicks = 0;
594 reconDesc->maxReconExecTicks = 0;
595 rc = rf_ContinueReconstructFailedDisk(reconDesc);
596
597 RF_LOCK_MUTEX(raidPtr->mutex);
598 raidPtr->reconInProgress--;
599 RF_UNLOCK_MUTEX(raidPtr->mutex);
600
601 } else {
602 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
603 lp->parityConfig);
604 rc = EIO;
605 }
606 RF_LOCK_MUTEX(raidPtr->mutex);
607
608 if (!rc) {
609 /* Need to set these here, as at this point it'll be claiming
610 that the disk is in rf_ds_spared! But we know better :-) */
611
612 raidPtr->Disks[row][col].status = rf_ds_optimal;
613 raidPtr->status[row] = rf_rs_optimal;
614
615 /* fix up the component label */
616 /* Don't actually need the read here.. */
617 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
618 raidPtr->raid_cinfo[row][col].ci_vp,
619 &c_label);
620
621 raid_init_component_label(raidPtr, &c_label);
622
623 c_label.row = row;
624 c_label.column = col;
625
626 /* We've just done a rebuild based on all the other
627 disks, so at this point the parity is known to be
628 clean, even if it wasn't before. */
629
630 /* XXX doesn't hold for RAID 6!!*/
631
632 raidPtr->parity_good = RF_RAID_CLEAN;
633
634 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
635 raidPtr->raid_cinfo[row][col].ci_vp,
636 &c_label);
637
638 }
639 RF_UNLOCK_MUTEX(raidPtr->mutex);
640 RF_SIGNAL_COND(raidPtr->waitForReconCond);
641 wakeup(&raidPtr->waitForReconCond);
642 return (rc);
643 }
644
645
646 int
647 rf_ContinueReconstructFailedDisk(reconDesc)
648 RF_RaidReconDesc_t *reconDesc;
649 {
650 RF_Raid_t *raidPtr = reconDesc->raidPtr;
651 RF_RowCol_t row = reconDesc->row;
652 RF_RowCol_t col = reconDesc->col;
653 RF_RowCol_t srow = reconDesc->srow;
654 RF_RowCol_t scol = reconDesc->scol;
655 RF_ReconMap_t *mapPtr;
656
657 RF_ReconEvent_t *event;
658 struct timeval etime, elpsd;
659 unsigned long xor_s, xor_resid_us;
660 int retcode, i, ds;
661
662 switch (reconDesc->state) {
663
664
665 case 0:
666
667 raidPtr->accumXorTimeUs = 0;
668
669 /* create one trace record per physical disk */
670 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
671
672 /* quiesce the array prior to starting recon. this is needed
673 * to assure no nasty interactions with pending user writes.
674 * We need to do this before we change the disk or row status. */
675 reconDesc->state = 1;
676
677 Dprintf("RECON: begin request suspend\n");
678 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
679 Dprintf("RECON: end request suspend\n");
680 rf_StartUserStats(raidPtr); /* zero out the stats kept on
681 * user accs */
682
683 /* fall through to state 1 */
684
685 case 1:
686
687 RF_LOCK_MUTEX(raidPtr->mutex);
688
689 /* create the reconstruction control pointer and install it in
690 * the right slot */
691 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
692 mapPtr = raidPtr->reconControl[row]->reconMap;
693 raidPtr->status[row] = rf_rs_reconstructing;
694 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
695 raidPtr->Disks[row][col].spareRow = srow;
696 raidPtr->Disks[row][col].spareCol = scol;
697
698 RF_UNLOCK_MUTEX(raidPtr->mutex);
699
700 RF_GETTIME(raidPtr->reconControl[row]->starttime);
701
702 /* now start up the actual reconstruction: issue a read for
703 * each surviving disk */
704
705 reconDesc->numDisksDone = 0;
706 for (i = 0; i < raidPtr->numCol; i++) {
707 if (i != col) {
708 /* find and issue the next I/O on the
709 * indicated disk */
710 if (IssueNextReadRequest(raidPtr, row, i)) {
711 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
712 reconDesc->numDisksDone++;
713 }
714 }
715 }
716
717 case 2:
718 Dprintf("RECON: resume requests\n");
719 rf_ResumeNewRequests(raidPtr);
720
721
722 reconDesc->state = 3;
723
724 case 3:
725
726 /* process reconstruction events until all disks report that
727 * they've completed all work */
728 mapPtr = raidPtr->reconControl[row]->reconMap;
729
730
731
732 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
733
734 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
735 RF_ASSERT(event);
736
737 if (ProcessReconEvent(raidPtr, row, event))
738 reconDesc->numDisksDone++;
739 raidPtr->reconControl[row]->numRUsTotal =
740 mapPtr->totalRUs;
741 raidPtr->reconControl[row]->numRUsComplete =
742 mapPtr->totalRUs -
743 rf_UnitsLeftToReconstruct(mapPtr);
744
745 raidPtr->reconControl[row]->percentComplete =
746 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
747 if (rf_prReconSched) {
748 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
749 }
750 }
751
752
753
754 reconDesc->state = 4;
755
756
757 case 4:
758 mapPtr = raidPtr->reconControl[row]->reconMap;
759 if (rf_reconDebug) {
760 printf("RECON: all reads completed\n");
761 }
762 /* at this point all the reads have completed. We now wait
763 * for any pending writes to complete, and then we're done */
764
765 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
766
767 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
768 RF_ASSERT(event);
769
770 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
771 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
772 if (rf_prReconSched) {
773 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
774 }
775 }
776 reconDesc->state = 5;
777
778 case 5:
779 /* Success: mark the dead disk as reconstructed. We quiesce
780 * the array here to assure no nasty interactions with pending
781 * user accesses when we free up the psstatus structure as
782 * part of FreeReconControl() */
783
784 reconDesc->state = 6;
785
786 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
787 rf_StopUserStats(raidPtr);
788 rf_PrintUserStats(raidPtr); /* print out the stats on user
789 * accs accumulated during
790 * recon */
791
792 /* fall through to state 6 */
793 case 6:
794
795
796
797 RF_LOCK_MUTEX(raidPtr->mutex);
798 raidPtr->numFailures--;
799 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
800 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
801 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
802 RF_UNLOCK_MUTEX(raidPtr->mutex);
803 RF_GETTIME(etime);
804 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
805
806 /* XXX -- why is state 7 different from state 6 if there is no
807 * return() here? -- XXX Note that I set elpsd above & use it
808 * below, so if you put a return here you'll have to fix this.
809 * (also, FreeReconControl is called below) */
810
811 case 7:
812
813 rf_ResumeNewRequests(raidPtr);
814
815 printf("Reconstruction of disk at row %d col %d completed\n",
816 row, col);
817 xor_s = raidPtr->accumXorTimeUs / 1000000;
818 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
819 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
820 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
821 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
822 (int) raidPtr->reconControl[row]->starttime.tv_sec,
823 (int) raidPtr->reconControl[row]->starttime.tv_usec,
824 (int) etime.tv_sec, (int) etime.tv_usec);
825
826 #if RF_RECON_STATS > 0
827 printf("Total head-sep stall count was %d\n",
828 (int) reconDesc->hsStallCount);
829 #endif /* RF_RECON_STATS > 0 */
830 rf_FreeReconControl(raidPtr, row);
831 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
832 FreeReconDesc(reconDesc);
833
834 }
835
836 SignalReconDone(raidPtr);
837 return (0);
838 }
839 /*****************************************************************************
840 * do the right thing upon each reconstruction event.
841 * returns nonzero if and only if there is nothing left unread on the
842 * indicated disk
843 *****************************************************************************/
844 static int
845 ProcessReconEvent(raidPtr, frow, event)
846 RF_Raid_t *raidPtr;
847 RF_RowCol_t frow;
848 RF_ReconEvent_t *event;
849 {
850 int retcode = 0, submitblocked;
851 RF_ReconBuffer_t *rbuf;
852 RF_SectorCount_t sectorsPerRU;
853
854 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
855 switch (event->type) {
856
857 /* a read I/O has completed */
858 case RF_REVENT_READDONE:
859 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
860 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
861 frow, event->col, rbuf->parityStripeID);
862 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
863 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
864 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
865 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
866 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
867 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
868 if (!submitblocked)
869 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
870 break;
871
872 /* a write I/O has completed */
873 case RF_REVENT_WRITEDONE:
874 if (rf_floatingRbufDebug) {
875 rf_CheckFloatingRbufCount(raidPtr, 1);
876 }
877 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
878 rbuf = (RF_ReconBuffer_t *) event->arg;
879 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
880 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
881 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
882 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
883 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
884 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
885
886 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
887 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
888 raidPtr->numFullReconBuffers--;
889 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
890 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
891 } else
892 if (rbuf->type == RF_RBUF_TYPE_FORCED)
893 rf_FreeReconBuffer(rbuf);
894 else
895 RF_ASSERT(0);
896 break;
897
898 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
899 * cleared */
900 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
901 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
902 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
903 * BUFCLEAR event if we
904 * couldn't submit */
905 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
906 break;
907
908 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
909 * blockage has been cleared */
910 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
911 retcode = TryToRead(raidPtr, frow, event->col);
912 break;
913
914 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
915 * reconstruction blockage has been
916 * cleared */
917 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
918 retcode = TryToRead(raidPtr, frow, event->col);
919 break;
920
921 /* a buffer has become ready to write */
922 case RF_REVENT_BUFREADY:
923 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
924 retcode = IssueNextWriteRequest(raidPtr, frow);
925 if (rf_floatingRbufDebug) {
926 rf_CheckFloatingRbufCount(raidPtr, 1);
927 }
928 break;
929
930 /* we need to skip the current RU entirely because it got
931 * recon'd while we were waiting for something else to happen */
932 case RF_REVENT_SKIP:
933 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
934 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
935 break;
936
937 /* a forced-reconstruction read access has completed. Just
938 * submit the buffer */
939 case RF_REVENT_FORCEDREADDONE:
940 rbuf = (RF_ReconBuffer_t *) event->arg;
941 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
942 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
943 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
944 RF_ASSERT(!submitblocked);
945 break;
946
947 default:
948 RF_PANIC();
949 }
950 rf_FreeReconEventDesc(event);
951 return (retcode);
952 }
953 /*****************************************************************************
954 *
955 * find the next thing that's needed on the indicated disk, and issue
956 * a read request for it. We assume that the reconstruction buffer
957 * associated with this process is free to receive the data. If
958 * reconstruction is blocked on the indicated RU, we issue a
959 * blockage-release request instead of a physical disk read request.
960 * If the current disk gets too far ahead of the others, we issue a
961 * head-separation wait request and return.
962 *
963 * ctrl->{ru_count, curPSID, diskOffset} and
964 * rbuf->failedDiskSectorOffset are maintained to point to the unit
965 * we're currently accessing. Note that this deviates from the
966 * standard C idiom of having counters point to the next thing to be
967 * accessed. This allows us to easily retry when we're blocked by
968 * head separation or reconstruction-blockage events.
969 *
970 * returns nonzero if and only if there is nothing left unread on the
971 * indicated disk
972 *
973 *****************************************************************************/
974 static int
975 IssueNextReadRequest(raidPtr, row, col)
976 RF_Raid_t *raidPtr;
977 RF_RowCol_t row;
978 RF_RowCol_t col;
979 {
980 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
981 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
982 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
983 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
984 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
985 int do_new_check = 0, retcode = 0, status;
986
987 /* if we are currently the slowest disk, mark that we have to do a new
988 * check */
989 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
990 do_new_check = 1;
991
992 while (1) {
993
994 ctrl->ru_count++;
995 if (ctrl->ru_count < RUsPerPU) {
996 ctrl->diskOffset += sectorsPerRU;
997 rbuf->failedDiskSectorOffset += sectorsPerRU;
998 } else {
999 ctrl->curPSID++;
1000 ctrl->ru_count = 0;
1001 /* code left over from when head-sep was based on
1002 * parity stripe id */
1003 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1004 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1005 return (1); /* finito! */
1006 }
1007 /* find the disk offsets of the start of the parity
1008 * stripe on both the current disk and the failed
1009 * disk. skip this entire parity stripe if either disk
1010 * does not appear in the indicated PS */
1011 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1012 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1013 if (status) {
1014 ctrl->ru_count = RUsPerPU - 1;
1015 continue;
1016 }
1017 }
1018 rbuf->which_ru = ctrl->ru_count;
1019
1020 /* skip this RU if it's already been reconstructed */
1021 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1022 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1023 continue;
1024 }
1025 break;
1026 }
1027 ctrl->headSepCounter++;
1028 if (do_new_check)
1029 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1030
1031
1032 /* at this point, we have definitely decided what to do, and we have
1033 * only to see if we can actually do it now */
1034 rbuf->parityStripeID = ctrl->curPSID;
1035 rbuf->which_ru = ctrl->ru_count;
1036 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1037 sizeof(raidPtr->recon_tracerecs[col]));
1038 raidPtr->recon_tracerecs[col].reconacc = 1;
1039 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1040 retcode = TryToRead(raidPtr, row, col);
1041 return (retcode);
1042 }
1043
1044 /*
1045 * tries to issue the next read on the indicated disk. We may be
1046 * blocked by (a) the heads being too far apart, or (b) recon on the
1047 * indicated RU being blocked due to a write by a user thread. In
1048 * this case, we issue a head-sep or blockage wait request, which will
1049 * cause this same routine to be invoked again later when the blockage
1050 * has cleared.
1051 */
1052
1053 static int
1054 TryToRead(raidPtr, row, col)
1055 RF_Raid_t *raidPtr;
1056 RF_RowCol_t row;
1057 RF_RowCol_t col;
1058 {
1059 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1060 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1061 RF_StripeNum_t psid = ctrl->curPSID;
1062 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1063 RF_DiskQueueData_t *req;
1064 int status, created = 0;
1065 RF_ReconParityStripeStatus_t *pssPtr;
1066
1067 /* if the current disk is too far ahead of the others, issue a
1068 * head-separation wait and return */
1069 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1070 return (0);
1071 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1072 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1073
1074 /* if recon is blocked on the indicated parity stripe, issue a
1075 * block-wait request and return. this also must mark the indicated RU
1076 * in the stripe as under reconstruction if not blocked. */
1077 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1078 if (status == RF_PSS_RECON_BLOCKED) {
1079 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1080 goto out;
1081 } else
1082 if (status == RF_PSS_FORCED_ON_WRITE) {
1083 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1084 goto out;
1085 }
1086 /* make one last check to be sure that the indicated RU didn't get
1087 * reconstructed while we were waiting for something else to happen.
1088 * This is unfortunate in that it causes us to make this check twice
1089 * in the normal case. Might want to make some attempt to re-work
1090 * this so that we only do this check if we've definitely blocked on
1091 * one of the above checks. When this condition is detected, we may
1092 * have just created a bogus status entry, which we need to delete. */
1093 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1094 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1095 if (created)
1096 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1097 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1098 goto out;
1099 }
1100 /* found something to read. issue the I/O */
1101 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1102 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1103 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1104 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1105 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1106 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1107 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1108
1109 /* should be ok to use a NULL proc pointer here, all the bufs we use
1110 * should be in kernel space */
1111 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1112 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1113
1114 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1115
1116 ctrl->rbuf->arg = (void *) req;
1117 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1118 pssPtr->issued[col] = 1;
1119
1120 out:
1121 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1122 return (0);
1123 }
1124
1125
1126 /*
1127 * given a parity stripe ID, we want to find out whether both the
1128 * current disk and the failed disk exist in that parity stripe. If
1129 * not, we want to skip this whole PS. If so, we want to find the
1130 * disk offset of the start of the PS on both the current disk and the
1131 * failed disk.
1132 *
1133 * this works by getting a list of disks comprising the indicated
1134 * parity stripe, and searching the list for the current and failed
1135 * disks. Once we've decided they both exist in the parity stripe, we
1136 * need to decide whether each is data or parity, so that we'll know
1137 * which mapping function to call to get the corresponding disk
1138 * offsets.
1139 *
1140 * this is kind of unpleasant, but doing it this way allows the
1141 * reconstruction code to use parity stripe IDs rather than physical
1142 * disks address to march through the failed disk, which greatly
1143 * simplifies a lot of code, as well as eliminating the need for a
1144 * reverse-mapping function. I also think it will execute faster,
1145 * since the calls to the mapping module are kept to a minimum.
1146 *
1147 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1148 * THE STRIPE IN THE CORRECT ORDER */
1149
1150
1151 static int
1152 ComputePSDiskOffsets(
1153 RF_Raid_t * raidPtr, /* raid descriptor */
1154 RF_StripeNum_t psid, /* parity stripe identifier */
1155 RF_RowCol_t row, /* row and column of disk to find the offsets
1156 * for */
1157 RF_RowCol_t col,
1158 RF_SectorNum_t * outDiskOffset,
1159 RF_SectorNum_t * outFailedDiskSectorOffset,
1160 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1161 RF_RowCol_t * spCol,
1162 RF_SectorNum_t * spOffset)
1163 { /* OUT: offset into disk containing spare unit */
1164 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1165 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1166 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1167 RF_RowCol_t *diskids;
1168 u_int i, j, k, i_offset, j_offset;
1169 RF_RowCol_t prow, pcol;
1170 int testcol, testrow;
1171 RF_RowCol_t stripe;
1172 RF_SectorNum_t poffset;
1173 char i_is_parity = 0, j_is_parity = 0;
1174 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1175
1176 /* get a listing of the disks comprising that stripe */
1177 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1178 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1179 RF_ASSERT(diskids);
1180
1181 /* reject this entire parity stripe if it does not contain the
1182 * indicated disk or it does not contain the failed disk */
1183 if (row != stripe)
1184 goto skipit;
1185 for (i = 0; i < stripeWidth; i++) {
1186 if (col == diskids[i])
1187 break;
1188 }
1189 if (i == stripeWidth)
1190 goto skipit;
1191 for (j = 0; j < stripeWidth; j++) {
1192 if (fcol == diskids[j])
1193 break;
1194 }
1195 if (j == stripeWidth) {
1196 goto skipit;
1197 }
1198 /* find out which disk the parity is on */
1199 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1200
1201 /* find out if either the current RU or the failed RU is parity */
1202 /* also, if the parity occurs in this stripe prior to the data and/or
1203 * failed col, we need to decrement i and/or j */
1204 for (k = 0; k < stripeWidth; k++)
1205 if (diskids[k] == pcol)
1206 break;
1207 RF_ASSERT(k < stripeWidth);
1208 i_offset = i;
1209 j_offset = j;
1210 if (k < i)
1211 i_offset--;
1212 else
1213 if (k == i) {
1214 i_is_parity = 1;
1215 i_offset = 0;
1216 } /* set offsets to zero to disable multiply
1217 * below */
1218 if (k < j)
1219 j_offset--;
1220 else
1221 if (k == j) {
1222 j_is_parity = 1;
1223 j_offset = 0;
1224 }
1225 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1226 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1227 * tells us how far into the stripe the [current,failed] disk is. */
1228
1229 /* call the mapping routine to get the offset into the current disk,
1230 * repeat for failed disk. */
1231 if (i_is_parity)
1232 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1233 else
1234 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1235
1236 RF_ASSERT(row == testrow && col == testcol);
1237
1238 if (j_is_parity)
1239 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1240 else
1241 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1242 RF_ASSERT(row == testrow && fcol == testcol);
1243
1244 /* now locate the spare unit for the failed unit */
1245 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1246 if (j_is_parity)
1247 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1248 else
1249 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1250 } else {
1251 *spRow = raidPtr->reconControl[row]->spareRow;
1252 *spCol = raidPtr->reconControl[row]->spareCol;
1253 *spOffset = *outFailedDiskSectorOffset;
1254 }
1255
1256 return (0);
1257
1258 skipit:
1259 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1260 psid, row, col);
1261 return (1);
1262 }
1263 /* this is called when a buffer has become ready to write to the replacement disk */
1264 static int
1265 IssueNextWriteRequest(raidPtr, row)
1266 RF_Raid_t *raidPtr;
1267 RF_RowCol_t row;
1268 {
1269 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1270 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1271 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1272 RF_ReconBuffer_t *rbuf;
1273 RF_DiskQueueData_t *req;
1274
1275 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1276 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1277 * have gotten the event that sent us here */
1278 RF_ASSERT(rbuf->pssPtr);
1279
1280 rbuf->pssPtr->writeRbuf = rbuf;
1281 rbuf->pssPtr = NULL;
1282
1283 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1284 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1285 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1286 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1287 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1288 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1289
1290 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1291 * kernel space */
1292 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1293 sectorsPerRU, rbuf->buffer,
1294 rbuf->parityStripeID, rbuf->which_ru,
1295 ReconWriteDoneProc, (void *) rbuf, NULL,
1296 &raidPtr->recon_tracerecs[fcol],
1297 (void *) raidPtr, 0, NULL);
1298
1299 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1300
1301 rbuf->arg = (void *) req;
1302 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1303
1304 return (0);
1305 }
1306
1307 /*
1308 * this gets called upon the completion of a reconstruction read
1309 * operation the arg is a pointer to the per-disk reconstruction
1310 * control structure for the process that just finished a read.
1311 *
1312 * called at interrupt context in the kernel, so don't do anything
1313 * illegal here.
1314 */
1315 static int
1316 ReconReadDoneProc(arg, status)
1317 void *arg;
1318 int status;
1319 {
1320 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1321 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1322
1323 if (status) {
1324 /*
1325 * XXX
1326 */
1327 printf("Recon read failed!\n");
1328 RF_PANIC();
1329 }
1330 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1331 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1332 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1333 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1334 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1335
1336 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1337 return (0);
1338 }
1339 /* this gets called upon the completion of a reconstruction write operation.
1340 * the arg is a pointer to the rbuf that was just written
1341 *
1342 * called at interrupt context in the kernel, so don't do anything illegal here.
1343 */
1344 static int
1345 ReconWriteDoneProc(arg, status)
1346 void *arg;
1347 int status;
1348 {
1349 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1350
1351 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1352 if (status) {
1353 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1354 * write failed!\n"); */
1355 RF_PANIC();
1356 }
1357 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1358 return (0);
1359 }
1360
1361
1362 /*
1363 * computes a new minimum head sep, and wakes up anyone who needs to
1364 * be woken as a result
1365 */
1366 static void
1367 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1368 RF_Raid_t *raidPtr;
1369 RF_RowCol_t row;
1370 RF_HeadSepLimit_t hsCtr;
1371 {
1372 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1373 RF_HeadSepLimit_t new_min;
1374 RF_RowCol_t i;
1375 RF_CallbackDesc_t *p;
1376 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1377 * of a minimum */
1378
1379
1380 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1381
1382 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1383 for (i = 0; i < raidPtr->numCol; i++)
1384 if (i != reconCtrlPtr->fcol) {
1385 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1386 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1387 }
1388 /* set the new minimum and wake up anyone who can now run again */
1389 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1390 reconCtrlPtr->minHeadSepCounter = new_min;
1391 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1392 while (reconCtrlPtr->headSepCBList) {
1393 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1394 break;
1395 p = reconCtrlPtr->headSepCBList;
1396 reconCtrlPtr->headSepCBList = p->next;
1397 p->next = NULL;
1398 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1399 rf_FreeCallbackDesc(p);
1400 }
1401
1402 }
1403 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1404 }
1405
1406 /*
1407 * checks to see that the maximum head separation will not be violated
1408 * if we initiate a reconstruction I/O on the indicated disk.
1409 * Limiting the maximum head separation between two disks eliminates
1410 * the nasty buffer-stall conditions that occur when one disk races
1411 * ahead of the others and consumes all of the floating recon buffers.
1412 * This code is complex and unpleasant but it's necessary to avoid
1413 * some very nasty, albeit fairly rare, reconstruction behavior.
1414 *
1415 * returns non-zero if and only if we have to stop working on the
1416 * indicated disk due to a head-separation delay.
1417 */
1418 static int
1419 CheckHeadSeparation(
1420 RF_Raid_t * raidPtr,
1421 RF_PerDiskReconCtrl_t * ctrl,
1422 RF_RowCol_t row,
1423 RF_RowCol_t col,
1424 RF_HeadSepLimit_t hsCtr,
1425 RF_ReconUnitNum_t which_ru)
1426 {
1427 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1428 RF_CallbackDesc_t *cb, *p, *pt;
1429 int retval = 0;
1430
1431 /* if we're too far ahead of the slowest disk, stop working on this
1432 * disk until the slower ones catch up. We do this by scheduling a
1433 * wakeup callback for the time when the slowest disk has caught up.
1434 * We define "caught up" with 20% hysteresis, i.e. the head separation
1435 * must have fallen to at most 80% of the max allowable head
1436 * separation before we'll wake up.
1437 *
1438 */
1439 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1440 if ((raidPtr->headSepLimit >= 0) &&
1441 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1442 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1443 raidPtr->raidid, row, col, ctrl->headSepCounter,
1444 reconCtrlPtr->minHeadSepCounter,
1445 raidPtr->headSepLimit);
1446 cb = rf_AllocCallbackDesc();
1447 /* the minHeadSepCounter value we have to get to before we'll
1448 * wake up. build in 20% hysteresis. */
1449 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1450 cb->row = row;
1451 cb->col = col;
1452 cb->next = NULL;
1453
1454 /* insert this callback descriptor into the sorted list of
1455 * pending head-sep callbacks */
1456 p = reconCtrlPtr->headSepCBList;
1457 if (!p)
1458 reconCtrlPtr->headSepCBList = cb;
1459 else
1460 if (cb->callbackArg.v < p->callbackArg.v) {
1461 cb->next = reconCtrlPtr->headSepCBList;
1462 reconCtrlPtr->headSepCBList = cb;
1463 } else {
1464 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1465 cb->next = p;
1466 pt->next = cb;
1467 }
1468 retval = 1;
1469 #if RF_RECON_STATS > 0
1470 ctrl->reconCtrl->reconDesc->hsStallCount++;
1471 #endif /* RF_RECON_STATS > 0 */
1472 }
1473 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1474
1475 return (retval);
1476 }
1477 /*
1478 * checks to see if reconstruction has been either forced or blocked
1479 * by a user operation. if forced, we skip this RU entirely. else if
1480 * blocked, put ourselves on the wait list. else return 0.
1481 *
1482 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1483 */
1484 static int
1485 CheckForcedOrBlockedReconstruction(
1486 RF_Raid_t * raidPtr,
1487 RF_ReconParityStripeStatus_t * pssPtr,
1488 RF_PerDiskReconCtrl_t * ctrl,
1489 RF_RowCol_t row,
1490 RF_RowCol_t col,
1491 RF_StripeNum_t psid,
1492 RF_ReconUnitNum_t which_ru)
1493 {
1494 RF_CallbackDesc_t *cb;
1495 int retcode = 0;
1496
1497 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1498 retcode = RF_PSS_FORCED_ON_WRITE;
1499 else
1500 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1501 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1502 cb = rf_AllocCallbackDesc(); /* append ourselves to
1503 * the blockage-wait
1504 * list */
1505 cb->row = row;
1506 cb->col = col;
1507 cb->next = pssPtr->blockWaitList;
1508 pssPtr->blockWaitList = cb;
1509 retcode = RF_PSS_RECON_BLOCKED;
1510 }
1511 if (!retcode)
1512 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1513 * reconstruction */
1514
1515 return (retcode);
1516 }
1517 /*
1518 * if reconstruction is currently ongoing for the indicated stripeID,
1519 * reconstruction is forced to completion and we return non-zero to
1520 * indicate that the caller must wait. If not, then reconstruction is
1521 * blocked on the indicated stripe and the routine returns zero. If
1522 * and only if we return non-zero, we'll cause the cbFunc to get
1523 * invoked with the cbArg when the reconstruction has completed.
1524 */
1525 int
1526 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1527 RF_Raid_t *raidPtr;
1528 RF_AccessStripeMap_t *asmap;
1529 void (*cbFunc) (RF_Raid_t *, void *);
1530 void *cbArg;
1531 {
1532 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1533 * we're working on */
1534 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1535 * forcing recon on */
1536 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1537 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1538 * stripe status structure */
1539 RF_StripeNum_t psid; /* parity stripe id */
1540 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1541 * offset */
1542 RF_RowCol_t *diskids;
1543 RF_RowCol_t stripe;
1544 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1545 RF_RowCol_t fcol, diskno, i;
1546 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1547 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1548 RF_CallbackDesc_t *cb;
1549 int created = 0, nPromoted;
1550
1551 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1552
1553 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1554
1555 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1556
1557 /* if recon is not ongoing on this PS, just return */
1558 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1559 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1560 return (0);
1561 }
1562 /* otherwise, we have to wait for reconstruction to complete on this
1563 * RU. */
1564 /* In order to avoid waiting for a potentially large number of
1565 * low-priority accesses to complete, we force a normal-priority (i.e.
1566 * not low-priority) reconstruction on this RU. */
1567 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1568 DDprintf1("Forcing recon on psid %ld\n", psid);
1569 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1570 * forced recon */
1571 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1572 * that we just set */
1573 fcol = raidPtr->reconControl[row]->fcol;
1574
1575 /* get a listing of the disks comprising the indicated stripe */
1576 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1577 RF_ASSERT(row == stripe);
1578
1579 /* For previously issued reads, elevate them to normal
1580 * priority. If the I/O has already completed, it won't be
1581 * found in the queue, and hence this will be a no-op. For
1582 * unissued reads, allocate buffers and issue new reads. The
1583 * fact that we've set the FORCED bit means that the regular
1584 * recon procs will not re-issue these reqs */
1585 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1586 if ((diskno = diskids[i]) != fcol) {
1587 if (pssPtr->issued[diskno]) {
1588 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1589 if (rf_reconDebug && nPromoted)
1590 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1591 } else {
1592 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1593 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1594 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1595 * location */
1596 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1597 new_rbuf->which_ru = which_ru;
1598 new_rbuf->failedDiskSectorOffset = fd_offset;
1599 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1600
1601 /* use NULL b_proc b/c all addrs
1602 * should be in kernel space */
1603 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1604 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1605 NULL, (void *) raidPtr, 0, NULL);
1606
1607 RF_ASSERT(req); /* XXX -- fix this --
1608 * XXX */
1609
1610 new_rbuf->arg = req;
1611 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1612 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1613 }
1614 }
1615 /* if the write is sitting in the disk queue, elevate its
1616 * priority */
1617 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1618 printf("raid%d: promoted write to row %d col %d\n",
1619 raidPtr->raidid, row, fcol);
1620 }
1621 /* install a callback descriptor to be invoked when recon completes on
1622 * this parity stripe. */
1623 cb = rf_AllocCallbackDesc();
1624 /* XXX the following is bogus.. These functions don't really match!!
1625 * GO */
1626 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1627 cb->callbackArg.p = (void *) cbArg;
1628 cb->next = pssPtr->procWaitList;
1629 pssPtr->procWaitList = cb;
1630 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1631 raidPtr->raidid, psid);
1632
1633 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1634 return (1);
1635 }
1636 /* called upon the completion of a forced reconstruction read.
1637 * all we do is schedule the FORCEDREADONE event.
1638 * called at interrupt context in the kernel, so don't do anything illegal here.
1639 */
1640 static void
1641 ForceReconReadDoneProc(arg, status)
1642 void *arg;
1643 int status;
1644 {
1645 RF_ReconBuffer_t *rbuf = arg;
1646
1647 if (status) {
1648 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1649 * recon read
1650 * failed!\n"); */
1651 RF_PANIC();
1652 }
1653 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1654 }
1655 /* releases a block on the reconstruction of the indicated stripe */
1656 int
1657 rf_UnblockRecon(raidPtr, asmap)
1658 RF_Raid_t *raidPtr;
1659 RF_AccessStripeMap_t *asmap;
1660 {
1661 RF_RowCol_t row = asmap->origRow;
1662 RF_StripeNum_t stripeID = asmap->stripeID;
1663 RF_ReconParityStripeStatus_t *pssPtr;
1664 RF_ReconUnitNum_t which_ru;
1665 RF_StripeNum_t psid;
1666 int created = 0;
1667 RF_CallbackDesc_t *cb;
1668
1669 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1670 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1671 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1672
1673 /* When recon is forced, the pss desc can get deleted before we get
1674 * back to unblock recon. But, this can _only_ happen when recon is
1675 * forced. It would be good to put some kind of sanity check here, but
1676 * how to decide if recon was just forced or not? */
1677 if (!pssPtr) {
1678 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1679 * RU %d\n",psid,which_ru); */
1680 if (rf_reconDebug || rf_pssDebug)
1681 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1682 goto out;
1683 }
1684 pssPtr->blockCount--;
1685 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1686 raidPtr->raidid, psid, pssPtr->blockCount);
1687 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1688
1689 /* unblock recon before calling CauseReconEvent in case
1690 * CauseReconEvent causes us to try to issue a new read before
1691 * returning here. */
1692 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1693
1694
1695 while (pssPtr->blockWaitList) {
1696 /* spin through the block-wait list and
1697 release all the waiters */
1698 cb = pssPtr->blockWaitList;
1699 pssPtr->blockWaitList = cb->next;
1700 cb->next = NULL;
1701 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1702 rf_FreeCallbackDesc(cb);
1703 }
1704 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1705 /* if no recon was requested while recon was blocked */
1706 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1707 }
1708 }
1709 out:
1710 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1711 return (0);
1712 }
1713