rf_reconstruct.c revision 1.29.2.2 1 /* $NetBSD: rf_reconstruct.c,v 1.29.2.2 2001/10/11 00:02:24 fvdl Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/time.h>
36 #include <sys/buf.h>
37 #include <sys/errno.h>
38
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/ioctl.h>
44 #include <sys/fcntl.h>
45 #include <sys/vnode.h>
46 #include <dev/raidframe/raidframevar.h>
47
48 #include "rf_raid.h"
49 #include "rf_reconutil.h"
50 #include "rf_revent.h"
51 #include "rf_reconbuffer.h"
52 #include "rf_acctrace.h"
53 #include "rf_etimer.h"
54 #include "rf_dag.h"
55 #include "rf_desc.h"
56 #include "rf_general.h"
57 #include "rf_freelist.h"
58 #include "rf_debugprint.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62
63 #include "rf_kintf.h"
64
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66
67 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
68 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
72 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
73 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
74 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
75
76 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
77 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
78
79 static RF_FreeList_t *rf_recond_freelist;
80 #define RF_MAX_FREE_RECOND 4
81 #define RF_RECOND_INC 1
82
83 static RF_RaidReconDesc_t *
84 AllocRaidReconDesc(RF_Raid_t * raidPtr,
85 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
86 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
87 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
88 static int
89 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
90 RF_ReconEvent_t * event);
91 static int
92 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
93 RF_RowCol_t col);
94 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
95 static int
96 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
97 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
98 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
99 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
100 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
101 static int ReconReadDoneProc(void *arg, int status);
102 static int ReconWriteDoneProc(void *arg, int status);
103 static void
104 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
105 RF_HeadSepLimit_t hsCtr);
106 static int
107 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
108 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
109 RF_ReconUnitNum_t which_ru);
110 static int
111 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
112 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
113 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
114 RF_ReconUnitNum_t which_ru);
115 static void ForceReconReadDoneProc(void *arg, int status);
116
117 static void rf_ShutdownReconstruction(void *);
118
119 struct RF_ReconDoneProc_s {
120 void (*proc) (RF_Raid_t *, void *);
121 void *arg;
122 RF_ReconDoneProc_t *next;
123 };
124
125 static RF_FreeList_t *rf_rdp_freelist;
126 #define RF_MAX_FREE_RDP 4
127 #define RF_RDP_INC 1
128
129 static void
130 SignalReconDone(RF_Raid_t * raidPtr)
131 {
132 RF_ReconDoneProc_t *p;
133
134 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
135 for (p = raidPtr->recon_done_procs; p; p = p->next) {
136 p->proc(raidPtr, p->arg);
137 }
138 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
139 }
140
141 int
142 rf_RegisterReconDoneProc(
143 RF_Raid_t * raidPtr,
144 void (*proc) (RF_Raid_t *, void *),
145 void *arg,
146 RF_ReconDoneProc_t ** handlep)
147 {
148 RF_ReconDoneProc_t *p;
149
150 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
151 if (p == NULL)
152 return (ENOMEM);
153 p->proc = proc;
154 p->arg = arg;
155 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
156 p->next = raidPtr->recon_done_procs;
157 raidPtr->recon_done_procs = p;
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 if (handlep)
160 *handlep = p;
161 return (0);
162 }
163 /**************************************************************************
164 *
165 * sets up the parameters that will be used by the reconstruction process
166 * currently there are none, except for those that the layout-specific
167 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
168 *
169 * in the kernel, we fire off the recon thread.
170 *
171 **************************************************************************/
172 static void
173 rf_ShutdownReconstruction(ignored)
174 void *ignored;
175 {
176 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
177 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
178 }
179
180 int
181 rf_ConfigureReconstruction(listp)
182 RF_ShutdownList_t **listp;
183 {
184 int rc;
185
186 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
187 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
188 if (rf_recond_freelist == NULL)
189 return (ENOMEM);
190 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
191 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
192 if (rf_rdp_freelist == NULL) {
193 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
194 return (ENOMEM);
195 }
196 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
197 if (rc) {
198 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
199 __FILE__, __LINE__, rc);
200 rf_ShutdownReconstruction(NULL);
201 return (rc);
202 }
203 return (0);
204 }
205
206 static RF_RaidReconDesc_t *
207 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
208 RF_Raid_t *raidPtr;
209 RF_RowCol_t row;
210 RF_RowCol_t col;
211 RF_RaidDisk_t *spareDiskPtr;
212 int numDisksDone;
213 RF_RowCol_t srow;
214 RF_RowCol_t scol;
215 {
216
217 RF_RaidReconDesc_t *reconDesc;
218
219 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
220
221 reconDesc->raidPtr = raidPtr;
222 reconDesc->row = row;
223 reconDesc->col = col;
224 reconDesc->spareDiskPtr = spareDiskPtr;
225 reconDesc->numDisksDone = numDisksDone;
226 reconDesc->srow = srow;
227 reconDesc->scol = scol;
228 reconDesc->state = 0;
229 reconDesc->next = NULL;
230
231 return (reconDesc);
232 }
233
234 static void
235 FreeReconDesc(reconDesc)
236 RF_RaidReconDesc_t *reconDesc;
237 {
238 #if RF_RECON_STATS > 0
239 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
240 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
241 #endif /* RF_RECON_STATS > 0 */
242 printf("RAIDframe: %lu max exec ticks\n",
243 (long) reconDesc->maxReconExecTicks);
244 #if (RF_RECON_STATS > 0) || defined(KERNEL)
245 printf("\n");
246 #endif /* (RF_RECON_STATS > 0) || KERNEL */
247 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
248 }
249
250
251 /*****************************************************************************
252 *
253 * primary routine to reconstruct a failed disk. This should be called from
254 * within its own thread. It won't return until reconstruction completes,
255 * fails, or is aborted.
256 *****************************************************************************/
257 int
258 rf_ReconstructFailedDisk(raidPtr, row, col)
259 RF_Raid_t *raidPtr;
260 RF_RowCol_t row;
261 RF_RowCol_t col;
262 {
263 RF_LayoutSW_t *lp;
264 int rc;
265
266 lp = raidPtr->Layout.map;
267 if (lp->SubmitReconBuffer) {
268 /*
269 * The current infrastructure only supports reconstructing one
270 * disk at a time for each array.
271 */
272 RF_LOCK_MUTEX(raidPtr->mutex);
273 while (raidPtr->reconInProgress) {
274 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
275 }
276 raidPtr->reconInProgress++;
277 RF_UNLOCK_MUTEX(raidPtr->mutex);
278 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
279 RF_LOCK_MUTEX(raidPtr->mutex);
280 raidPtr->reconInProgress--;
281 RF_UNLOCK_MUTEX(raidPtr->mutex);
282 } else {
283 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
284 lp->parityConfig);
285 rc = EIO;
286 }
287 RF_SIGNAL_COND(raidPtr->waitForReconCond);
288 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
289 * needed at some point... GO */
290 return (rc);
291 }
292
293 int
294 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
295 RF_Raid_t *raidPtr;
296 RF_RowCol_t row;
297 RF_RowCol_t col;
298 {
299 RF_ComponentLabel_t c_label;
300 RF_RaidDisk_t *spareDiskPtr = NULL;
301 RF_RaidReconDesc_t *reconDesc;
302 RF_RowCol_t srow, scol;
303 int numDisksDone = 0, rc;
304
305 /* first look for a spare drive onto which to reconstruct the data */
306 /* spare disk descriptors are stored in row 0. This may have to
307 * change eventually */
308
309 RF_LOCK_MUTEX(raidPtr->mutex);
310 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
311
312 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
313 if (raidPtr->status[row] != rf_rs_degraded) {
314 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
315 RF_UNLOCK_MUTEX(raidPtr->mutex);
316 return (EINVAL);
317 }
318 srow = row;
319 scol = (-1);
320 } else {
321 srow = 0;
322 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
323 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
324 spareDiskPtr = &raidPtr->Disks[srow][scol];
325 spareDiskPtr->status = rf_ds_used_spare;
326 break;
327 }
328 }
329 if (!spareDiskPtr) {
330 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
331 RF_UNLOCK_MUTEX(raidPtr->mutex);
332 return (ENOSPC);
333 }
334 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
335 }
336 RF_UNLOCK_MUTEX(raidPtr->mutex);
337
338 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
339 raidPtr->reconDesc = (void *) reconDesc;
340 #if RF_RECON_STATS > 0
341 reconDesc->hsStallCount = 0;
342 reconDesc->numReconExecDelays = 0;
343 reconDesc->numReconEventWaits = 0;
344 #endif /* RF_RECON_STATS > 0 */
345 reconDesc->reconExecTimerRunning = 0;
346 reconDesc->reconExecTicks = 0;
347 reconDesc->maxReconExecTicks = 0;
348 rc = rf_ContinueReconstructFailedDisk(reconDesc);
349
350 if (!rc) {
351 /* fix up the component label */
352 /* Don't actually need the read here.. */
353 raidread_component_label(
354 raidPtr->raid_cinfo[srow][scol].ci_vp,
355 &c_label);
356
357 raid_init_component_label( raidPtr, &c_label);
358 c_label.row = row;
359 c_label.column = col;
360 c_label.clean = RF_RAID_DIRTY;
361 c_label.status = rf_ds_optimal;
362 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
363
364 /* We've just done a rebuild based on all the other
365 disks, so at this point the parity is known to be
366 clean, even if it wasn't before. */
367
368 /* XXX doesn't hold for RAID 6!!*/
369
370 raidPtr->parity_good = RF_RAID_CLEAN;
371
372 /* XXXX MORE NEEDED HERE */
373
374 raidwrite_component_label(
375 raidPtr->raid_cinfo[srow][scol].ci_vp,
376 &c_label);
377
378 }
379 return (rc);
380 }
381
382 /*
383
384 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
385 and you don't get a spare until the next Monday. With this function
386 (and hot-swappable drives) you can now put your new disk containing
387 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
388 rebuild the data "on the spot".
389
390 */
391
392 int
393 rf_ReconstructInPlace(raidPtr, row, col)
394 RF_Raid_t *raidPtr;
395 RF_RowCol_t row;
396 RF_RowCol_t col;
397 {
398 RF_RaidDisk_t *spareDiskPtr = NULL;
399 RF_RaidReconDesc_t *reconDesc;
400 RF_LayoutSW_t *lp;
401 RF_RaidDisk_t *badDisk;
402 RF_ComponentLabel_t c_label;
403 int numDisksDone = 0, rc;
404 struct partinfo dpart;
405 struct vnode *vp;
406 struct vattr va;
407 struct proc *proc;
408 int retcode;
409 int ac;
410
411 lp = raidPtr->Layout.map;
412 if (lp->SubmitReconBuffer) {
413 /*
414 * The current infrastructure only supports reconstructing one
415 * disk at a time for each array.
416 */
417 RF_LOCK_MUTEX(raidPtr->mutex);
418 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
419 (raidPtr->numFailures > 0)) {
420 /* XXX 0 above shouldn't be constant!!! */
421 /* some component other than this has failed.
422 Let's not make things worse than they already
423 are... */
424 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
425 printf(" Row: %d Col: %d Too many failures.\n",
426 row, col);
427 RF_UNLOCK_MUTEX(raidPtr->mutex);
428 return (EINVAL);
429 }
430 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
431 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
432 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
433
434 RF_UNLOCK_MUTEX(raidPtr->mutex);
435 return (EINVAL);
436 }
437
438
439 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
440 /* "It's gone..." */
441 raidPtr->numFailures++;
442 raidPtr->Disks[row][col].status = rf_ds_failed;
443 raidPtr->status[row] = rf_rs_degraded;
444 rf_update_component_labels(raidPtr,
445 RF_NORMAL_COMPONENT_UPDATE);
446 }
447
448 while (raidPtr->reconInProgress) {
449 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
450 }
451
452 raidPtr->reconInProgress++;
453
454
455 /* first look for a spare drive onto which to reconstruct
456 the data. spare disk descriptors are stored in row 0.
457 This may have to change eventually */
458
459 /* Actually, we don't care if it's failed or not...
460 On a RAID set with correct parity, this function
461 should be callable on any component without ill affects. */
462 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
463 */
464
465 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
466 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
467
468 raidPtr->reconInProgress--;
469 RF_UNLOCK_MUTEX(raidPtr->mutex);
470 return (EINVAL);
471 }
472
473 /* XXX need goop here to see if the disk is alive,
474 and, if not, make it so... */
475
476
477
478 badDisk = &raidPtr->Disks[row][col];
479
480 proc = raidPtr->engine_thread;
481
482 /* This device may have been opened successfully the
483 first time. Close it before trying to open it again.. */
484
485 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
486 printf("Closed the open device: %s\n",
487 raidPtr->Disks[row][col].devname);
488 vp = raidPtr->raid_cinfo[row][col].ci_vp;
489 ac = raidPtr->Disks[row][col].auto_configured;
490 rf_close_component(raidPtr, vp, ac);
491 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
492 }
493 /* note that this disk was *not* auto_configured (any longer)*/
494 raidPtr->Disks[row][col].auto_configured = 0;
495
496 printf("About to (re-)open the device for rebuilding: %s\n",
497 raidPtr->Disks[row][col].devname);
498
499 retcode = raidlookup(raidPtr->Disks[row][col].devname,
500 proc, &vp);
501
502 if (retcode) {
503 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
504 raidPtr->Disks[row][col].devname, retcode);
505
506 /* XXX the component isn't responding properly...
507 must be still dead :-( */
508 raidPtr->reconInProgress--;
509 RF_UNLOCK_MUTEX(raidPtr->mutex);
510 return(retcode);
511
512 } else {
513
514 /* Ok, so we can at least do a lookup...
515 How about actually getting a vp for it? */
516
517 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
518 proc)) != 0) {
519 raidPtr->reconInProgress--;
520 RF_UNLOCK_MUTEX(raidPtr->mutex);
521 return(retcode);
522 }
523 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
524 FREAD, proc->p_ucred, proc);
525 if (retcode) {
526 raidPtr->reconInProgress--;
527 RF_UNLOCK_MUTEX(raidPtr->mutex);
528 return(retcode);
529 }
530 raidPtr->Disks[row][col].blockSize =
531 dpart.disklab->d_secsize;
532
533 raidPtr->Disks[row][col].numBlocks =
534 dpart.part->p_size - rf_protectedSectors;
535
536 raidPtr->raid_cinfo[row][col].ci_vp = vp;
537
538 /* we allow the user to specify that only a
539 fraction of the disks should be used this is
540 just for debug: it speeds up
541 * the parity scan */
542 raidPtr->Disks[row][col].numBlocks =
543 raidPtr->Disks[row][col].numBlocks *
544 rf_sizePercentage / 100;
545 }
546
547
548
549 spareDiskPtr = &raidPtr->Disks[row][col];
550 spareDiskPtr->status = rf_ds_used_spare;
551
552 printf("RECON: initiating in-place reconstruction on\n");
553 printf(" row %d col %d -> spare at row %d col %d\n",
554 row, col, row, col);
555
556 RF_UNLOCK_MUTEX(raidPtr->mutex);
557
558 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
559 spareDiskPtr, numDisksDone,
560 row, col);
561 raidPtr->reconDesc = (void *) reconDesc;
562 #if RF_RECON_STATS > 0
563 reconDesc->hsStallCount = 0;
564 reconDesc->numReconExecDelays = 0;
565 reconDesc->numReconEventWaits = 0;
566 #endif /* RF_RECON_STATS > 0 */
567 reconDesc->reconExecTimerRunning = 0;
568 reconDesc->reconExecTicks = 0;
569 reconDesc->maxReconExecTicks = 0;
570 rc = rf_ContinueReconstructFailedDisk(reconDesc);
571
572 RF_LOCK_MUTEX(raidPtr->mutex);
573 raidPtr->reconInProgress--;
574 RF_UNLOCK_MUTEX(raidPtr->mutex);
575
576 } else {
577 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
578 lp->parityConfig);
579 rc = EIO;
580 }
581 RF_LOCK_MUTEX(raidPtr->mutex);
582
583 if (!rc) {
584 /* Need to set these here, as at this point it'll be claiming
585 that the disk is in rf_ds_spared! But we know better :-) */
586
587 raidPtr->Disks[row][col].status = rf_ds_optimal;
588 raidPtr->status[row] = rf_rs_optimal;
589
590 /* fix up the component label */
591 /* Don't actually need the read here.. */
592 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_vp,
593 &c_label);
594
595 raid_init_component_label(raidPtr, &c_label);
596
597 c_label.row = row;
598 c_label.column = col;
599
600 /* We've just done a rebuild based on all the other
601 disks, so at this point the parity is known to be
602 clean, even if it wasn't before. */
603
604 /* XXX doesn't hold for RAID 6!!*/
605
606 raidPtr->parity_good = RF_RAID_CLEAN;
607
608 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_vp,
609 &c_label);
610
611 }
612 RF_UNLOCK_MUTEX(raidPtr->mutex);
613 RF_SIGNAL_COND(raidPtr->waitForReconCond);
614 wakeup(&raidPtr->waitForReconCond);
615 return (rc);
616 }
617
618
619 int
620 rf_ContinueReconstructFailedDisk(reconDesc)
621 RF_RaidReconDesc_t *reconDesc;
622 {
623 RF_Raid_t *raidPtr = reconDesc->raidPtr;
624 RF_RowCol_t row = reconDesc->row;
625 RF_RowCol_t col = reconDesc->col;
626 RF_RowCol_t srow = reconDesc->srow;
627 RF_RowCol_t scol = reconDesc->scol;
628 RF_ReconMap_t *mapPtr;
629
630 RF_ReconEvent_t *event;
631 struct timeval etime, elpsd;
632 unsigned long xor_s, xor_resid_us;
633 int retcode, i, ds;
634
635 switch (reconDesc->state) {
636
637
638 case 0:
639
640 raidPtr->accumXorTimeUs = 0;
641
642 /* create one trace record per physical disk */
643 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
644
645 /* quiesce the array prior to starting recon. this is needed
646 * to assure no nasty interactions with pending user writes.
647 * We need to do this before we change the disk or row status. */
648 reconDesc->state = 1;
649
650 Dprintf("RECON: begin request suspend\n");
651 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
652 Dprintf("RECON: end request suspend\n");
653 rf_StartUserStats(raidPtr); /* zero out the stats kept on
654 * user accs */
655
656 /* fall through to state 1 */
657
658 case 1:
659
660 RF_LOCK_MUTEX(raidPtr->mutex);
661
662 /* create the reconstruction control pointer and install it in
663 * the right slot */
664 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
665 mapPtr = raidPtr->reconControl[row]->reconMap;
666 raidPtr->status[row] = rf_rs_reconstructing;
667 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
668 raidPtr->Disks[row][col].spareRow = srow;
669 raidPtr->Disks[row][col].spareCol = scol;
670
671 RF_UNLOCK_MUTEX(raidPtr->mutex);
672
673 RF_GETTIME(raidPtr->reconControl[row]->starttime);
674
675 /* now start up the actual reconstruction: issue a read for
676 * each surviving disk */
677
678 reconDesc->numDisksDone = 0;
679 for (i = 0; i < raidPtr->numCol; i++) {
680 if (i != col) {
681 /* find and issue the next I/O on the
682 * indicated disk */
683 if (IssueNextReadRequest(raidPtr, row, i)) {
684 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
685 reconDesc->numDisksDone++;
686 }
687 }
688 }
689
690 case 2:
691 Dprintf("RECON: resume requests\n");
692 rf_ResumeNewRequests(raidPtr);
693
694
695 reconDesc->state = 3;
696
697 case 3:
698
699 /* process reconstruction events until all disks report that
700 * they've completed all work */
701 mapPtr = raidPtr->reconControl[row]->reconMap;
702
703
704
705 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
706
707 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
708 RF_ASSERT(event);
709
710 if (ProcessReconEvent(raidPtr, row, event))
711 reconDesc->numDisksDone++;
712 raidPtr->reconControl[row]->numRUsTotal =
713 mapPtr->totalRUs;
714 raidPtr->reconControl[row]->numRUsComplete =
715 mapPtr->totalRUs -
716 rf_UnitsLeftToReconstruct(mapPtr);
717
718 raidPtr->reconControl[row]->percentComplete =
719 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
720 if (rf_prReconSched) {
721 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
722 }
723 }
724
725
726
727 reconDesc->state = 4;
728
729
730 case 4:
731 mapPtr = raidPtr->reconControl[row]->reconMap;
732 if (rf_reconDebug) {
733 printf("RECON: all reads completed\n");
734 }
735 /* at this point all the reads have completed. We now wait
736 * for any pending writes to complete, and then we're done */
737
738 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
739
740 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
741 RF_ASSERT(event);
742
743 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
744 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
745 if (rf_prReconSched) {
746 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
747 }
748 }
749 reconDesc->state = 5;
750
751 case 5:
752 /* Success: mark the dead disk as reconstructed. We quiesce
753 * the array here to assure no nasty interactions with pending
754 * user accesses when we free up the psstatus structure as
755 * part of FreeReconControl() */
756
757 reconDesc->state = 6;
758
759 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
760 rf_StopUserStats(raidPtr);
761 rf_PrintUserStats(raidPtr); /* print out the stats on user
762 * accs accumulated during
763 * recon */
764
765 /* fall through to state 6 */
766 case 6:
767
768
769
770 RF_LOCK_MUTEX(raidPtr->mutex);
771 raidPtr->numFailures--;
772 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
773 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
774 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
775 RF_UNLOCK_MUTEX(raidPtr->mutex);
776 RF_GETTIME(etime);
777 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
778
779 /* XXX -- why is state 7 different from state 6 if there is no
780 * return() here? -- XXX Note that I set elpsd above & use it
781 * below, so if you put a return here you'll have to fix this.
782 * (also, FreeReconControl is called below) */
783
784 case 7:
785
786 rf_ResumeNewRequests(raidPtr);
787
788 printf("Reconstruction of disk at row %d col %d completed\n",
789 row, col);
790 xor_s = raidPtr->accumXorTimeUs / 1000000;
791 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
792 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
793 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
794 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
795 (int) raidPtr->reconControl[row]->starttime.tv_sec,
796 (int) raidPtr->reconControl[row]->starttime.tv_usec,
797 (int) etime.tv_sec, (int) etime.tv_usec);
798
799 #if RF_RECON_STATS > 0
800 printf("Total head-sep stall count was %d\n",
801 (int) reconDesc->hsStallCount);
802 #endif /* RF_RECON_STATS > 0 */
803 rf_FreeReconControl(raidPtr, row);
804 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
805 FreeReconDesc(reconDesc);
806
807 }
808
809 SignalReconDone(raidPtr);
810 return (0);
811 }
812 /*****************************************************************************
813 * do the right thing upon each reconstruction event.
814 * returns nonzero if and only if there is nothing left unread on the
815 * indicated disk
816 *****************************************************************************/
817 static int
818 ProcessReconEvent(raidPtr, frow, event)
819 RF_Raid_t *raidPtr;
820 RF_RowCol_t frow;
821 RF_ReconEvent_t *event;
822 {
823 int retcode = 0, submitblocked;
824 RF_ReconBuffer_t *rbuf;
825 RF_SectorCount_t sectorsPerRU;
826
827 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
828 switch (event->type) {
829
830 /* a read I/O has completed */
831 case RF_REVENT_READDONE:
832 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
833 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
834 frow, event->col, rbuf->parityStripeID);
835 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
836 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
837 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
838 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
839 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
840 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
841 if (!submitblocked)
842 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
843 break;
844
845 /* a write I/O has completed */
846 case RF_REVENT_WRITEDONE:
847 if (rf_floatingRbufDebug) {
848 rf_CheckFloatingRbufCount(raidPtr, 1);
849 }
850 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
851 rbuf = (RF_ReconBuffer_t *) event->arg;
852 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
853 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
854 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
855 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
856 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
857 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
858
859 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
860 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
861 raidPtr->numFullReconBuffers--;
862 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
863 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
864 } else
865 if (rbuf->type == RF_RBUF_TYPE_FORCED)
866 rf_FreeReconBuffer(rbuf);
867 else
868 RF_ASSERT(0);
869 break;
870
871 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
872 * cleared */
873 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
874 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
875 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
876 * BUFCLEAR event if we
877 * couldn't submit */
878 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
879 break;
880
881 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
882 * blockage has been cleared */
883 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
884 retcode = TryToRead(raidPtr, frow, event->col);
885 break;
886
887 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
888 * reconstruction blockage has been
889 * cleared */
890 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
891 retcode = TryToRead(raidPtr, frow, event->col);
892 break;
893
894 /* a buffer has become ready to write */
895 case RF_REVENT_BUFREADY:
896 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
897 retcode = IssueNextWriteRequest(raidPtr, frow);
898 if (rf_floatingRbufDebug) {
899 rf_CheckFloatingRbufCount(raidPtr, 1);
900 }
901 break;
902
903 /* we need to skip the current RU entirely because it got
904 * recon'd while we were waiting for something else to happen */
905 case RF_REVENT_SKIP:
906 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
907 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
908 break;
909
910 /* a forced-reconstruction read access has completed. Just
911 * submit the buffer */
912 case RF_REVENT_FORCEDREADDONE:
913 rbuf = (RF_ReconBuffer_t *) event->arg;
914 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
915 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
916 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
917 RF_ASSERT(!submitblocked);
918 break;
919
920 default:
921 RF_PANIC();
922 }
923 rf_FreeReconEventDesc(event);
924 return (retcode);
925 }
926 /*****************************************************************************
927 *
928 * find the next thing that's needed on the indicated disk, and issue
929 * a read request for it. We assume that the reconstruction buffer
930 * associated with this process is free to receive the data. If
931 * reconstruction is blocked on the indicated RU, we issue a
932 * blockage-release request instead of a physical disk read request.
933 * If the current disk gets too far ahead of the others, we issue a
934 * head-separation wait request and return.
935 *
936 * ctrl->{ru_count, curPSID, diskOffset} and
937 * rbuf->failedDiskSectorOffset are maintained to point to the unit
938 * we're currently accessing. Note that this deviates from the
939 * standard C idiom of having counters point to the next thing to be
940 * accessed. This allows us to easily retry when we're blocked by
941 * head separation or reconstruction-blockage events.
942 *
943 * returns nonzero if and only if there is nothing left unread on the
944 * indicated disk
945 *
946 *****************************************************************************/
947 static int
948 IssueNextReadRequest(raidPtr, row, col)
949 RF_Raid_t *raidPtr;
950 RF_RowCol_t row;
951 RF_RowCol_t col;
952 {
953 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
954 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
955 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
956 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
957 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
958 int do_new_check = 0, retcode = 0, status;
959
960 /* if we are currently the slowest disk, mark that we have to do a new
961 * check */
962 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
963 do_new_check = 1;
964
965 while (1) {
966
967 ctrl->ru_count++;
968 if (ctrl->ru_count < RUsPerPU) {
969 ctrl->diskOffset += sectorsPerRU;
970 rbuf->failedDiskSectorOffset += sectorsPerRU;
971 } else {
972 ctrl->curPSID++;
973 ctrl->ru_count = 0;
974 /* code left over from when head-sep was based on
975 * parity stripe id */
976 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
977 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
978 return (1); /* finito! */
979 }
980 /* find the disk offsets of the start of the parity
981 * stripe on both the current disk and the failed
982 * disk. skip this entire parity stripe if either disk
983 * does not appear in the indicated PS */
984 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
985 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
986 if (status) {
987 ctrl->ru_count = RUsPerPU - 1;
988 continue;
989 }
990 }
991 rbuf->which_ru = ctrl->ru_count;
992
993 /* skip this RU if it's already been reconstructed */
994 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
995 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
996 continue;
997 }
998 break;
999 }
1000 ctrl->headSepCounter++;
1001 if (do_new_check)
1002 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1003
1004
1005 /* at this point, we have definitely decided what to do, and we have
1006 * only to see if we can actually do it now */
1007 rbuf->parityStripeID = ctrl->curPSID;
1008 rbuf->which_ru = ctrl->ru_count;
1009 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1010 sizeof(raidPtr->recon_tracerecs[col]));
1011 raidPtr->recon_tracerecs[col].reconacc = 1;
1012 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1013 retcode = TryToRead(raidPtr, row, col);
1014 return (retcode);
1015 }
1016
1017 /*
1018 * tries to issue the next read on the indicated disk. We may be
1019 * blocked by (a) the heads being too far apart, or (b) recon on the
1020 * indicated RU being blocked due to a write by a user thread. In
1021 * this case, we issue a head-sep or blockage wait request, which will
1022 * cause this same routine to be invoked again later when the blockage
1023 * has cleared.
1024 */
1025
1026 static int
1027 TryToRead(raidPtr, row, col)
1028 RF_Raid_t *raidPtr;
1029 RF_RowCol_t row;
1030 RF_RowCol_t col;
1031 {
1032 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1033 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1034 RF_StripeNum_t psid = ctrl->curPSID;
1035 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1036 RF_DiskQueueData_t *req;
1037 int status, created = 0;
1038 RF_ReconParityStripeStatus_t *pssPtr;
1039
1040 /* if the current disk is too far ahead of the others, issue a
1041 * head-separation wait and return */
1042 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1043 return (0);
1044 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1045 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1046
1047 /* if recon is blocked on the indicated parity stripe, issue a
1048 * block-wait request and return. this also must mark the indicated RU
1049 * in the stripe as under reconstruction if not blocked. */
1050 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1051 if (status == RF_PSS_RECON_BLOCKED) {
1052 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1053 goto out;
1054 } else
1055 if (status == RF_PSS_FORCED_ON_WRITE) {
1056 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1057 goto out;
1058 }
1059 /* make one last check to be sure that the indicated RU didn't get
1060 * reconstructed while we were waiting for something else to happen.
1061 * This is unfortunate in that it causes us to make this check twice
1062 * in the normal case. Might want to make some attempt to re-work
1063 * this so that we only do this check if we've definitely blocked on
1064 * one of the above checks. When this condition is detected, we may
1065 * have just created a bogus status entry, which we need to delete. */
1066 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1067 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1068 if (created)
1069 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1070 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1071 goto out;
1072 }
1073 /* found something to read. issue the I/O */
1074 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1075 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1076 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1077 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1078 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1079 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1080 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1081
1082 /* should be ok to use a NULL proc pointer here, all the bufs we use
1083 * should be in kernel space */
1084 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1085 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1086
1087 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1088
1089 ctrl->rbuf->arg = (void *) req;
1090 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1091 pssPtr->issued[col] = 1;
1092
1093 out:
1094 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1095 return (0);
1096 }
1097
1098
1099 /*
1100 * given a parity stripe ID, we want to find out whether both the
1101 * current disk and the failed disk exist in that parity stripe. If
1102 * not, we want to skip this whole PS. If so, we want to find the
1103 * disk offset of the start of the PS on both the current disk and the
1104 * failed disk.
1105 *
1106 * this works by getting a list of disks comprising the indicated
1107 * parity stripe, and searching the list for the current and failed
1108 * disks. Once we've decided they both exist in the parity stripe, we
1109 * need to decide whether each is data or parity, so that we'll know
1110 * which mapping function to call to get the corresponding disk
1111 * offsets.
1112 *
1113 * this is kind of unpleasant, but doing it this way allows the
1114 * reconstruction code to use parity stripe IDs rather than physical
1115 * disks address to march through the failed disk, which greatly
1116 * simplifies a lot of code, as well as eliminating the need for a
1117 * reverse-mapping function. I also think it will execute faster,
1118 * since the calls to the mapping module are kept to a minimum.
1119 *
1120 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1121 * THE STRIPE IN THE CORRECT ORDER */
1122
1123
1124 static int
1125 ComputePSDiskOffsets(
1126 RF_Raid_t * raidPtr, /* raid descriptor */
1127 RF_StripeNum_t psid, /* parity stripe identifier */
1128 RF_RowCol_t row, /* row and column of disk to find the offsets
1129 * for */
1130 RF_RowCol_t col,
1131 RF_SectorNum_t * outDiskOffset,
1132 RF_SectorNum_t * outFailedDiskSectorOffset,
1133 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1134 RF_RowCol_t * spCol,
1135 RF_SectorNum_t * spOffset)
1136 { /* OUT: offset into disk containing spare unit */
1137 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1138 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1139 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1140 RF_RowCol_t *diskids;
1141 u_int i, j, k, i_offset, j_offset;
1142 RF_RowCol_t prow, pcol;
1143 int testcol, testrow;
1144 RF_RowCol_t stripe;
1145 RF_SectorNum_t poffset;
1146 char i_is_parity = 0, j_is_parity = 0;
1147 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1148
1149 /* get a listing of the disks comprising that stripe */
1150 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1151 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1152 RF_ASSERT(diskids);
1153
1154 /* reject this entire parity stripe if it does not contain the
1155 * indicated disk or it does not contain the failed disk */
1156 if (row != stripe)
1157 goto skipit;
1158 for (i = 0; i < stripeWidth; i++) {
1159 if (col == diskids[i])
1160 break;
1161 }
1162 if (i == stripeWidth)
1163 goto skipit;
1164 for (j = 0; j < stripeWidth; j++) {
1165 if (fcol == diskids[j])
1166 break;
1167 }
1168 if (j == stripeWidth) {
1169 goto skipit;
1170 }
1171 /* find out which disk the parity is on */
1172 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1173
1174 /* find out if either the current RU or the failed RU is parity */
1175 /* also, if the parity occurs in this stripe prior to the data and/or
1176 * failed col, we need to decrement i and/or j */
1177 for (k = 0; k < stripeWidth; k++)
1178 if (diskids[k] == pcol)
1179 break;
1180 RF_ASSERT(k < stripeWidth);
1181 i_offset = i;
1182 j_offset = j;
1183 if (k < i)
1184 i_offset--;
1185 else
1186 if (k == i) {
1187 i_is_parity = 1;
1188 i_offset = 0;
1189 } /* set offsets to zero to disable multiply
1190 * below */
1191 if (k < j)
1192 j_offset--;
1193 else
1194 if (k == j) {
1195 j_is_parity = 1;
1196 j_offset = 0;
1197 }
1198 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1199 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1200 * tells us how far into the stripe the [current,failed] disk is. */
1201
1202 /* call the mapping routine to get the offset into the current disk,
1203 * repeat for failed disk. */
1204 if (i_is_parity)
1205 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1206 else
1207 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1208
1209 RF_ASSERT(row == testrow && col == testcol);
1210
1211 if (j_is_parity)
1212 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1213 else
1214 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1215 RF_ASSERT(row == testrow && fcol == testcol);
1216
1217 /* now locate the spare unit for the failed unit */
1218 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1219 if (j_is_parity)
1220 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1221 else
1222 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1223 } else {
1224 *spRow = raidPtr->reconControl[row]->spareRow;
1225 *spCol = raidPtr->reconControl[row]->spareCol;
1226 *spOffset = *outFailedDiskSectorOffset;
1227 }
1228
1229 return (0);
1230
1231 skipit:
1232 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1233 psid, row, col);
1234 return (1);
1235 }
1236 /* this is called when a buffer has become ready to write to the replacement disk */
1237 static int
1238 IssueNextWriteRequest(raidPtr, row)
1239 RF_Raid_t *raidPtr;
1240 RF_RowCol_t row;
1241 {
1242 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1243 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1244 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1245 RF_ReconBuffer_t *rbuf;
1246 RF_DiskQueueData_t *req;
1247
1248 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1249 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1250 * have gotten the event that sent us here */
1251 RF_ASSERT(rbuf->pssPtr);
1252
1253 rbuf->pssPtr->writeRbuf = rbuf;
1254 rbuf->pssPtr = NULL;
1255
1256 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1257 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1258 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1259 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1260 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1261 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1262
1263 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1264 * kernel space */
1265 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1266 sectorsPerRU, rbuf->buffer,
1267 rbuf->parityStripeID, rbuf->which_ru,
1268 ReconWriteDoneProc, (void *) rbuf, NULL,
1269 &raidPtr->recon_tracerecs[fcol],
1270 (void *) raidPtr, 0, NULL);
1271
1272 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1273
1274 rbuf->arg = (void *) req;
1275 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1276
1277 return (0);
1278 }
1279
1280 /*
1281 * this gets called upon the completion of a reconstruction read
1282 * operation the arg is a pointer to the per-disk reconstruction
1283 * control structure for the process that just finished a read.
1284 *
1285 * called at interrupt context in the kernel, so don't do anything
1286 * illegal here.
1287 */
1288 static int
1289 ReconReadDoneProc(arg, status)
1290 void *arg;
1291 int status;
1292 {
1293 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1294 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1295
1296 if (status) {
1297 /*
1298 * XXX
1299 */
1300 printf("Recon read failed!\n");
1301 RF_PANIC();
1302 }
1303 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1304 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1305 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1306 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1307 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1308
1309 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1310 return (0);
1311 }
1312 /* this gets called upon the completion of a reconstruction write operation.
1313 * the arg is a pointer to the rbuf that was just written
1314 *
1315 * called at interrupt context in the kernel, so don't do anything illegal here.
1316 */
1317 static int
1318 ReconWriteDoneProc(arg, status)
1319 void *arg;
1320 int status;
1321 {
1322 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1323
1324 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1325 if (status) {
1326 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1327 * write failed!\n"); */
1328 RF_PANIC();
1329 }
1330 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1331 return (0);
1332 }
1333
1334
1335 /*
1336 * computes a new minimum head sep, and wakes up anyone who needs to
1337 * be woken as a result
1338 */
1339 static void
1340 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1341 RF_Raid_t *raidPtr;
1342 RF_RowCol_t row;
1343 RF_HeadSepLimit_t hsCtr;
1344 {
1345 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1346 RF_HeadSepLimit_t new_min;
1347 RF_RowCol_t i;
1348 RF_CallbackDesc_t *p;
1349 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1350 * of a minimum */
1351
1352
1353 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1354
1355 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1356 for (i = 0; i < raidPtr->numCol; i++)
1357 if (i != reconCtrlPtr->fcol) {
1358 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1359 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1360 }
1361 /* set the new minimum and wake up anyone who can now run again */
1362 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1363 reconCtrlPtr->minHeadSepCounter = new_min;
1364 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1365 while (reconCtrlPtr->headSepCBList) {
1366 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1367 break;
1368 p = reconCtrlPtr->headSepCBList;
1369 reconCtrlPtr->headSepCBList = p->next;
1370 p->next = NULL;
1371 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1372 rf_FreeCallbackDesc(p);
1373 }
1374
1375 }
1376 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1377 }
1378
1379 /*
1380 * checks to see that the maximum head separation will not be violated
1381 * if we initiate a reconstruction I/O on the indicated disk.
1382 * Limiting the maximum head separation between two disks eliminates
1383 * the nasty buffer-stall conditions that occur when one disk races
1384 * ahead of the others and consumes all of the floating recon buffers.
1385 * This code is complex and unpleasant but it's necessary to avoid
1386 * some very nasty, albeit fairly rare, reconstruction behavior.
1387 *
1388 * returns non-zero if and only if we have to stop working on the
1389 * indicated disk due to a head-separation delay.
1390 */
1391 static int
1392 CheckHeadSeparation(
1393 RF_Raid_t * raidPtr,
1394 RF_PerDiskReconCtrl_t * ctrl,
1395 RF_RowCol_t row,
1396 RF_RowCol_t col,
1397 RF_HeadSepLimit_t hsCtr,
1398 RF_ReconUnitNum_t which_ru)
1399 {
1400 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1401 RF_CallbackDesc_t *cb, *p, *pt;
1402 int retval = 0;
1403
1404 /* if we're too far ahead of the slowest disk, stop working on this
1405 * disk until the slower ones catch up. We do this by scheduling a
1406 * wakeup callback for the time when the slowest disk has caught up.
1407 * We define "caught up" with 20% hysteresis, i.e. the head separation
1408 * must have fallen to at most 80% of the max allowable head
1409 * separation before we'll wake up.
1410 *
1411 */
1412 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1413 if ((raidPtr->headSepLimit >= 0) &&
1414 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1415 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1416 raidPtr->raidid, row, col, ctrl->headSepCounter,
1417 reconCtrlPtr->minHeadSepCounter,
1418 raidPtr->headSepLimit);
1419 cb = rf_AllocCallbackDesc();
1420 /* the minHeadSepCounter value we have to get to before we'll
1421 * wake up. build in 20% hysteresis. */
1422 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1423 cb->row = row;
1424 cb->col = col;
1425 cb->next = NULL;
1426
1427 /* insert this callback descriptor into the sorted list of
1428 * pending head-sep callbacks */
1429 p = reconCtrlPtr->headSepCBList;
1430 if (!p)
1431 reconCtrlPtr->headSepCBList = cb;
1432 else
1433 if (cb->callbackArg.v < p->callbackArg.v) {
1434 cb->next = reconCtrlPtr->headSepCBList;
1435 reconCtrlPtr->headSepCBList = cb;
1436 } else {
1437 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1438 cb->next = p;
1439 pt->next = cb;
1440 }
1441 retval = 1;
1442 #if RF_RECON_STATS > 0
1443 ctrl->reconCtrl->reconDesc->hsStallCount++;
1444 #endif /* RF_RECON_STATS > 0 */
1445 }
1446 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1447
1448 return (retval);
1449 }
1450 /*
1451 * checks to see if reconstruction has been either forced or blocked
1452 * by a user operation. if forced, we skip this RU entirely. else if
1453 * blocked, put ourselves on the wait list. else return 0.
1454 *
1455 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1456 */
1457 static int
1458 CheckForcedOrBlockedReconstruction(
1459 RF_Raid_t * raidPtr,
1460 RF_ReconParityStripeStatus_t * pssPtr,
1461 RF_PerDiskReconCtrl_t * ctrl,
1462 RF_RowCol_t row,
1463 RF_RowCol_t col,
1464 RF_StripeNum_t psid,
1465 RF_ReconUnitNum_t which_ru)
1466 {
1467 RF_CallbackDesc_t *cb;
1468 int retcode = 0;
1469
1470 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1471 retcode = RF_PSS_FORCED_ON_WRITE;
1472 else
1473 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1474 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1475 cb = rf_AllocCallbackDesc(); /* append ourselves to
1476 * the blockage-wait
1477 * list */
1478 cb->row = row;
1479 cb->col = col;
1480 cb->next = pssPtr->blockWaitList;
1481 pssPtr->blockWaitList = cb;
1482 retcode = RF_PSS_RECON_BLOCKED;
1483 }
1484 if (!retcode)
1485 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1486 * reconstruction */
1487
1488 return (retcode);
1489 }
1490 /*
1491 * if reconstruction is currently ongoing for the indicated stripeID,
1492 * reconstruction is forced to completion and we return non-zero to
1493 * indicate that the caller must wait. If not, then reconstruction is
1494 * blocked on the indicated stripe and the routine returns zero. If
1495 * and only if we return non-zero, we'll cause the cbFunc to get
1496 * invoked with the cbArg when the reconstruction has completed.
1497 */
1498 int
1499 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1500 RF_Raid_t *raidPtr;
1501 RF_AccessStripeMap_t *asmap;
1502 void (*cbFunc) (RF_Raid_t *, void *);
1503 void *cbArg;
1504 {
1505 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1506 * we're working on */
1507 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1508 * forcing recon on */
1509 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1510 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1511 * stripe status structure */
1512 RF_StripeNum_t psid; /* parity stripe id */
1513 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1514 * offset */
1515 RF_RowCol_t *diskids;
1516 RF_RowCol_t stripe;
1517 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1518 RF_RowCol_t fcol, diskno, i;
1519 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1520 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1521 RF_CallbackDesc_t *cb;
1522 int created = 0, nPromoted;
1523
1524 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1525
1526 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1527
1528 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1529
1530 /* if recon is not ongoing on this PS, just return */
1531 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1532 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1533 return (0);
1534 }
1535 /* otherwise, we have to wait for reconstruction to complete on this
1536 * RU. */
1537 /* In order to avoid waiting for a potentially large number of
1538 * low-priority accesses to complete, we force a normal-priority (i.e.
1539 * not low-priority) reconstruction on this RU. */
1540 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1541 DDprintf1("Forcing recon on psid %ld\n", psid);
1542 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1543 * forced recon */
1544 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1545 * that we just set */
1546 fcol = raidPtr->reconControl[row]->fcol;
1547
1548 /* get a listing of the disks comprising the indicated stripe */
1549 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1550 RF_ASSERT(row == stripe);
1551
1552 /* For previously issued reads, elevate them to normal
1553 * priority. If the I/O has already completed, it won't be
1554 * found in the queue, and hence this will be a no-op. For
1555 * unissued reads, allocate buffers and issue new reads. The
1556 * fact that we've set the FORCED bit means that the regular
1557 * recon procs will not re-issue these reqs */
1558 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1559 if ((diskno = diskids[i]) != fcol) {
1560 if (pssPtr->issued[diskno]) {
1561 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1562 if (rf_reconDebug && nPromoted)
1563 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1564 } else {
1565 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1566 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1567 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1568 * location */
1569 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1570 new_rbuf->which_ru = which_ru;
1571 new_rbuf->failedDiskSectorOffset = fd_offset;
1572 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1573
1574 /* use NULL b_proc b/c all addrs
1575 * should be in kernel space */
1576 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1577 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1578 NULL, (void *) raidPtr, 0, NULL);
1579
1580 RF_ASSERT(req); /* XXX -- fix this --
1581 * XXX */
1582
1583 new_rbuf->arg = req;
1584 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1585 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1586 }
1587 }
1588 /* if the write is sitting in the disk queue, elevate its
1589 * priority */
1590 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1591 printf("raid%d: promoted write to row %d col %d\n",
1592 raidPtr->raidid, row, fcol);
1593 }
1594 /* install a callback descriptor to be invoked when recon completes on
1595 * this parity stripe. */
1596 cb = rf_AllocCallbackDesc();
1597 /* XXX the following is bogus.. These functions don't really match!!
1598 * GO */
1599 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1600 cb->callbackArg.p = (void *) cbArg;
1601 cb->next = pssPtr->procWaitList;
1602 pssPtr->procWaitList = cb;
1603 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1604 raidPtr->raidid, psid);
1605
1606 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1607 return (1);
1608 }
1609 /* called upon the completion of a forced reconstruction read.
1610 * all we do is schedule the FORCEDREADONE event.
1611 * called at interrupt context in the kernel, so don't do anything illegal here.
1612 */
1613 static void
1614 ForceReconReadDoneProc(arg, status)
1615 void *arg;
1616 int status;
1617 {
1618 RF_ReconBuffer_t *rbuf = arg;
1619
1620 if (status) {
1621 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1622 * recon read
1623 * failed!\n"); */
1624 RF_PANIC();
1625 }
1626 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1627 }
1628 /* releases a block on the reconstruction of the indicated stripe */
1629 int
1630 rf_UnblockRecon(raidPtr, asmap)
1631 RF_Raid_t *raidPtr;
1632 RF_AccessStripeMap_t *asmap;
1633 {
1634 RF_RowCol_t row = asmap->origRow;
1635 RF_StripeNum_t stripeID = asmap->stripeID;
1636 RF_ReconParityStripeStatus_t *pssPtr;
1637 RF_ReconUnitNum_t which_ru;
1638 RF_StripeNum_t psid;
1639 int created = 0;
1640 RF_CallbackDesc_t *cb;
1641
1642 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1643 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1644 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1645
1646 /* When recon is forced, the pss desc can get deleted before we get
1647 * back to unblock recon. But, this can _only_ happen when recon is
1648 * forced. It would be good to put some kind of sanity check here, but
1649 * how to decide if recon was just forced or not? */
1650 if (!pssPtr) {
1651 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1652 * RU %d\n",psid,which_ru); */
1653 if (rf_reconDebug || rf_pssDebug)
1654 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1655 goto out;
1656 }
1657 pssPtr->blockCount--;
1658 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1659 raidPtr->raidid, psid, pssPtr->blockCount);
1660 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1661
1662 /* unblock recon before calling CauseReconEvent in case
1663 * CauseReconEvent causes us to try to issue a new read before
1664 * returning here. */
1665 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1666
1667
1668 while (pssPtr->blockWaitList) {
1669 /* spin through the block-wait list and
1670 release all the waiters */
1671 cb = pssPtr->blockWaitList;
1672 pssPtr->blockWaitList = cb->next;
1673 cb->next = NULL;
1674 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1675 rf_FreeCallbackDesc(cb);
1676 }
1677 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1678 /* if no recon was requested while recon was blocked */
1679 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1680 }
1681 }
1682 out:
1683 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1684 return (0);
1685 }
1686