rf_reconstruct.c revision 1.30 1 /* $NetBSD: rf_reconstruct.c,v 1.30 2001/10/04 15:58:55 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/time.h>
36 #include <sys/buf.h>
37 #include <sys/errno.h>
38
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/ioctl.h>
44 #include <sys/fcntl.h>
45 #include <sys/vnode.h>
46 #include <dev/raidframe/raidframevar.h>
47
48 #include "rf_raid.h"
49 #include "rf_reconutil.h"
50 #include "rf_revent.h"
51 #include "rf_reconbuffer.h"
52 #include "rf_acctrace.h"
53 #include "rf_etimer.h"
54 #include "rf_dag.h"
55 #include "rf_desc.h"
56 #include "rf_general.h"
57 #include "rf_freelist.h"
58 #include "rf_debugprint.h"
59 #include "rf_driver.h"
60 #include "rf_utils.h"
61 #include "rf_shutdown.h"
62
63 #include "rf_kintf.h"
64
65 /* setting these to -1 causes them to be set to their default values if not set by debug options */
66
67 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
68 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
69 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
72 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
73 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
74 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
75
76 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
77 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
78
79 static RF_FreeList_t *rf_recond_freelist;
80 #define RF_MAX_FREE_RECOND 4
81 #define RF_RECOND_INC 1
82
83 static RF_RaidReconDesc_t *
84 AllocRaidReconDesc(RF_Raid_t * raidPtr,
85 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
86 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
87 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
88 static int
89 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
90 RF_ReconEvent_t * event);
91 static int
92 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
93 RF_RowCol_t col);
94 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
95 static int
96 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
97 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
98 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
99 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
100 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
101 static int ReconReadDoneProc(void *arg, int status);
102 static int ReconWriteDoneProc(void *arg, int status);
103 static void
104 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
105 RF_HeadSepLimit_t hsCtr);
106 static int
107 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
108 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
109 RF_ReconUnitNum_t which_ru);
110 static int
111 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
112 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
113 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
114 RF_ReconUnitNum_t which_ru);
115 static void ForceReconReadDoneProc(void *arg, int status);
116
117 static void rf_ShutdownReconstruction(void *);
118
119 struct RF_ReconDoneProc_s {
120 void (*proc) (RF_Raid_t *, void *);
121 void *arg;
122 RF_ReconDoneProc_t *next;
123 };
124
125 static RF_FreeList_t *rf_rdp_freelist;
126 #define RF_MAX_FREE_RDP 4
127 #define RF_RDP_INC 1
128
129 static void
130 SignalReconDone(RF_Raid_t * raidPtr)
131 {
132 RF_ReconDoneProc_t *p;
133
134 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
135 for (p = raidPtr->recon_done_procs; p; p = p->next) {
136 p->proc(raidPtr, p->arg);
137 }
138 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
139 }
140
141 int
142 rf_RegisterReconDoneProc(
143 RF_Raid_t * raidPtr,
144 void (*proc) (RF_Raid_t *, void *),
145 void *arg,
146 RF_ReconDoneProc_t ** handlep)
147 {
148 RF_ReconDoneProc_t *p;
149
150 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
151 if (p == NULL)
152 return (ENOMEM);
153 p->proc = proc;
154 p->arg = arg;
155 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
156 p->next = raidPtr->recon_done_procs;
157 raidPtr->recon_done_procs = p;
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 if (handlep)
160 *handlep = p;
161 return (0);
162 }
163 /**************************************************************************
164 *
165 * sets up the parameters that will be used by the reconstruction process
166 * currently there are none, except for those that the layout-specific
167 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
168 *
169 * in the kernel, we fire off the recon thread.
170 *
171 **************************************************************************/
172 static void
173 rf_ShutdownReconstruction(ignored)
174 void *ignored;
175 {
176 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
177 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
178 }
179
180 int
181 rf_ConfigureReconstruction(listp)
182 RF_ShutdownList_t **listp;
183 {
184 int rc;
185
186 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
187 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
188 if (rf_recond_freelist == NULL)
189 return (ENOMEM);
190 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
191 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
192 if (rf_rdp_freelist == NULL) {
193 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
194 return (ENOMEM);
195 }
196 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
197 if (rc) {
198 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
199 __FILE__, __LINE__, rc);
200 rf_ShutdownReconstruction(NULL);
201 return (rc);
202 }
203 return (0);
204 }
205
206 static RF_RaidReconDesc_t *
207 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
208 RF_Raid_t *raidPtr;
209 RF_RowCol_t row;
210 RF_RowCol_t col;
211 RF_RaidDisk_t *spareDiskPtr;
212 int numDisksDone;
213 RF_RowCol_t srow;
214 RF_RowCol_t scol;
215 {
216
217 RF_RaidReconDesc_t *reconDesc;
218
219 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
220
221 reconDesc->raidPtr = raidPtr;
222 reconDesc->row = row;
223 reconDesc->col = col;
224 reconDesc->spareDiskPtr = spareDiskPtr;
225 reconDesc->numDisksDone = numDisksDone;
226 reconDesc->srow = srow;
227 reconDesc->scol = scol;
228 reconDesc->state = 0;
229 reconDesc->next = NULL;
230
231 return (reconDesc);
232 }
233
234 static void
235 FreeReconDesc(reconDesc)
236 RF_RaidReconDesc_t *reconDesc;
237 {
238 #if RF_RECON_STATS > 0
239 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
240 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
241 #endif /* RF_RECON_STATS > 0 */
242 printf("RAIDframe: %lu max exec ticks\n",
243 (long) reconDesc->maxReconExecTicks);
244 #if (RF_RECON_STATS > 0) || defined(KERNEL)
245 printf("\n");
246 #endif /* (RF_RECON_STATS > 0) || KERNEL */
247 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
248 }
249
250
251 /*****************************************************************************
252 *
253 * primary routine to reconstruct a failed disk. This should be called from
254 * within its own thread. It won't return until reconstruction completes,
255 * fails, or is aborted.
256 *****************************************************************************/
257 int
258 rf_ReconstructFailedDisk(raidPtr, row, col)
259 RF_Raid_t *raidPtr;
260 RF_RowCol_t row;
261 RF_RowCol_t col;
262 {
263 RF_LayoutSW_t *lp;
264 int rc;
265
266 lp = raidPtr->Layout.map;
267 if (lp->SubmitReconBuffer) {
268 /*
269 * The current infrastructure only supports reconstructing one
270 * disk at a time for each array.
271 */
272 RF_LOCK_MUTEX(raidPtr->mutex);
273 while (raidPtr->reconInProgress) {
274 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
275 }
276 raidPtr->reconInProgress++;
277 RF_UNLOCK_MUTEX(raidPtr->mutex);
278 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
279 RF_LOCK_MUTEX(raidPtr->mutex);
280 raidPtr->reconInProgress--;
281 RF_UNLOCK_MUTEX(raidPtr->mutex);
282 } else {
283 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
284 lp->parityConfig);
285 rc = EIO;
286 }
287 RF_SIGNAL_COND(raidPtr->waitForReconCond);
288 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
289 * needed at some point... GO */
290 return (rc);
291 }
292
293 int
294 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
295 RF_Raid_t *raidPtr;
296 RF_RowCol_t row;
297 RF_RowCol_t col;
298 {
299 RF_ComponentLabel_t c_label;
300 RF_RaidDisk_t *spareDiskPtr = NULL;
301 RF_RaidReconDesc_t *reconDesc;
302 RF_RowCol_t srow, scol;
303 int numDisksDone = 0, rc;
304
305 /* first look for a spare drive onto which to reconstruct the data */
306 /* spare disk descriptors are stored in row 0. This may have to
307 * change eventually */
308
309 RF_LOCK_MUTEX(raidPtr->mutex);
310 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
311
312 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
313 if (raidPtr->status[row] != rf_rs_degraded) {
314 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
315 RF_UNLOCK_MUTEX(raidPtr->mutex);
316 return (EINVAL);
317 }
318 srow = row;
319 scol = (-1);
320 } else {
321 srow = 0;
322 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
323 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
324 spareDiskPtr = &raidPtr->Disks[srow][scol];
325 spareDiskPtr->status = rf_ds_used_spare;
326 break;
327 }
328 }
329 if (!spareDiskPtr) {
330 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
331 RF_UNLOCK_MUTEX(raidPtr->mutex);
332 return (ENOSPC);
333 }
334 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
335 }
336 RF_UNLOCK_MUTEX(raidPtr->mutex);
337
338 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
339 raidPtr->reconDesc = (void *) reconDesc;
340 #if RF_RECON_STATS > 0
341 reconDesc->hsStallCount = 0;
342 reconDesc->numReconExecDelays = 0;
343 reconDesc->numReconEventWaits = 0;
344 #endif /* RF_RECON_STATS > 0 */
345 reconDesc->reconExecTimerRunning = 0;
346 reconDesc->reconExecTicks = 0;
347 reconDesc->maxReconExecTicks = 0;
348 rc = rf_ContinueReconstructFailedDisk(reconDesc);
349
350 if (!rc) {
351 /* fix up the component label */
352 /* Don't actually need the read here.. */
353 raidread_component_label(
354 raidPtr->raid_cinfo[srow][scol].ci_dev,
355 raidPtr->raid_cinfo[srow][scol].ci_vp,
356 &c_label);
357
358 raid_init_component_label( raidPtr, &c_label);
359 c_label.row = row;
360 c_label.column = col;
361 c_label.clean = RF_RAID_DIRTY;
362 c_label.status = rf_ds_optimal;
363 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
364
365 /* We've just done a rebuild based on all the other
366 disks, so at this point the parity is known to be
367 clean, even if it wasn't before. */
368
369 /* XXX doesn't hold for RAID 6!!*/
370
371 raidPtr->parity_good = RF_RAID_CLEAN;
372
373 /* XXXX MORE NEEDED HERE */
374
375 raidwrite_component_label(
376 raidPtr->raid_cinfo[srow][scol].ci_dev,
377 raidPtr->raid_cinfo[srow][scol].ci_vp,
378 &c_label);
379
380 }
381 return (rc);
382 }
383
384 /*
385
386 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
387 and you don't get a spare until the next Monday. With this function
388 (and hot-swappable drives) you can now put your new disk containing
389 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
390 rebuild the data "on the spot".
391
392 */
393
394 int
395 rf_ReconstructInPlace(raidPtr, row, col)
396 RF_Raid_t *raidPtr;
397 RF_RowCol_t row;
398 RF_RowCol_t col;
399 {
400 RF_RaidDisk_t *spareDiskPtr = NULL;
401 RF_RaidReconDesc_t *reconDesc;
402 RF_LayoutSW_t *lp;
403 RF_RaidDisk_t *badDisk;
404 RF_ComponentLabel_t c_label;
405 int numDisksDone = 0, rc;
406 struct partinfo dpart;
407 struct vnode *vp;
408 struct vattr va;
409 struct proc *proc;
410 int retcode;
411 int ac;
412
413 lp = raidPtr->Layout.map;
414 if (lp->SubmitReconBuffer) {
415 /*
416 * The current infrastructure only supports reconstructing one
417 * disk at a time for each array.
418 */
419 RF_LOCK_MUTEX(raidPtr->mutex);
420 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
421 (raidPtr->numFailures > 0)) {
422 /* XXX 0 above shouldn't be constant!!! */
423 /* some component other than this has failed.
424 Let's not make things worse than they already
425 are... */
426 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
427 printf(" Row: %d Col: %d Too many failures.\n",
428 row, col);
429 RF_UNLOCK_MUTEX(raidPtr->mutex);
430 return (EINVAL);
431 }
432 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
433 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
434 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
435
436 RF_UNLOCK_MUTEX(raidPtr->mutex);
437 return (EINVAL);
438 }
439
440
441 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
442 /* "It's gone..." */
443 raidPtr->numFailures++;
444 raidPtr->Disks[row][col].status = rf_ds_failed;
445 raidPtr->status[row] = rf_rs_degraded;
446 rf_update_component_labels(raidPtr,
447 RF_NORMAL_COMPONENT_UPDATE);
448 }
449
450 while (raidPtr->reconInProgress) {
451 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
452 }
453
454 raidPtr->reconInProgress++;
455
456
457 /* first look for a spare drive onto which to reconstruct
458 the data. spare disk descriptors are stored in row 0.
459 This may have to change eventually */
460
461 /* Actually, we don't care if it's failed or not...
462 On a RAID set with correct parity, this function
463 should be callable on any component without ill affects. */
464 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
465 */
466
467 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
468 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
469
470 raidPtr->reconInProgress--;
471 RF_UNLOCK_MUTEX(raidPtr->mutex);
472 return (EINVAL);
473 }
474
475 /* XXX need goop here to see if the disk is alive,
476 and, if not, make it so... */
477
478
479
480 badDisk = &raidPtr->Disks[row][col];
481
482 proc = raidPtr->engine_thread;
483
484 /* This device may have been opened successfully the
485 first time. Close it before trying to open it again.. */
486
487 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
488 printf("Closed the open device: %s\n",
489 raidPtr->Disks[row][col].devname);
490 vp = raidPtr->raid_cinfo[row][col].ci_vp;
491 ac = raidPtr->Disks[row][col].auto_configured;
492 rf_close_component(raidPtr, vp, ac);
493 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
494 }
495 /* note that this disk was *not* auto_configured (any longer)*/
496 raidPtr->Disks[row][col].auto_configured = 0;
497
498 printf("About to (re-)open the device for rebuilding: %s\n",
499 raidPtr->Disks[row][col].devname);
500
501 retcode = raidlookup(raidPtr->Disks[row][col].devname,
502 proc, &vp);
503
504 if (retcode) {
505 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
506 raidPtr->Disks[row][col].devname, retcode);
507
508 /* XXX the component isn't responding properly...
509 must be still dead :-( */
510 raidPtr->reconInProgress--;
511 RF_UNLOCK_MUTEX(raidPtr->mutex);
512 return(retcode);
513
514 } else {
515
516 /* Ok, so we can at least do a lookup...
517 How about actually getting a vp for it? */
518
519 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
520 proc)) != 0) {
521 raidPtr->reconInProgress--;
522 RF_UNLOCK_MUTEX(raidPtr->mutex);
523 return(retcode);
524 }
525 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
526 FREAD, proc->p_ucred, proc);
527 if (retcode) {
528 raidPtr->reconInProgress--;
529 RF_UNLOCK_MUTEX(raidPtr->mutex);
530 return(retcode);
531 }
532 raidPtr->Disks[row][col].blockSize =
533 dpart.disklab->d_secsize;
534
535 raidPtr->Disks[row][col].numBlocks =
536 dpart.part->p_size - rf_protectedSectors;
537
538 raidPtr->raid_cinfo[row][col].ci_vp = vp;
539 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
540
541 raidPtr->Disks[row][col].dev = va.va_rdev;
542
543 /* we allow the user to specify that only a
544 fraction of the disks should be used this is
545 just for debug: it speeds up
546 * the parity scan */
547 raidPtr->Disks[row][col].numBlocks =
548 raidPtr->Disks[row][col].numBlocks *
549 rf_sizePercentage / 100;
550 }
551
552
553
554 spareDiskPtr = &raidPtr->Disks[row][col];
555 spareDiskPtr->status = rf_ds_used_spare;
556
557 printf("RECON: initiating in-place reconstruction on\n");
558 printf(" row %d col %d -> spare at row %d col %d\n",
559 row, col, row, col);
560
561 RF_UNLOCK_MUTEX(raidPtr->mutex);
562
563 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
564 spareDiskPtr, numDisksDone,
565 row, col);
566 raidPtr->reconDesc = (void *) reconDesc;
567 #if RF_RECON_STATS > 0
568 reconDesc->hsStallCount = 0;
569 reconDesc->numReconExecDelays = 0;
570 reconDesc->numReconEventWaits = 0;
571 #endif /* RF_RECON_STATS > 0 */
572 reconDesc->reconExecTimerRunning = 0;
573 reconDesc->reconExecTicks = 0;
574 reconDesc->maxReconExecTicks = 0;
575 rc = rf_ContinueReconstructFailedDisk(reconDesc);
576
577 RF_LOCK_MUTEX(raidPtr->mutex);
578 raidPtr->reconInProgress--;
579 RF_UNLOCK_MUTEX(raidPtr->mutex);
580
581 } else {
582 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
583 lp->parityConfig);
584 rc = EIO;
585 }
586 RF_LOCK_MUTEX(raidPtr->mutex);
587
588 if (!rc) {
589 /* Need to set these here, as at this point it'll be claiming
590 that the disk is in rf_ds_spared! But we know better :-) */
591
592 raidPtr->Disks[row][col].status = rf_ds_optimal;
593 raidPtr->status[row] = rf_rs_optimal;
594
595 /* fix up the component label */
596 /* Don't actually need the read here.. */
597 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
598 raidPtr->raid_cinfo[row][col].ci_vp,
599 &c_label);
600
601 raid_init_component_label(raidPtr, &c_label);
602
603 c_label.row = row;
604 c_label.column = col;
605
606 /* We've just done a rebuild based on all the other
607 disks, so at this point the parity is known to be
608 clean, even if it wasn't before. */
609
610 /* XXX doesn't hold for RAID 6!!*/
611
612 raidPtr->parity_good = RF_RAID_CLEAN;
613
614 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
615 raidPtr->raid_cinfo[row][col].ci_vp,
616 &c_label);
617
618 }
619 RF_UNLOCK_MUTEX(raidPtr->mutex);
620 RF_SIGNAL_COND(raidPtr->waitForReconCond);
621 wakeup(&raidPtr->waitForReconCond);
622 return (rc);
623 }
624
625
626 int
627 rf_ContinueReconstructFailedDisk(reconDesc)
628 RF_RaidReconDesc_t *reconDesc;
629 {
630 RF_Raid_t *raidPtr = reconDesc->raidPtr;
631 RF_RowCol_t row = reconDesc->row;
632 RF_RowCol_t col = reconDesc->col;
633 RF_RowCol_t srow = reconDesc->srow;
634 RF_RowCol_t scol = reconDesc->scol;
635 RF_ReconMap_t *mapPtr;
636
637 RF_ReconEvent_t *event;
638 struct timeval etime, elpsd;
639 unsigned long xor_s, xor_resid_us;
640 int retcode, i, ds;
641
642 switch (reconDesc->state) {
643
644
645 case 0:
646
647 raidPtr->accumXorTimeUs = 0;
648
649 /* create one trace record per physical disk */
650 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
651
652 /* quiesce the array prior to starting recon. this is needed
653 * to assure no nasty interactions with pending user writes.
654 * We need to do this before we change the disk or row status. */
655 reconDesc->state = 1;
656
657 Dprintf("RECON: begin request suspend\n");
658 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
659 Dprintf("RECON: end request suspend\n");
660 rf_StartUserStats(raidPtr); /* zero out the stats kept on
661 * user accs */
662
663 /* fall through to state 1 */
664
665 case 1:
666
667 RF_LOCK_MUTEX(raidPtr->mutex);
668
669 /* create the reconstruction control pointer and install it in
670 * the right slot */
671 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
672 mapPtr = raidPtr->reconControl[row]->reconMap;
673 raidPtr->status[row] = rf_rs_reconstructing;
674 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
675 raidPtr->Disks[row][col].spareRow = srow;
676 raidPtr->Disks[row][col].spareCol = scol;
677
678 RF_UNLOCK_MUTEX(raidPtr->mutex);
679
680 RF_GETTIME(raidPtr->reconControl[row]->starttime);
681
682 /* now start up the actual reconstruction: issue a read for
683 * each surviving disk */
684
685 reconDesc->numDisksDone = 0;
686 for (i = 0; i < raidPtr->numCol; i++) {
687 if (i != col) {
688 /* find and issue the next I/O on the
689 * indicated disk */
690 if (IssueNextReadRequest(raidPtr, row, i)) {
691 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
692 reconDesc->numDisksDone++;
693 }
694 }
695 }
696
697 case 2:
698 Dprintf("RECON: resume requests\n");
699 rf_ResumeNewRequests(raidPtr);
700
701
702 reconDesc->state = 3;
703
704 case 3:
705
706 /* process reconstruction events until all disks report that
707 * they've completed all work */
708 mapPtr = raidPtr->reconControl[row]->reconMap;
709
710
711
712 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
713
714 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
715 RF_ASSERT(event);
716
717 if (ProcessReconEvent(raidPtr, row, event))
718 reconDesc->numDisksDone++;
719 raidPtr->reconControl[row]->numRUsTotal =
720 mapPtr->totalRUs;
721 raidPtr->reconControl[row]->numRUsComplete =
722 mapPtr->totalRUs -
723 rf_UnitsLeftToReconstruct(mapPtr);
724
725 raidPtr->reconControl[row]->percentComplete =
726 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
727 if (rf_prReconSched) {
728 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
729 }
730 }
731
732
733
734 reconDesc->state = 4;
735
736
737 case 4:
738 mapPtr = raidPtr->reconControl[row]->reconMap;
739 if (rf_reconDebug) {
740 printf("RECON: all reads completed\n");
741 }
742 /* at this point all the reads have completed. We now wait
743 * for any pending writes to complete, and then we're done */
744
745 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
746
747 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
748 RF_ASSERT(event);
749
750 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
751 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
752 if (rf_prReconSched) {
753 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
754 }
755 }
756 reconDesc->state = 5;
757
758 case 5:
759 /* Success: mark the dead disk as reconstructed. We quiesce
760 * the array here to assure no nasty interactions with pending
761 * user accesses when we free up the psstatus structure as
762 * part of FreeReconControl() */
763
764 reconDesc->state = 6;
765
766 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
767 rf_StopUserStats(raidPtr);
768 rf_PrintUserStats(raidPtr); /* print out the stats on user
769 * accs accumulated during
770 * recon */
771
772 /* fall through to state 6 */
773 case 6:
774
775
776
777 RF_LOCK_MUTEX(raidPtr->mutex);
778 raidPtr->numFailures--;
779 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
780 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
781 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
782 RF_UNLOCK_MUTEX(raidPtr->mutex);
783 RF_GETTIME(etime);
784 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
785
786 /* XXX -- why is state 7 different from state 6 if there is no
787 * return() here? -- XXX Note that I set elpsd above & use it
788 * below, so if you put a return here you'll have to fix this.
789 * (also, FreeReconControl is called below) */
790
791 case 7:
792
793 rf_ResumeNewRequests(raidPtr);
794
795 printf("Reconstruction of disk at row %d col %d completed\n",
796 row, col);
797 xor_s = raidPtr->accumXorTimeUs / 1000000;
798 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
799 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
800 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
801 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
802 (int) raidPtr->reconControl[row]->starttime.tv_sec,
803 (int) raidPtr->reconControl[row]->starttime.tv_usec,
804 (int) etime.tv_sec, (int) etime.tv_usec);
805
806 #if RF_RECON_STATS > 0
807 printf("Total head-sep stall count was %d\n",
808 (int) reconDesc->hsStallCount);
809 #endif /* RF_RECON_STATS > 0 */
810 rf_FreeReconControl(raidPtr, row);
811 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
812 FreeReconDesc(reconDesc);
813
814 }
815
816 SignalReconDone(raidPtr);
817 return (0);
818 }
819 /*****************************************************************************
820 * do the right thing upon each reconstruction event.
821 * returns nonzero if and only if there is nothing left unread on the
822 * indicated disk
823 *****************************************************************************/
824 static int
825 ProcessReconEvent(raidPtr, frow, event)
826 RF_Raid_t *raidPtr;
827 RF_RowCol_t frow;
828 RF_ReconEvent_t *event;
829 {
830 int retcode = 0, submitblocked;
831 RF_ReconBuffer_t *rbuf;
832 RF_SectorCount_t sectorsPerRU;
833
834 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
835 switch (event->type) {
836
837 /* a read I/O has completed */
838 case RF_REVENT_READDONE:
839 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
840 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
841 frow, event->col, rbuf->parityStripeID);
842 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
843 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
844 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
845 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
846 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
847 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
848 if (!submitblocked)
849 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
850 break;
851
852 /* a write I/O has completed */
853 case RF_REVENT_WRITEDONE:
854 if (rf_floatingRbufDebug) {
855 rf_CheckFloatingRbufCount(raidPtr, 1);
856 }
857 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
858 rbuf = (RF_ReconBuffer_t *) event->arg;
859 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
860 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
861 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
862 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
863 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
864 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
865
866 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
867 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
868 raidPtr->numFullReconBuffers--;
869 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
870 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
871 } else
872 if (rbuf->type == RF_RBUF_TYPE_FORCED)
873 rf_FreeReconBuffer(rbuf);
874 else
875 RF_ASSERT(0);
876 break;
877
878 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
879 * cleared */
880 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
881 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
882 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
883 * BUFCLEAR event if we
884 * couldn't submit */
885 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
886 break;
887
888 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
889 * blockage has been cleared */
890 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
891 retcode = TryToRead(raidPtr, frow, event->col);
892 break;
893
894 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
895 * reconstruction blockage has been
896 * cleared */
897 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
898 retcode = TryToRead(raidPtr, frow, event->col);
899 break;
900
901 /* a buffer has become ready to write */
902 case RF_REVENT_BUFREADY:
903 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
904 retcode = IssueNextWriteRequest(raidPtr, frow);
905 if (rf_floatingRbufDebug) {
906 rf_CheckFloatingRbufCount(raidPtr, 1);
907 }
908 break;
909
910 /* we need to skip the current RU entirely because it got
911 * recon'd while we were waiting for something else to happen */
912 case RF_REVENT_SKIP:
913 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
914 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
915 break;
916
917 /* a forced-reconstruction read access has completed. Just
918 * submit the buffer */
919 case RF_REVENT_FORCEDREADDONE:
920 rbuf = (RF_ReconBuffer_t *) event->arg;
921 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
922 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
923 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
924 RF_ASSERT(!submitblocked);
925 break;
926
927 default:
928 RF_PANIC();
929 }
930 rf_FreeReconEventDesc(event);
931 return (retcode);
932 }
933 /*****************************************************************************
934 *
935 * find the next thing that's needed on the indicated disk, and issue
936 * a read request for it. We assume that the reconstruction buffer
937 * associated with this process is free to receive the data. If
938 * reconstruction is blocked on the indicated RU, we issue a
939 * blockage-release request instead of a physical disk read request.
940 * If the current disk gets too far ahead of the others, we issue a
941 * head-separation wait request and return.
942 *
943 * ctrl->{ru_count, curPSID, diskOffset} and
944 * rbuf->failedDiskSectorOffset are maintained to point to the unit
945 * we're currently accessing. Note that this deviates from the
946 * standard C idiom of having counters point to the next thing to be
947 * accessed. This allows us to easily retry when we're blocked by
948 * head separation or reconstruction-blockage events.
949 *
950 * returns nonzero if and only if there is nothing left unread on the
951 * indicated disk
952 *
953 *****************************************************************************/
954 static int
955 IssueNextReadRequest(raidPtr, row, col)
956 RF_Raid_t *raidPtr;
957 RF_RowCol_t row;
958 RF_RowCol_t col;
959 {
960 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
961 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
962 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
963 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
964 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
965 int do_new_check = 0, retcode = 0, status;
966
967 /* if we are currently the slowest disk, mark that we have to do a new
968 * check */
969 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
970 do_new_check = 1;
971
972 while (1) {
973
974 ctrl->ru_count++;
975 if (ctrl->ru_count < RUsPerPU) {
976 ctrl->diskOffset += sectorsPerRU;
977 rbuf->failedDiskSectorOffset += sectorsPerRU;
978 } else {
979 ctrl->curPSID++;
980 ctrl->ru_count = 0;
981 /* code left over from when head-sep was based on
982 * parity stripe id */
983 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
984 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
985 return (1); /* finito! */
986 }
987 /* find the disk offsets of the start of the parity
988 * stripe on both the current disk and the failed
989 * disk. skip this entire parity stripe if either disk
990 * does not appear in the indicated PS */
991 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
992 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
993 if (status) {
994 ctrl->ru_count = RUsPerPU - 1;
995 continue;
996 }
997 }
998 rbuf->which_ru = ctrl->ru_count;
999
1000 /* skip this RU if it's already been reconstructed */
1001 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1002 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1003 continue;
1004 }
1005 break;
1006 }
1007 ctrl->headSepCounter++;
1008 if (do_new_check)
1009 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1010
1011
1012 /* at this point, we have definitely decided what to do, and we have
1013 * only to see if we can actually do it now */
1014 rbuf->parityStripeID = ctrl->curPSID;
1015 rbuf->which_ru = ctrl->ru_count;
1016 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1017 sizeof(raidPtr->recon_tracerecs[col]));
1018 raidPtr->recon_tracerecs[col].reconacc = 1;
1019 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1020 retcode = TryToRead(raidPtr, row, col);
1021 return (retcode);
1022 }
1023
1024 /*
1025 * tries to issue the next read on the indicated disk. We may be
1026 * blocked by (a) the heads being too far apart, or (b) recon on the
1027 * indicated RU being blocked due to a write by a user thread. In
1028 * this case, we issue a head-sep or blockage wait request, which will
1029 * cause this same routine to be invoked again later when the blockage
1030 * has cleared.
1031 */
1032
1033 static int
1034 TryToRead(raidPtr, row, col)
1035 RF_Raid_t *raidPtr;
1036 RF_RowCol_t row;
1037 RF_RowCol_t col;
1038 {
1039 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1040 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1041 RF_StripeNum_t psid = ctrl->curPSID;
1042 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1043 RF_DiskQueueData_t *req;
1044 int status, created = 0;
1045 RF_ReconParityStripeStatus_t *pssPtr;
1046
1047 /* if the current disk is too far ahead of the others, issue a
1048 * head-separation wait and return */
1049 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1050 return (0);
1051 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1052 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1053
1054 /* if recon is blocked on the indicated parity stripe, issue a
1055 * block-wait request and return. this also must mark the indicated RU
1056 * in the stripe as under reconstruction if not blocked. */
1057 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1058 if (status == RF_PSS_RECON_BLOCKED) {
1059 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1060 goto out;
1061 } else
1062 if (status == RF_PSS_FORCED_ON_WRITE) {
1063 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1064 goto out;
1065 }
1066 /* make one last check to be sure that the indicated RU didn't get
1067 * reconstructed while we were waiting for something else to happen.
1068 * This is unfortunate in that it causes us to make this check twice
1069 * in the normal case. Might want to make some attempt to re-work
1070 * this so that we only do this check if we've definitely blocked on
1071 * one of the above checks. When this condition is detected, we may
1072 * have just created a bogus status entry, which we need to delete. */
1073 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1074 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1075 if (created)
1076 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1077 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1078 goto out;
1079 }
1080 /* found something to read. issue the I/O */
1081 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1082 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1083 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1084 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1085 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1086 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1087 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1088
1089 /* should be ok to use a NULL proc pointer here, all the bufs we use
1090 * should be in kernel space */
1091 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1092 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1093
1094 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1095
1096 ctrl->rbuf->arg = (void *) req;
1097 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1098 pssPtr->issued[col] = 1;
1099
1100 out:
1101 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1102 return (0);
1103 }
1104
1105
1106 /*
1107 * given a parity stripe ID, we want to find out whether both the
1108 * current disk and the failed disk exist in that parity stripe. If
1109 * not, we want to skip this whole PS. If so, we want to find the
1110 * disk offset of the start of the PS on both the current disk and the
1111 * failed disk.
1112 *
1113 * this works by getting a list of disks comprising the indicated
1114 * parity stripe, and searching the list for the current and failed
1115 * disks. Once we've decided they both exist in the parity stripe, we
1116 * need to decide whether each is data or parity, so that we'll know
1117 * which mapping function to call to get the corresponding disk
1118 * offsets.
1119 *
1120 * this is kind of unpleasant, but doing it this way allows the
1121 * reconstruction code to use parity stripe IDs rather than physical
1122 * disks address to march through the failed disk, which greatly
1123 * simplifies a lot of code, as well as eliminating the need for a
1124 * reverse-mapping function. I also think it will execute faster,
1125 * since the calls to the mapping module are kept to a minimum.
1126 *
1127 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1128 * THE STRIPE IN THE CORRECT ORDER */
1129
1130
1131 static int
1132 ComputePSDiskOffsets(
1133 RF_Raid_t * raidPtr, /* raid descriptor */
1134 RF_StripeNum_t psid, /* parity stripe identifier */
1135 RF_RowCol_t row, /* row and column of disk to find the offsets
1136 * for */
1137 RF_RowCol_t col,
1138 RF_SectorNum_t * outDiskOffset,
1139 RF_SectorNum_t * outFailedDiskSectorOffset,
1140 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1141 RF_RowCol_t * spCol,
1142 RF_SectorNum_t * spOffset)
1143 { /* OUT: offset into disk containing spare unit */
1144 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1145 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1146 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1147 RF_RowCol_t *diskids;
1148 u_int i, j, k, i_offset, j_offset;
1149 RF_RowCol_t prow, pcol;
1150 int testcol, testrow;
1151 RF_RowCol_t stripe;
1152 RF_SectorNum_t poffset;
1153 char i_is_parity = 0, j_is_parity = 0;
1154 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1155
1156 /* get a listing of the disks comprising that stripe */
1157 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1158 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1159 RF_ASSERT(diskids);
1160
1161 /* reject this entire parity stripe if it does not contain the
1162 * indicated disk or it does not contain the failed disk */
1163 if (row != stripe)
1164 goto skipit;
1165 for (i = 0; i < stripeWidth; i++) {
1166 if (col == diskids[i])
1167 break;
1168 }
1169 if (i == stripeWidth)
1170 goto skipit;
1171 for (j = 0; j < stripeWidth; j++) {
1172 if (fcol == diskids[j])
1173 break;
1174 }
1175 if (j == stripeWidth) {
1176 goto skipit;
1177 }
1178 /* find out which disk the parity is on */
1179 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1180
1181 /* find out if either the current RU or the failed RU is parity */
1182 /* also, if the parity occurs in this stripe prior to the data and/or
1183 * failed col, we need to decrement i and/or j */
1184 for (k = 0; k < stripeWidth; k++)
1185 if (diskids[k] == pcol)
1186 break;
1187 RF_ASSERT(k < stripeWidth);
1188 i_offset = i;
1189 j_offset = j;
1190 if (k < i)
1191 i_offset--;
1192 else
1193 if (k == i) {
1194 i_is_parity = 1;
1195 i_offset = 0;
1196 } /* set offsets to zero to disable multiply
1197 * below */
1198 if (k < j)
1199 j_offset--;
1200 else
1201 if (k == j) {
1202 j_is_parity = 1;
1203 j_offset = 0;
1204 }
1205 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1206 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1207 * tells us how far into the stripe the [current,failed] disk is. */
1208
1209 /* call the mapping routine to get the offset into the current disk,
1210 * repeat for failed disk. */
1211 if (i_is_parity)
1212 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1213 else
1214 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1215
1216 RF_ASSERT(row == testrow && col == testcol);
1217
1218 if (j_is_parity)
1219 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1220 else
1221 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1222 RF_ASSERT(row == testrow && fcol == testcol);
1223
1224 /* now locate the spare unit for the failed unit */
1225 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1226 if (j_is_parity)
1227 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1228 else
1229 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1230 } else {
1231 *spRow = raidPtr->reconControl[row]->spareRow;
1232 *spCol = raidPtr->reconControl[row]->spareCol;
1233 *spOffset = *outFailedDiskSectorOffset;
1234 }
1235
1236 return (0);
1237
1238 skipit:
1239 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1240 psid, row, col);
1241 return (1);
1242 }
1243 /* this is called when a buffer has become ready to write to the replacement disk */
1244 static int
1245 IssueNextWriteRequest(raidPtr, row)
1246 RF_Raid_t *raidPtr;
1247 RF_RowCol_t row;
1248 {
1249 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1250 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1251 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1252 RF_ReconBuffer_t *rbuf;
1253 RF_DiskQueueData_t *req;
1254
1255 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1256 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1257 * have gotten the event that sent us here */
1258 RF_ASSERT(rbuf->pssPtr);
1259
1260 rbuf->pssPtr->writeRbuf = rbuf;
1261 rbuf->pssPtr = NULL;
1262
1263 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1264 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1265 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1266 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1267 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1268 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1269
1270 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1271 * kernel space */
1272 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1273 sectorsPerRU, rbuf->buffer,
1274 rbuf->parityStripeID, rbuf->which_ru,
1275 ReconWriteDoneProc, (void *) rbuf, NULL,
1276 &raidPtr->recon_tracerecs[fcol],
1277 (void *) raidPtr, 0, NULL);
1278
1279 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1280
1281 rbuf->arg = (void *) req;
1282 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1283
1284 return (0);
1285 }
1286
1287 /*
1288 * this gets called upon the completion of a reconstruction read
1289 * operation the arg is a pointer to the per-disk reconstruction
1290 * control structure for the process that just finished a read.
1291 *
1292 * called at interrupt context in the kernel, so don't do anything
1293 * illegal here.
1294 */
1295 static int
1296 ReconReadDoneProc(arg, status)
1297 void *arg;
1298 int status;
1299 {
1300 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1301 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1302
1303 if (status) {
1304 /*
1305 * XXX
1306 */
1307 printf("Recon read failed!\n");
1308 RF_PANIC();
1309 }
1310 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1311 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1312 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1313 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1314 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1315
1316 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1317 return (0);
1318 }
1319 /* this gets called upon the completion of a reconstruction write operation.
1320 * the arg is a pointer to the rbuf that was just written
1321 *
1322 * called at interrupt context in the kernel, so don't do anything illegal here.
1323 */
1324 static int
1325 ReconWriteDoneProc(arg, status)
1326 void *arg;
1327 int status;
1328 {
1329 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1330
1331 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1332 if (status) {
1333 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1334 * write failed!\n"); */
1335 RF_PANIC();
1336 }
1337 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1338 return (0);
1339 }
1340
1341
1342 /*
1343 * computes a new minimum head sep, and wakes up anyone who needs to
1344 * be woken as a result
1345 */
1346 static void
1347 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1348 RF_Raid_t *raidPtr;
1349 RF_RowCol_t row;
1350 RF_HeadSepLimit_t hsCtr;
1351 {
1352 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1353 RF_HeadSepLimit_t new_min;
1354 RF_RowCol_t i;
1355 RF_CallbackDesc_t *p;
1356 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1357 * of a minimum */
1358
1359
1360 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1361
1362 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1363 for (i = 0; i < raidPtr->numCol; i++)
1364 if (i != reconCtrlPtr->fcol) {
1365 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1366 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1367 }
1368 /* set the new minimum and wake up anyone who can now run again */
1369 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1370 reconCtrlPtr->minHeadSepCounter = new_min;
1371 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1372 while (reconCtrlPtr->headSepCBList) {
1373 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1374 break;
1375 p = reconCtrlPtr->headSepCBList;
1376 reconCtrlPtr->headSepCBList = p->next;
1377 p->next = NULL;
1378 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1379 rf_FreeCallbackDesc(p);
1380 }
1381
1382 }
1383 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1384 }
1385
1386 /*
1387 * checks to see that the maximum head separation will not be violated
1388 * if we initiate a reconstruction I/O on the indicated disk.
1389 * Limiting the maximum head separation between two disks eliminates
1390 * the nasty buffer-stall conditions that occur when one disk races
1391 * ahead of the others and consumes all of the floating recon buffers.
1392 * This code is complex and unpleasant but it's necessary to avoid
1393 * some very nasty, albeit fairly rare, reconstruction behavior.
1394 *
1395 * returns non-zero if and only if we have to stop working on the
1396 * indicated disk due to a head-separation delay.
1397 */
1398 static int
1399 CheckHeadSeparation(
1400 RF_Raid_t * raidPtr,
1401 RF_PerDiskReconCtrl_t * ctrl,
1402 RF_RowCol_t row,
1403 RF_RowCol_t col,
1404 RF_HeadSepLimit_t hsCtr,
1405 RF_ReconUnitNum_t which_ru)
1406 {
1407 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1408 RF_CallbackDesc_t *cb, *p, *pt;
1409 int retval = 0;
1410
1411 /* if we're too far ahead of the slowest disk, stop working on this
1412 * disk until the slower ones catch up. We do this by scheduling a
1413 * wakeup callback for the time when the slowest disk has caught up.
1414 * We define "caught up" with 20% hysteresis, i.e. the head separation
1415 * must have fallen to at most 80% of the max allowable head
1416 * separation before we'll wake up.
1417 *
1418 */
1419 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1420 if ((raidPtr->headSepLimit >= 0) &&
1421 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1422 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1423 raidPtr->raidid, row, col, ctrl->headSepCounter,
1424 reconCtrlPtr->minHeadSepCounter,
1425 raidPtr->headSepLimit);
1426 cb = rf_AllocCallbackDesc();
1427 /* the minHeadSepCounter value we have to get to before we'll
1428 * wake up. build in 20% hysteresis. */
1429 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1430 cb->row = row;
1431 cb->col = col;
1432 cb->next = NULL;
1433
1434 /* insert this callback descriptor into the sorted list of
1435 * pending head-sep callbacks */
1436 p = reconCtrlPtr->headSepCBList;
1437 if (!p)
1438 reconCtrlPtr->headSepCBList = cb;
1439 else
1440 if (cb->callbackArg.v < p->callbackArg.v) {
1441 cb->next = reconCtrlPtr->headSepCBList;
1442 reconCtrlPtr->headSepCBList = cb;
1443 } else {
1444 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1445 cb->next = p;
1446 pt->next = cb;
1447 }
1448 retval = 1;
1449 #if RF_RECON_STATS > 0
1450 ctrl->reconCtrl->reconDesc->hsStallCount++;
1451 #endif /* RF_RECON_STATS > 0 */
1452 }
1453 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1454
1455 return (retval);
1456 }
1457 /*
1458 * checks to see if reconstruction has been either forced or blocked
1459 * by a user operation. if forced, we skip this RU entirely. else if
1460 * blocked, put ourselves on the wait list. else return 0.
1461 *
1462 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1463 */
1464 static int
1465 CheckForcedOrBlockedReconstruction(
1466 RF_Raid_t * raidPtr,
1467 RF_ReconParityStripeStatus_t * pssPtr,
1468 RF_PerDiskReconCtrl_t * ctrl,
1469 RF_RowCol_t row,
1470 RF_RowCol_t col,
1471 RF_StripeNum_t psid,
1472 RF_ReconUnitNum_t which_ru)
1473 {
1474 RF_CallbackDesc_t *cb;
1475 int retcode = 0;
1476
1477 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1478 retcode = RF_PSS_FORCED_ON_WRITE;
1479 else
1480 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1481 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1482 cb = rf_AllocCallbackDesc(); /* append ourselves to
1483 * the blockage-wait
1484 * list */
1485 cb->row = row;
1486 cb->col = col;
1487 cb->next = pssPtr->blockWaitList;
1488 pssPtr->blockWaitList = cb;
1489 retcode = RF_PSS_RECON_BLOCKED;
1490 }
1491 if (!retcode)
1492 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1493 * reconstruction */
1494
1495 return (retcode);
1496 }
1497 /*
1498 * if reconstruction is currently ongoing for the indicated stripeID,
1499 * reconstruction is forced to completion and we return non-zero to
1500 * indicate that the caller must wait. If not, then reconstruction is
1501 * blocked on the indicated stripe and the routine returns zero. If
1502 * and only if we return non-zero, we'll cause the cbFunc to get
1503 * invoked with the cbArg when the reconstruction has completed.
1504 */
1505 int
1506 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1507 RF_Raid_t *raidPtr;
1508 RF_AccessStripeMap_t *asmap;
1509 void (*cbFunc) (RF_Raid_t *, void *);
1510 void *cbArg;
1511 {
1512 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1513 * we're working on */
1514 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1515 * forcing recon on */
1516 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1517 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1518 * stripe status structure */
1519 RF_StripeNum_t psid; /* parity stripe id */
1520 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1521 * offset */
1522 RF_RowCol_t *diskids;
1523 RF_RowCol_t stripe;
1524 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1525 RF_RowCol_t fcol, diskno, i;
1526 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1527 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1528 RF_CallbackDesc_t *cb;
1529 int created = 0, nPromoted;
1530
1531 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1532
1533 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1534
1535 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1536
1537 /* if recon is not ongoing on this PS, just return */
1538 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1539 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1540 return (0);
1541 }
1542 /* otherwise, we have to wait for reconstruction to complete on this
1543 * RU. */
1544 /* In order to avoid waiting for a potentially large number of
1545 * low-priority accesses to complete, we force a normal-priority (i.e.
1546 * not low-priority) reconstruction on this RU. */
1547 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1548 DDprintf1("Forcing recon on psid %ld\n", psid);
1549 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1550 * forced recon */
1551 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1552 * that we just set */
1553 fcol = raidPtr->reconControl[row]->fcol;
1554
1555 /* get a listing of the disks comprising the indicated stripe */
1556 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1557 RF_ASSERT(row == stripe);
1558
1559 /* For previously issued reads, elevate them to normal
1560 * priority. If the I/O has already completed, it won't be
1561 * found in the queue, and hence this will be a no-op. For
1562 * unissued reads, allocate buffers and issue new reads. The
1563 * fact that we've set the FORCED bit means that the regular
1564 * recon procs will not re-issue these reqs */
1565 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1566 if ((diskno = diskids[i]) != fcol) {
1567 if (pssPtr->issued[diskno]) {
1568 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1569 if (rf_reconDebug && nPromoted)
1570 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1571 } else {
1572 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1573 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1574 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1575 * location */
1576 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1577 new_rbuf->which_ru = which_ru;
1578 new_rbuf->failedDiskSectorOffset = fd_offset;
1579 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1580
1581 /* use NULL b_proc b/c all addrs
1582 * should be in kernel space */
1583 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1584 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1585 NULL, (void *) raidPtr, 0, NULL);
1586
1587 RF_ASSERT(req); /* XXX -- fix this --
1588 * XXX */
1589
1590 new_rbuf->arg = req;
1591 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1592 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1593 }
1594 }
1595 /* if the write is sitting in the disk queue, elevate its
1596 * priority */
1597 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1598 printf("raid%d: promoted write to row %d col %d\n",
1599 raidPtr->raidid, row, fcol);
1600 }
1601 /* install a callback descriptor to be invoked when recon completes on
1602 * this parity stripe. */
1603 cb = rf_AllocCallbackDesc();
1604 /* XXX the following is bogus.. These functions don't really match!!
1605 * GO */
1606 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1607 cb->callbackArg.p = (void *) cbArg;
1608 cb->next = pssPtr->procWaitList;
1609 pssPtr->procWaitList = cb;
1610 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1611 raidPtr->raidid, psid);
1612
1613 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1614 return (1);
1615 }
1616 /* called upon the completion of a forced reconstruction read.
1617 * all we do is schedule the FORCEDREADONE event.
1618 * called at interrupt context in the kernel, so don't do anything illegal here.
1619 */
1620 static void
1621 ForceReconReadDoneProc(arg, status)
1622 void *arg;
1623 int status;
1624 {
1625 RF_ReconBuffer_t *rbuf = arg;
1626
1627 if (status) {
1628 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1629 * recon read
1630 * failed!\n"); */
1631 RF_PANIC();
1632 }
1633 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1634 }
1635 /* releases a block on the reconstruction of the indicated stripe */
1636 int
1637 rf_UnblockRecon(raidPtr, asmap)
1638 RF_Raid_t *raidPtr;
1639 RF_AccessStripeMap_t *asmap;
1640 {
1641 RF_RowCol_t row = asmap->origRow;
1642 RF_StripeNum_t stripeID = asmap->stripeID;
1643 RF_ReconParityStripeStatus_t *pssPtr;
1644 RF_ReconUnitNum_t which_ru;
1645 RF_StripeNum_t psid;
1646 int created = 0;
1647 RF_CallbackDesc_t *cb;
1648
1649 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1650 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1651 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1652
1653 /* When recon is forced, the pss desc can get deleted before we get
1654 * back to unblock recon. But, this can _only_ happen when recon is
1655 * forced. It would be good to put some kind of sanity check here, but
1656 * how to decide if recon was just forced or not? */
1657 if (!pssPtr) {
1658 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1659 * RU %d\n",psid,which_ru); */
1660 if (rf_reconDebug || rf_pssDebug)
1661 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1662 goto out;
1663 }
1664 pssPtr->blockCount--;
1665 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1666 raidPtr->raidid, psid, pssPtr->blockCount);
1667 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1668
1669 /* unblock recon before calling CauseReconEvent in case
1670 * CauseReconEvent causes us to try to issue a new read before
1671 * returning here. */
1672 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1673
1674
1675 while (pssPtr->blockWaitList) {
1676 /* spin through the block-wait list and
1677 release all the waiters */
1678 cb = pssPtr->blockWaitList;
1679 pssPtr->blockWaitList = cb->next;
1680 cb->next = NULL;
1681 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1682 rf_FreeCallbackDesc(cb);
1683 }
1684 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1685 /* if no recon was requested while recon was blocked */
1686 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1687 }
1688 }
1689 out:
1690 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1691 return (0);
1692 }
1693