rf_reconstruct.c revision 1.31 1 /* $NetBSD: rf_reconstruct.c,v 1.31 2001/11/13 07:11:16 lukem Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.31 2001/11/13 07:11:16 lukem Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/types.h>
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/proc.h>
46 #include <sys/ioctl.h>
47 #include <sys/fcntl.h>
48 #include <sys/vnode.h>
49 #include <dev/raidframe/raidframevar.h>
50
51 #include "rf_raid.h"
52 #include "rf_reconutil.h"
53 #include "rf_revent.h"
54 #include "rf_reconbuffer.h"
55 #include "rf_acctrace.h"
56 #include "rf_etimer.h"
57 #include "rf_dag.h"
58 #include "rf_desc.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_debugprint.h"
62 #include "rf_driver.h"
63 #include "rf_utils.h"
64 #include "rf_shutdown.h"
65
66 #include "rf_kintf.h"
67
68 /* setting these to -1 causes them to be set to their default values if not set by debug options */
69
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 static RF_FreeList_t *rf_recond_freelist;
83 #define RF_MAX_FREE_RECOND 4
84 #define RF_RECOND_INC 1
85
86 static RF_RaidReconDesc_t *
87 AllocRaidReconDesc(RF_Raid_t * raidPtr,
88 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
89 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
90 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
91 static int
92 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
93 RF_ReconEvent_t * event);
94 static int
95 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
96 RF_RowCol_t col);
97 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
98 static int
99 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
100 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
101 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
102 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
103 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
104 static int ReconReadDoneProc(void *arg, int status);
105 static int ReconWriteDoneProc(void *arg, int status);
106 static void
107 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
108 RF_HeadSepLimit_t hsCtr);
109 static int
110 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
111 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
112 RF_ReconUnitNum_t which_ru);
113 static int
114 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
115 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
116 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
117 RF_ReconUnitNum_t which_ru);
118 static void ForceReconReadDoneProc(void *arg, int status);
119
120 static void rf_ShutdownReconstruction(void *);
121
122 struct RF_ReconDoneProc_s {
123 void (*proc) (RF_Raid_t *, void *);
124 void *arg;
125 RF_ReconDoneProc_t *next;
126 };
127
128 static RF_FreeList_t *rf_rdp_freelist;
129 #define RF_MAX_FREE_RDP 4
130 #define RF_RDP_INC 1
131
132 static void
133 SignalReconDone(RF_Raid_t * raidPtr)
134 {
135 RF_ReconDoneProc_t *p;
136
137 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
138 for (p = raidPtr->recon_done_procs; p; p = p->next) {
139 p->proc(raidPtr, p->arg);
140 }
141 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
142 }
143
144 int
145 rf_RegisterReconDoneProc(
146 RF_Raid_t * raidPtr,
147 void (*proc) (RF_Raid_t *, void *),
148 void *arg,
149 RF_ReconDoneProc_t ** handlep)
150 {
151 RF_ReconDoneProc_t *p;
152
153 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
154 if (p == NULL)
155 return (ENOMEM);
156 p->proc = proc;
157 p->arg = arg;
158 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 p->next = raidPtr->recon_done_procs;
160 raidPtr->recon_done_procs = p;
161 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
162 if (handlep)
163 *handlep = p;
164 return (0);
165 }
166 /**************************************************************************
167 *
168 * sets up the parameters that will be used by the reconstruction process
169 * currently there are none, except for those that the layout-specific
170 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
171 *
172 * in the kernel, we fire off the recon thread.
173 *
174 **************************************************************************/
175 static void
176 rf_ShutdownReconstruction(ignored)
177 void *ignored;
178 {
179 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
180 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
181 }
182
183 int
184 rf_ConfigureReconstruction(listp)
185 RF_ShutdownList_t **listp;
186 {
187 int rc;
188
189 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
190 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
191 if (rf_recond_freelist == NULL)
192 return (ENOMEM);
193 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
194 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
195 if (rf_rdp_freelist == NULL) {
196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 return (ENOMEM);
198 }
199 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
200 if (rc) {
201 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
202 __FILE__, __LINE__, rc);
203 rf_ShutdownReconstruction(NULL);
204 return (rc);
205 }
206 return (0);
207 }
208
209 static RF_RaidReconDesc_t *
210 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
211 RF_Raid_t *raidPtr;
212 RF_RowCol_t row;
213 RF_RowCol_t col;
214 RF_RaidDisk_t *spareDiskPtr;
215 int numDisksDone;
216 RF_RowCol_t srow;
217 RF_RowCol_t scol;
218 {
219
220 RF_RaidReconDesc_t *reconDesc;
221
222 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
223
224 reconDesc->raidPtr = raidPtr;
225 reconDesc->row = row;
226 reconDesc->col = col;
227 reconDesc->spareDiskPtr = spareDiskPtr;
228 reconDesc->numDisksDone = numDisksDone;
229 reconDesc->srow = srow;
230 reconDesc->scol = scol;
231 reconDesc->state = 0;
232 reconDesc->next = NULL;
233
234 return (reconDesc);
235 }
236
237 static void
238 FreeReconDesc(reconDesc)
239 RF_RaidReconDesc_t *reconDesc;
240 {
241 #if RF_RECON_STATS > 0
242 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
243 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
244 #endif /* RF_RECON_STATS > 0 */
245 printf("RAIDframe: %lu max exec ticks\n",
246 (long) reconDesc->maxReconExecTicks);
247 #if (RF_RECON_STATS > 0) || defined(KERNEL)
248 printf("\n");
249 #endif /* (RF_RECON_STATS > 0) || KERNEL */
250 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
251 }
252
253
254 /*****************************************************************************
255 *
256 * primary routine to reconstruct a failed disk. This should be called from
257 * within its own thread. It won't return until reconstruction completes,
258 * fails, or is aborted.
259 *****************************************************************************/
260 int
261 rf_ReconstructFailedDisk(raidPtr, row, col)
262 RF_Raid_t *raidPtr;
263 RF_RowCol_t row;
264 RF_RowCol_t col;
265 {
266 RF_LayoutSW_t *lp;
267 int rc;
268
269 lp = raidPtr->Layout.map;
270 if (lp->SubmitReconBuffer) {
271 /*
272 * The current infrastructure only supports reconstructing one
273 * disk at a time for each array.
274 */
275 RF_LOCK_MUTEX(raidPtr->mutex);
276 while (raidPtr->reconInProgress) {
277 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
278 }
279 raidPtr->reconInProgress++;
280 RF_UNLOCK_MUTEX(raidPtr->mutex);
281 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
282 RF_LOCK_MUTEX(raidPtr->mutex);
283 raidPtr->reconInProgress--;
284 RF_UNLOCK_MUTEX(raidPtr->mutex);
285 } else {
286 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
287 lp->parityConfig);
288 rc = EIO;
289 }
290 RF_SIGNAL_COND(raidPtr->waitForReconCond);
291 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
292 * needed at some point... GO */
293 return (rc);
294 }
295
296 int
297 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
298 RF_Raid_t *raidPtr;
299 RF_RowCol_t row;
300 RF_RowCol_t col;
301 {
302 RF_ComponentLabel_t c_label;
303 RF_RaidDisk_t *spareDiskPtr = NULL;
304 RF_RaidReconDesc_t *reconDesc;
305 RF_RowCol_t srow, scol;
306 int numDisksDone = 0, rc;
307
308 /* first look for a spare drive onto which to reconstruct the data */
309 /* spare disk descriptors are stored in row 0. This may have to
310 * change eventually */
311
312 RF_LOCK_MUTEX(raidPtr->mutex);
313 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
314
315 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
316 if (raidPtr->status[row] != rf_rs_degraded) {
317 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
318 RF_UNLOCK_MUTEX(raidPtr->mutex);
319 return (EINVAL);
320 }
321 srow = row;
322 scol = (-1);
323 } else {
324 srow = 0;
325 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
326 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
327 spareDiskPtr = &raidPtr->Disks[srow][scol];
328 spareDiskPtr->status = rf_ds_used_spare;
329 break;
330 }
331 }
332 if (!spareDiskPtr) {
333 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
334 RF_UNLOCK_MUTEX(raidPtr->mutex);
335 return (ENOSPC);
336 }
337 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
338 }
339 RF_UNLOCK_MUTEX(raidPtr->mutex);
340
341 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
342 raidPtr->reconDesc = (void *) reconDesc;
343 #if RF_RECON_STATS > 0
344 reconDesc->hsStallCount = 0;
345 reconDesc->numReconExecDelays = 0;
346 reconDesc->numReconEventWaits = 0;
347 #endif /* RF_RECON_STATS > 0 */
348 reconDesc->reconExecTimerRunning = 0;
349 reconDesc->reconExecTicks = 0;
350 reconDesc->maxReconExecTicks = 0;
351 rc = rf_ContinueReconstructFailedDisk(reconDesc);
352
353 if (!rc) {
354 /* fix up the component label */
355 /* Don't actually need the read here.. */
356 raidread_component_label(
357 raidPtr->raid_cinfo[srow][scol].ci_dev,
358 raidPtr->raid_cinfo[srow][scol].ci_vp,
359 &c_label);
360
361 raid_init_component_label( raidPtr, &c_label);
362 c_label.row = row;
363 c_label.column = col;
364 c_label.clean = RF_RAID_DIRTY;
365 c_label.status = rf_ds_optimal;
366 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
367
368 /* We've just done a rebuild based on all the other
369 disks, so at this point the parity is known to be
370 clean, even if it wasn't before. */
371
372 /* XXX doesn't hold for RAID 6!!*/
373
374 raidPtr->parity_good = RF_RAID_CLEAN;
375
376 /* XXXX MORE NEEDED HERE */
377
378 raidwrite_component_label(
379 raidPtr->raid_cinfo[srow][scol].ci_dev,
380 raidPtr->raid_cinfo[srow][scol].ci_vp,
381 &c_label);
382
383 }
384 return (rc);
385 }
386
387 /*
388
389 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
390 and you don't get a spare until the next Monday. With this function
391 (and hot-swappable drives) you can now put your new disk containing
392 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
393 rebuild the data "on the spot".
394
395 */
396
397 int
398 rf_ReconstructInPlace(raidPtr, row, col)
399 RF_Raid_t *raidPtr;
400 RF_RowCol_t row;
401 RF_RowCol_t col;
402 {
403 RF_RaidDisk_t *spareDiskPtr = NULL;
404 RF_RaidReconDesc_t *reconDesc;
405 RF_LayoutSW_t *lp;
406 RF_RaidDisk_t *badDisk;
407 RF_ComponentLabel_t c_label;
408 int numDisksDone = 0, rc;
409 struct partinfo dpart;
410 struct vnode *vp;
411 struct vattr va;
412 struct proc *proc;
413 int retcode;
414 int ac;
415
416 lp = raidPtr->Layout.map;
417 if (lp->SubmitReconBuffer) {
418 /*
419 * The current infrastructure only supports reconstructing one
420 * disk at a time for each array.
421 */
422 RF_LOCK_MUTEX(raidPtr->mutex);
423 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
424 (raidPtr->numFailures > 0)) {
425 /* XXX 0 above shouldn't be constant!!! */
426 /* some component other than this has failed.
427 Let's not make things worse than they already
428 are... */
429 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
430 printf(" Row: %d Col: %d Too many failures.\n",
431 row, col);
432 RF_UNLOCK_MUTEX(raidPtr->mutex);
433 return (EINVAL);
434 }
435 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
436 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
437 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
438
439 RF_UNLOCK_MUTEX(raidPtr->mutex);
440 return (EINVAL);
441 }
442
443
444 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
445 /* "It's gone..." */
446 raidPtr->numFailures++;
447 raidPtr->Disks[row][col].status = rf_ds_failed;
448 raidPtr->status[row] = rf_rs_degraded;
449 rf_update_component_labels(raidPtr,
450 RF_NORMAL_COMPONENT_UPDATE);
451 }
452
453 while (raidPtr->reconInProgress) {
454 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
455 }
456
457 raidPtr->reconInProgress++;
458
459
460 /* first look for a spare drive onto which to reconstruct
461 the data. spare disk descriptors are stored in row 0.
462 This may have to change eventually */
463
464 /* Actually, we don't care if it's failed or not...
465 On a RAID set with correct parity, this function
466 should be callable on any component without ill affects. */
467 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
468 */
469
470 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
471 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
472
473 raidPtr->reconInProgress--;
474 RF_UNLOCK_MUTEX(raidPtr->mutex);
475 return (EINVAL);
476 }
477
478 /* XXX need goop here to see if the disk is alive,
479 and, if not, make it so... */
480
481
482
483 badDisk = &raidPtr->Disks[row][col];
484
485 proc = raidPtr->engine_thread;
486
487 /* This device may have been opened successfully the
488 first time. Close it before trying to open it again.. */
489
490 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
491 printf("Closed the open device: %s\n",
492 raidPtr->Disks[row][col].devname);
493 vp = raidPtr->raid_cinfo[row][col].ci_vp;
494 ac = raidPtr->Disks[row][col].auto_configured;
495 rf_close_component(raidPtr, vp, ac);
496 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
497 }
498 /* note that this disk was *not* auto_configured (any longer)*/
499 raidPtr->Disks[row][col].auto_configured = 0;
500
501 printf("About to (re-)open the device for rebuilding: %s\n",
502 raidPtr->Disks[row][col].devname);
503
504 retcode = raidlookup(raidPtr->Disks[row][col].devname,
505 proc, &vp);
506
507 if (retcode) {
508 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
509 raidPtr->Disks[row][col].devname, retcode);
510
511 /* XXX the component isn't responding properly...
512 must be still dead :-( */
513 raidPtr->reconInProgress--;
514 RF_UNLOCK_MUTEX(raidPtr->mutex);
515 return(retcode);
516
517 } else {
518
519 /* Ok, so we can at least do a lookup...
520 How about actually getting a vp for it? */
521
522 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
523 proc)) != 0) {
524 raidPtr->reconInProgress--;
525 RF_UNLOCK_MUTEX(raidPtr->mutex);
526 return(retcode);
527 }
528 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
529 FREAD, proc->p_ucred, proc);
530 if (retcode) {
531 raidPtr->reconInProgress--;
532 RF_UNLOCK_MUTEX(raidPtr->mutex);
533 return(retcode);
534 }
535 raidPtr->Disks[row][col].blockSize =
536 dpart.disklab->d_secsize;
537
538 raidPtr->Disks[row][col].numBlocks =
539 dpart.part->p_size - rf_protectedSectors;
540
541 raidPtr->raid_cinfo[row][col].ci_vp = vp;
542 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
543
544 raidPtr->Disks[row][col].dev = va.va_rdev;
545
546 /* we allow the user to specify that only a
547 fraction of the disks should be used this is
548 just for debug: it speeds up
549 * the parity scan */
550 raidPtr->Disks[row][col].numBlocks =
551 raidPtr->Disks[row][col].numBlocks *
552 rf_sizePercentage / 100;
553 }
554
555
556
557 spareDiskPtr = &raidPtr->Disks[row][col];
558 spareDiskPtr->status = rf_ds_used_spare;
559
560 printf("RECON: initiating in-place reconstruction on\n");
561 printf(" row %d col %d -> spare at row %d col %d\n",
562 row, col, row, col);
563
564 RF_UNLOCK_MUTEX(raidPtr->mutex);
565
566 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
567 spareDiskPtr, numDisksDone,
568 row, col);
569 raidPtr->reconDesc = (void *) reconDesc;
570 #if RF_RECON_STATS > 0
571 reconDesc->hsStallCount = 0;
572 reconDesc->numReconExecDelays = 0;
573 reconDesc->numReconEventWaits = 0;
574 #endif /* RF_RECON_STATS > 0 */
575 reconDesc->reconExecTimerRunning = 0;
576 reconDesc->reconExecTicks = 0;
577 reconDesc->maxReconExecTicks = 0;
578 rc = rf_ContinueReconstructFailedDisk(reconDesc);
579
580 RF_LOCK_MUTEX(raidPtr->mutex);
581 raidPtr->reconInProgress--;
582 RF_UNLOCK_MUTEX(raidPtr->mutex);
583
584 } else {
585 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
586 lp->parityConfig);
587 rc = EIO;
588 }
589 RF_LOCK_MUTEX(raidPtr->mutex);
590
591 if (!rc) {
592 /* Need to set these here, as at this point it'll be claiming
593 that the disk is in rf_ds_spared! But we know better :-) */
594
595 raidPtr->Disks[row][col].status = rf_ds_optimal;
596 raidPtr->status[row] = rf_rs_optimal;
597
598 /* fix up the component label */
599 /* Don't actually need the read here.. */
600 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
601 raidPtr->raid_cinfo[row][col].ci_vp,
602 &c_label);
603
604 raid_init_component_label(raidPtr, &c_label);
605
606 c_label.row = row;
607 c_label.column = col;
608
609 /* We've just done a rebuild based on all the other
610 disks, so at this point the parity is known to be
611 clean, even if it wasn't before. */
612
613 /* XXX doesn't hold for RAID 6!!*/
614
615 raidPtr->parity_good = RF_RAID_CLEAN;
616
617 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
618 raidPtr->raid_cinfo[row][col].ci_vp,
619 &c_label);
620
621 }
622 RF_UNLOCK_MUTEX(raidPtr->mutex);
623 RF_SIGNAL_COND(raidPtr->waitForReconCond);
624 wakeup(&raidPtr->waitForReconCond);
625 return (rc);
626 }
627
628
629 int
630 rf_ContinueReconstructFailedDisk(reconDesc)
631 RF_RaidReconDesc_t *reconDesc;
632 {
633 RF_Raid_t *raidPtr = reconDesc->raidPtr;
634 RF_RowCol_t row = reconDesc->row;
635 RF_RowCol_t col = reconDesc->col;
636 RF_RowCol_t srow = reconDesc->srow;
637 RF_RowCol_t scol = reconDesc->scol;
638 RF_ReconMap_t *mapPtr;
639
640 RF_ReconEvent_t *event;
641 struct timeval etime, elpsd;
642 unsigned long xor_s, xor_resid_us;
643 int retcode, i, ds;
644
645 switch (reconDesc->state) {
646
647
648 case 0:
649
650 raidPtr->accumXorTimeUs = 0;
651
652 /* create one trace record per physical disk */
653 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
654
655 /* quiesce the array prior to starting recon. this is needed
656 * to assure no nasty interactions with pending user writes.
657 * We need to do this before we change the disk or row status. */
658 reconDesc->state = 1;
659
660 Dprintf("RECON: begin request suspend\n");
661 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
662 Dprintf("RECON: end request suspend\n");
663 rf_StartUserStats(raidPtr); /* zero out the stats kept on
664 * user accs */
665
666 /* fall through to state 1 */
667
668 case 1:
669
670 RF_LOCK_MUTEX(raidPtr->mutex);
671
672 /* create the reconstruction control pointer and install it in
673 * the right slot */
674 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
675 mapPtr = raidPtr->reconControl[row]->reconMap;
676 raidPtr->status[row] = rf_rs_reconstructing;
677 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
678 raidPtr->Disks[row][col].spareRow = srow;
679 raidPtr->Disks[row][col].spareCol = scol;
680
681 RF_UNLOCK_MUTEX(raidPtr->mutex);
682
683 RF_GETTIME(raidPtr->reconControl[row]->starttime);
684
685 /* now start up the actual reconstruction: issue a read for
686 * each surviving disk */
687
688 reconDesc->numDisksDone = 0;
689 for (i = 0; i < raidPtr->numCol; i++) {
690 if (i != col) {
691 /* find and issue the next I/O on the
692 * indicated disk */
693 if (IssueNextReadRequest(raidPtr, row, i)) {
694 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
695 reconDesc->numDisksDone++;
696 }
697 }
698 }
699
700 case 2:
701 Dprintf("RECON: resume requests\n");
702 rf_ResumeNewRequests(raidPtr);
703
704
705 reconDesc->state = 3;
706
707 case 3:
708
709 /* process reconstruction events until all disks report that
710 * they've completed all work */
711 mapPtr = raidPtr->reconControl[row]->reconMap;
712
713
714
715 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
716
717 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
718 RF_ASSERT(event);
719
720 if (ProcessReconEvent(raidPtr, row, event))
721 reconDesc->numDisksDone++;
722 raidPtr->reconControl[row]->numRUsTotal =
723 mapPtr->totalRUs;
724 raidPtr->reconControl[row]->numRUsComplete =
725 mapPtr->totalRUs -
726 rf_UnitsLeftToReconstruct(mapPtr);
727
728 raidPtr->reconControl[row]->percentComplete =
729 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
730 if (rf_prReconSched) {
731 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
732 }
733 }
734
735
736
737 reconDesc->state = 4;
738
739
740 case 4:
741 mapPtr = raidPtr->reconControl[row]->reconMap;
742 if (rf_reconDebug) {
743 printf("RECON: all reads completed\n");
744 }
745 /* at this point all the reads have completed. We now wait
746 * for any pending writes to complete, and then we're done */
747
748 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
749
750 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
751 RF_ASSERT(event);
752
753 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
754 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
755 if (rf_prReconSched) {
756 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
757 }
758 }
759 reconDesc->state = 5;
760
761 case 5:
762 /* Success: mark the dead disk as reconstructed. We quiesce
763 * the array here to assure no nasty interactions with pending
764 * user accesses when we free up the psstatus structure as
765 * part of FreeReconControl() */
766
767 reconDesc->state = 6;
768
769 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
770 rf_StopUserStats(raidPtr);
771 rf_PrintUserStats(raidPtr); /* print out the stats on user
772 * accs accumulated during
773 * recon */
774
775 /* fall through to state 6 */
776 case 6:
777
778
779
780 RF_LOCK_MUTEX(raidPtr->mutex);
781 raidPtr->numFailures--;
782 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
783 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
784 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
785 RF_UNLOCK_MUTEX(raidPtr->mutex);
786 RF_GETTIME(etime);
787 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
788
789 /* XXX -- why is state 7 different from state 6 if there is no
790 * return() here? -- XXX Note that I set elpsd above & use it
791 * below, so if you put a return here you'll have to fix this.
792 * (also, FreeReconControl is called below) */
793
794 case 7:
795
796 rf_ResumeNewRequests(raidPtr);
797
798 printf("Reconstruction of disk at row %d col %d completed\n",
799 row, col);
800 xor_s = raidPtr->accumXorTimeUs / 1000000;
801 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
802 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
803 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
804 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
805 (int) raidPtr->reconControl[row]->starttime.tv_sec,
806 (int) raidPtr->reconControl[row]->starttime.tv_usec,
807 (int) etime.tv_sec, (int) etime.tv_usec);
808
809 #if RF_RECON_STATS > 0
810 printf("Total head-sep stall count was %d\n",
811 (int) reconDesc->hsStallCount);
812 #endif /* RF_RECON_STATS > 0 */
813 rf_FreeReconControl(raidPtr, row);
814 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
815 FreeReconDesc(reconDesc);
816
817 }
818
819 SignalReconDone(raidPtr);
820 return (0);
821 }
822 /*****************************************************************************
823 * do the right thing upon each reconstruction event.
824 * returns nonzero if and only if there is nothing left unread on the
825 * indicated disk
826 *****************************************************************************/
827 static int
828 ProcessReconEvent(raidPtr, frow, event)
829 RF_Raid_t *raidPtr;
830 RF_RowCol_t frow;
831 RF_ReconEvent_t *event;
832 {
833 int retcode = 0, submitblocked;
834 RF_ReconBuffer_t *rbuf;
835 RF_SectorCount_t sectorsPerRU;
836
837 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
838 switch (event->type) {
839
840 /* a read I/O has completed */
841 case RF_REVENT_READDONE:
842 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
843 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
844 frow, event->col, rbuf->parityStripeID);
845 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
846 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
847 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
848 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
849 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
850 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
851 if (!submitblocked)
852 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
853 break;
854
855 /* a write I/O has completed */
856 case RF_REVENT_WRITEDONE:
857 if (rf_floatingRbufDebug) {
858 rf_CheckFloatingRbufCount(raidPtr, 1);
859 }
860 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
861 rbuf = (RF_ReconBuffer_t *) event->arg;
862 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
863 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
864 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
865 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
866 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
867 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
868
869 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
870 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
871 raidPtr->numFullReconBuffers--;
872 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
873 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
874 } else
875 if (rbuf->type == RF_RBUF_TYPE_FORCED)
876 rf_FreeReconBuffer(rbuf);
877 else
878 RF_ASSERT(0);
879 break;
880
881 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
882 * cleared */
883 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
884 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
885 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
886 * BUFCLEAR event if we
887 * couldn't submit */
888 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
889 break;
890
891 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
892 * blockage has been cleared */
893 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
894 retcode = TryToRead(raidPtr, frow, event->col);
895 break;
896
897 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
898 * reconstruction blockage has been
899 * cleared */
900 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
901 retcode = TryToRead(raidPtr, frow, event->col);
902 break;
903
904 /* a buffer has become ready to write */
905 case RF_REVENT_BUFREADY:
906 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
907 retcode = IssueNextWriteRequest(raidPtr, frow);
908 if (rf_floatingRbufDebug) {
909 rf_CheckFloatingRbufCount(raidPtr, 1);
910 }
911 break;
912
913 /* we need to skip the current RU entirely because it got
914 * recon'd while we were waiting for something else to happen */
915 case RF_REVENT_SKIP:
916 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
917 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
918 break;
919
920 /* a forced-reconstruction read access has completed. Just
921 * submit the buffer */
922 case RF_REVENT_FORCEDREADDONE:
923 rbuf = (RF_ReconBuffer_t *) event->arg;
924 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
925 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
926 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
927 RF_ASSERT(!submitblocked);
928 break;
929
930 default:
931 RF_PANIC();
932 }
933 rf_FreeReconEventDesc(event);
934 return (retcode);
935 }
936 /*****************************************************************************
937 *
938 * find the next thing that's needed on the indicated disk, and issue
939 * a read request for it. We assume that the reconstruction buffer
940 * associated with this process is free to receive the data. If
941 * reconstruction is blocked on the indicated RU, we issue a
942 * blockage-release request instead of a physical disk read request.
943 * If the current disk gets too far ahead of the others, we issue a
944 * head-separation wait request and return.
945 *
946 * ctrl->{ru_count, curPSID, diskOffset} and
947 * rbuf->failedDiskSectorOffset are maintained to point to the unit
948 * we're currently accessing. Note that this deviates from the
949 * standard C idiom of having counters point to the next thing to be
950 * accessed. This allows us to easily retry when we're blocked by
951 * head separation or reconstruction-blockage events.
952 *
953 * returns nonzero if and only if there is nothing left unread on the
954 * indicated disk
955 *
956 *****************************************************************************/
957 static int
958 IssueNextReadRequest(raidPtr, row, col)
959 RF_Raid_t *raidPtr;
960 RF_RowCol_t row;
961 RF_RowCol_t col;
962 {
963 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
964 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
965 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
966 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
967 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
968 int do_new_check = 0, retcode = 0, status;
969
970 /* if we are currently the slowest disk, mark that we have to do a new
971 * check */
972 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
973 do_new_check = 1;
974
975 while (1) {
976
977 ctrl->ru_count++;
978 if (ctrl->ru_count < RUsPerPU) {
979 ctrl->diskOffset += sectorsPerRU;
980 rbuf->failedDiskSectorOffset += sectorsPerRU;
981 } else {
982 ctrl->curPSID++;
983 ctrl->ru_count = 0;
984 /* code left over from when head-sep was based on
985 * parity stripe id */
986 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
987 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
988 return (1); /* finito! */
989 }
990 /* find the disk offsets of the start of the parity
991 * stripe on both the current disk and the failed
992 * disk. skip this entire parity stripe if either disk
993 * does not appear in the indicated PS */
994 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
995 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
996 if (status) {
997 ctrl->ru_count = RUsPerPU - 1;
998 continue;
999 }
1000 }
1001 rbuf->which_ru = ctrl->ru_count;
1002
1003 /* skip this RU if it's already been reconstructed */
1004 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1005 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1006 continue;
1007 }
1008 break;
1009 }
1010 ctrl->headSepCounter++;
1011 if (do_new_check)
1012 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1013
1014
1015 /* at this point, we have definitely decided what to do, and we have
1016 * only to see if we can actually do it now */
1017 rbuf->parityStripeID = ctrl->curPSID;
1018 rbuf->which_ru = ctrl->ru_count;
1019 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1020 sizeof(raidPtr->recon_tracerecs[col]));
1021 raidPtr->recon_tracerecs[col].reconacc = 1;
1022 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1023 retcode = TryToRead(raidPtr, row, col);
1024 return (retcode);
1025 }
1026
1027 /*
1028 * tries to issue the next read on the indicated disk. We may be
1029 * blocked by (a) the heads being too far apart, or (b) recon on the
1030 * indicated RU being blocked due to a write by a user thread. In
1031 * this case, we issue a head-sep or blockage wait request, which will
1032 * cause this same routine to be invoked again later when the blockage
1033 * has cleared.
1034 */
1035
1036 static int
1037 TryToRead(raidPtr, row, col)
1038 RF_Raid_t *raidPtr;
1039 RF_RowCol_t row;
1040 RF_RowCol_t col;
1041 {
1042 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1043 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1044 RF_StripeNum_t psid = ctrl->curPSID;
1045 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1046 RF_DiskQueueData_t *req;
1047 int status, created = 0;
1048 RF_ReconParityStripeStatus_t *pssPtr;
1049
1050 /* if the current disk is too far ahead of the others, issue a
1051 * head-separation wait and return */
1052 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1053 return (0);
1054 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1055 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1056
1057 /* if recon is blocked on the indicated parity stripe, issue a
1058 * block-wait request and return. this also must mark the indicated RU
1059 * in the stripe as under reconstruction if not blocked. */
1060 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1061 if (status == RF_PSS_RECON_BLOCKED) {
1062 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1063 goto out;
1064 } else
1065 if (status == RF_PSS_FORCED_ON_WRITE) {
1066 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1067 goto out;
1068 }
1069 /* make one last check to be sure that the indicated RU didn't get
1070 * reconstructed while we were waiting for something else to happen.
1071 * This is unfortunate in that it causes us to make this check twice
1072 * in the normal case. Might want to make some attempt to re-work
1073 * this so that we only do this check if we've definitely blocked on
1074 * one of the above checks. When this condition is detected, we may
1075 * have just created a bogus status entry, which we need to delete. */
1076 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1077 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1078 if (created)
1079 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1080 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1081 goto out;
1082 }
1083 /* found something to read. issue the I/O */
1084 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1085 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1086 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1087 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1088 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1089 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1090 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1091
1092 /* should be ok to use a NULL proc pointer here, all the bufs we use
1093 * should be in kernel space */
1094 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1095 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1096
1097 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1098
1099 ctrl->rbuf->arg = (void *) req;
1100 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1101 pssPtr->issued[col] = 1;
1102
1103 out:
1104 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1105 return (0);
1106 }
1107
1108
1109 /*
1110 * given a parity stripe ID, we want to find out whether both the
1111 * current disk and the failed disk exist in that parity stripe. If
1112 * not, we want to skip this whole PS. If so, we want to find the
1113 * disk offset of the start of the PS on both the current disk and the
1114 * failed disk.
1115 *
1116 * this works by getting a list of disks comprising the indicated
1117 * parity stripe, and searching the list for the current and failed
1118 * disks. Once we've decided they both exist in the parity stripe, we
1119 * need to decide whether each is data or parity, so that we'll know
1120 * which mapping function to call to get the corresponding disk
1121 * offsets.
1122 *
1123 * this is kind of unpleasant, but doing it this way allows the
1124 * reconstruction code to use parity stripe IDs rather than physical
1125 * disks address to march through the failed disk, which greatly
1126 * simplifies a lot of code, as well as eliminating the need for a
1127 * reverse-mapping function. I also think it will execute faster,
1128 * since the calls to the mapping module are kept to a minimum.
1129 *
1130 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1131 * THE STRIPE IN THE CORRECT ORDER */
1132
1133
1134 static int
1135 ComputePSDiskOffsets(
1136 RF_Raid_t * raidPtr, /* raid descriptor */
1137 RF_StripeNum_t psid, /* parity stripe identifier */
1138 RF_RowCol_t row, /* row and column of disk to find the offsets
1139 * for */
1140 RF_RowCol_t col,
1141 RF_SectorNum_t * outDiskOffset,
1142 RF_SectorNum_t * outFailedDiskSectorOffset,
1143 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1144 RF_RowCol_t * spCol,
1145 RF_SectorNum_t * spOffset)
1146 { /* OUT: offset into disk containing spare unit */
1147 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1148 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1149 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1150 RF_RowCol_t *diskids;
1151 u_int i, j, k, i_offset, j_offset;
1152 RF_RowCol_t prow, pcol;
1153 int testcol, testrow;
1154 RF_RowCol_t stripe;
1155 RF_SectorNum_t poffset;
1156 char i_is_parity = 0, j_is_parity = 0;
1157 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1158
1159 /* get a listing of the disks comprising that stripe */
1160 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1161 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1162 RF_ASSERT(diskids);
1163
1164 /* reject this entire parity stripe if it does not contain the
1165 * indicated disk or it does not contain the failed disk */
1166 if (row != stripe)
1167 goto skipit;
1168 for (i = 0; i < stripeWidth; i++) {
1169 if (col == diskids[i])
1170 break;
1171 }
1172 if (i == stripeWidth)
1173 goto skipit;
1174 for (j = 0; j < stripeWidth; j++) {
1175 if (fcol == diskids[j])
1176 break;
1177 }
1178 if (j == stripeWidth) {
1179 goto skipit;
1180 }
1181 /* find out which disk the parity is on */
1182 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1183
1184 /* find out if either the current RU or the failed RU is parity */
1185 /* also, if the parity occurs in this stripe prior to the data and/or
1186 * failed col, we need to decrement i and/or j */
1187 for (k = 0; k < stripeWidth; k++)
1188 if (diskids[k] == pcol)
1189 break;
1190 RF_ASSERT(k < stripeWidth);
1191 i_offset = i;
1192 j_offset = j;
1193 if (k < i)
1194 i_offset--;
1195 else
1196 if (k == i) {
1197 i_is_parity = 1;
1198 i_offset = 0;
1199 } /* set offsets to zero to disable multiply
1200 * below */
1201 if (k < j)
1202 j_offset--;
1203 else
1204 if (k == j) {
1205 j_is_parity = 1;
1206 j_offset = 0;
1207 }
1208 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1209 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1210 * tells us how far into the stripe the [current,failed] disk is. */
1211
1212 /* call the mapping routine to get the offset into the current disk,
1213 * repeat for failed disk. */
1214 if (i_is_parity)
1215 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1216 else
1217 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1218
1219 RF_ASSERT(row == testrow && col == testcol);
1220
1221 if (j_is_parity)
1222 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1223 else
1224 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1225 RF_ASSERT(row == testrow && fcol == testcol);
1226
1227 /* now locate the spare unit for the failed unit */
1228 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1229 if (j_is_parity)
1230 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1231 else
1232 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1233 } else {
1234 *spRow = raidPtr->reconControl[row]->spareRow;
1235 *spCol = raidPtr->reconControl[row]->spareCol;
1236 *spOffset = *outFailedDiskSectorOffset;
1237 }
1238
1239 return (0);
1240
1241 skipit:
1242 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1243 psid, row, col);
1244 return (1);
1245 }
1246 /* this is called when a buffer has become ready to write to the replacement disk */
1247 static int
1248 IssueNextWriteRequest(raidPtr, row)
1249 RF_Raid_t *raidPtr;
1250 RF_RowCol_t row;
1251 {
1252 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1253 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1254 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1255 RF_ReconBuffer_t *rbuf;
1256 RF_DiskQueueData_t *req;
1257
1258 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1259 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1260 * have gotten the event that sent us here */
1261 RF_ASSERT(rbuf->pssPtr);
1262
1263 rbuf->pssPtr->writeRbuf = rbuf;
1264 rbuf->pssPtr = NULL;
1265
1266 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1267 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1268 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1269 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1270 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1271 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1272
1273 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1274 * kernel space */
1275 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1276 sectorsPerRU, rbuf->buffer,
1277 rbuf->parityStripeID, rbuf->which_ru,
1278 ReconWriteDoneProc, (void *) rbuf, NULL,
1279 &raidPtr->recon_tracerecs[fcol],
1280 (void *) raidPtr, 0, NULL);
1281
1282 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1283
1284 rbuf->arg = (void *) req;
1285 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1286
1287 return (0);
1288 }
1289
1290 /*
1291 * this gets called upon the completion of a reconstruction read
1292 * operation the arg is a pointer to the per-disk reconstruction
1293 * control structure for the process that just finished a read.
1294 *
1295 * called at interrupt context in the kernel, so don't do anything
1296 * illegal here.
1297 */
1298 static int
1299 ReconReadDoneProc(arg, status)
1300 void *arg;
1301 int status;
1302 {
1303 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1304 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1305
1306 if (status) {
1307 /*
1308 * XXX
1309 */
1310 printf("Recon read failed!\n");
1311 RF_PANIC();
1312 }
1313 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1314 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1315 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1316 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1317 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1318
1319 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1320 return (0);
1321 }
1322 /* this gets called upon the completion of a reconstruction write operation.
1323 * the arg is a pointer to the rbuf that was just written
1324 *
1325 * called at interrupt context in the kernel, so don't do anything illegal here.
1326 */
1327 static int
1328 ReconWriteDoneProc(arg, status)
1329 void *arg;
1330 int status;
1331 {
1332 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1333
1334 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1335 if (status) {
1336 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1337 * write failed!\n"); */
1338 RF_PANIC();
1339 }
1340 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1341 return (0);
1342 }
1343
1344
1345 /*
1346 * computes a new minimum head sep, and wakes up anyone who needs to
1347 * be woken as a result
1348 */
1349 static void
1350 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1351 RF_Raid_t *raidPtr;
1352 RF_RowCol_t row;
1353 RF_HeadSepLimit_t hsCtr;
1354 {
1355 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1356 RF_HeadSepLimit_t new_min;
1357 RF_RowCol_t i;
1358 RF_CallbackDesc_t *p;
1359 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1360 * of a minimum */
1361
1362
1363 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1364
1365 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1366 for (i = 0; i < raidPtr->numCol; i++)
1367 if (i != reconCtrlPtr->fcol) {
1368 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1369 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1370 }
1371 /* set the new minimum and wake up anyone who can now run again */
1372 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1373 reconCtrlPtr->minHeadSepCounter = new_min;
1374 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1375 while (reconCtrlPtr->headSepCBList) {
1376 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1377 break;
1378 p = reconCtrlPtr->headSepCBList;
1379 reconCtrlPtr->headSepCBList = p->next;
1380 p->next = NULL;
1381 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1382 rf_FreeCallbackDesc(p);
1383 }
1384
1385 }
1386 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1387 }
1388
1389 /*
1390 * checks to see that the maximum head separation will not be violated
1391 * if we initiate a reconstruction I/O on the indicated disk.
1392 * Limiting the maximum head separation between two disks eliminates
1393 * the nasty buffer-stall conditions that occur when one disk races
1394 * ahead of the others and consumes all of the floating recon buffers.
1395 * This code is complex and unpleasant but it's necessary to avoid
1396 * some very nasty, albeit fairly rare, reconstruction behavior.
1397 *
1398 * returns non-zero if and only if we have to stop working on the
1399 * indicated disk due to a head-separation delay.
1400 */
1401 static int
1402 CheckHeadSeparation(
1403 RF_Raid_t * raidPtr,
1404 RF_PerDiskReconCtrl_t * ctrl,
1405 RF_RowCol_t row,
1406 RF_RowCol_t col,
1407 RF_HeadSepLimit_t hsCtr,
1408 RF_ReconUnitNum_t which_ru)
1409 {
1410 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1411 RF_CallbackDesc_t *cb, *p, *pt;
1412 int retval = 0;
1413
1414 /* if we're too far ahead of the slowest disk, stop working on this
1415 * disk until the slower ones catch up. We do this by scheduling a
1416 * wakeup callback for the time when the slowest disk has caught up.
1417 * We define "caught up" with 20% hysteresis, i.e. the head separation
1418 * must have fallen to at most 80% of the max allowable head
1419 * separation before we'll wake up.
1420 *
1421 */
1422 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1423 if ((raidPtr->headSepLimit >= 0) &&
1424 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1425 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1426 raidPtr->raidid, row, col, ctrl->headSepCounter,
1427 reconCtrlPtr->minHeadSepCounter,
1428 raidPtr->headSepLimit);
1429 cb = rf_AllocCallbackDesc();
1430 /* the minHeadSepCounter value we have to get to before we'll
1431 * wake up. build in 20% hysteresis. */
1432 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1433 cb->row = row;
1434 cb->col = col;
1435 cb->next = NULL;
1436
1437 /* insert this callback descriptor into the sorted list of
1438 * pending head-sep callbacks */
1439 p = reconCtrlPtr->headSepCBList;
1440 if (!p)
1441 reconCtrlPtr->headSepCBList = cb;
1442 else
1443 if (cb->callbackArg.v < p->callbackArg.v) {
1444 cb->next = reconCtrlPtr->headSepCBList;
1445 reconCtrlPtr->headSepCBList = cb;
1446 } else {
1447 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1448 cb->next = p;
1449 pt->next = cb;
1450 }
1451 retval = 1;
1452 #if RF_RECON_STATS > 0
1453 ctrl->reconCtrl->reconDesc->hsStallCount++;
1454 #endif /* RF_RECON_STATS > 0 */
1455 }
1456 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1457
1458 return (retval);
1459 }
1460 /*
1461 * checks to see if reconstruction has been either forced or blocked
1462 * by a user operation. if forced, we skip this RU entirely. else if
1463 * blocked, put ourselves on the wait list. else return 0.
1464 *
1465 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1466 */
1467 static int
1468 CheckForcedOrBlockedReconstruction(
1469 RF_Raid_t * raidPtr,
1470 RF_ReconParityStripeStatus_t * pssPtr,
1471 RF_PerDiskReconCtrl_t * ctrl,
1472 RF_RowCol_t row,
1473 RF_RowCol_t col,
1474 RF_StripeNum_t psid,
1475 RF_ReconUnitNum_t which_ru)
1476 {
1477 RF_CallbackDesc_t *cb;
1478 int retcode = 0;
1479
1480 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1481 retcode = RF_PSS_FORCED_ON_WRITE;
1482 else
1483 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1484 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1485 cb = rf_AllocCallbackDesc(); /* append ourselves to
1486 * the blockage-wait
1487 * list */
1488 cb->row = row;
1489 cb->col = col;
1490 cb->next = pssPtr->blockWaitList;
1491 pssPtr->blockWaitList = cb;
1492 retcode = RF_PSS_RECON_BLOCKED;
1493 }
1494 if (!retcode)
1495 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1496 * reconstruction */
1497
1498 return (retcode);
1499 }
1500 /*
1501 * if reconstruction is currently ongoing for the indicated stripeID,
1502 * reconstruction is forced to completion and we return non-zero to
1503 * indicate that the caller must wait. If not, then reconstruction is
1504 * blocked on the indicated stripe and the routine returns zero. If
1505 * and only if we return non-zero, we'll cause the cbFunc to get
1506 * invoked with the cbArg when the reconstruction has completed.
1507 */
1508 int
1509 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1510 RF_Raid_t *raidPtr;
1511 RF_AccessStripeMap_t *asmap;
1512 void (*cbFunc) (RF_Raid_t *, void *);
1513 void *cbArg;
1514 {
1515 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1516 * we're working on */
1517 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1518 * forcing recon on */
1519 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1520 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1521 * stripe status structure */
1522 RF_StripeNum_t psid; /* parity stripe id */
1523 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1524 * offset */
1525 RF_RowCol_t *diskids;
1526 RF_RowCol_t stripe;
1527 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1528 RF_RowCol_t fcol, diskno, i;
1529 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1530 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1531 RF_CallbackDesc_t *cb;
1532 int created = 0, nPromoted;
1533
1534 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1535
1536 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1537
1538 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1539
1540 /* if recon is not ongoing on this PS, just return */
1541 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1542 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1543 return (0);
1544 }
1545 /* otherwise, we have to wait for reconstruction to complete on this
1546 * RU. */
1547 /* In order to avoid waiting for a potentially large number of
1548 * low-priority accesses to complete, we force a normal-priority (i.e.
1549 * not low-priority) reconstruction on this RU. */
1550 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1551 DDprintf1("Forcing recon on psid %ld\n", psid);
1552 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1553 * forced recon */
1554 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1555 * that we just set */
1556 fcol = raidPtr->reconControl[row]->fcol;
1557
1558 /* get a listing of the disks comprising the indicated stripe */
1559 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1560 RF_ASSERT(row == stripe);
1561
1562 /* For previously issued reads, elevate them to normal
1563 * priority. If the I/O has already completed, it won't be
1564 * found in the queue, and hence this will be a no-op. For
1565 * unissued reads, allocate buffers and issue new reads. The
1566 * fact that we've set the FORCED bit means that the regular
1567 * recon procs will not re-issue these reqs */
1568 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1569 if ((diskno = diskids[i]) != fcol) {
1570 if (pssPtr->issued[diskno]) {
1571 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1572 if (rf_reconDebug && nPromoted)
1573 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1574 } else {
1575 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1576 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1577 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1578 * location */
1579 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1580 new_rbuf->which_ru = which_ru;
1581 new_rbuf->failedDiskSectorOffset = fd_offset;
1582 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1583
1584 /* use NULL b_proc b/c all addrs
1585 * should be in kernel space */
1586 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1587 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1588 NULL, (void *) raidPtr, 0, NULL);
1589
1590 RF_ASSERT(req); /* XXX -- fix this --
1591 * XXX */
1592
1593 new_rbuf->arg = req;
1594 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1595 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1596 }
1597 }
1598 /* if the write is sitting in the disk queue, elevate its
1599 * priority */
1600 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1601 printf("raid%d: promoted write to row %d col %d\n",
1602 raidPtr->raidid, row, fcol);
1603 }
1604 /* install a callback descriptor to be invoked when recon completes on
1605 * this parity stripe. */
1606 cb = rf_AllocCallbackDesc();
1607 /* XXX the following is bogus.. These functions don't really match!!
1608 * GO */
1609 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1610 cb->callbackArg.p = (void *) cbArg;
1611 cb->next = pssPtr->procWaitList;
1612 pssPtr->procWaitList = cb;
1613 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1614 raidPtr->raidid, psid);
1615
1616 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1617 return (1);
1618 }
1619 /* called upon the completion of a forced reconstruction read.
1620 * all we do is schedule the FORCEDREADONE event.
1621 * called at interrupt context in the kernel, so don't do anything illegal here.
1622 */
1623 static void
1624 ForceReconReadDoneProc(arg, status)
1625 void *arg;
1626 int status;
1627 {
1628 RF_ReconBuffer_t *rbuf = arg;
1629
1630 if (status) {
1631 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1632 * recon read
1633 * failed!\n"); */
1634 RF_PANIC();
1635 }
1636 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1637 }
1638 /* releases a block on the reconstruction of the indicated stripe */
1639 int
1640 rf_UnblockRecon(raidPtr, asmap)
1641 RF_Raid_t *raidPtr;
1642 RF_AccessStripeMap_t *asmap;
1643 {
1644 RF_RowCol_t row = asmap->origRow;
1645 RF_StripeNum_t stripeID = asmap->stripeID;
1646 RF_ReconParityStripeStatus_t *pssPtr;
1647 RF_ReconUnitNum_t which_ru;
1648 RF_StripeNum_t psid;
1649 int created = 0;
1650 RF_CallbackDesc_t *cb;
1651
1652 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1653 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1654 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1655
1656 /* When recon is forced, the pss desc can get deleted before we get
1657 * back to unblock recon. But, this can _only_ happen when recon is
1658 * forced. It would be good to put some kind of sanity check here, but
1659 * how to decide if recon was just forced or not? */
1660 if (!pssPtr) {
1661 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1662 * RU %d\n",psid,which_ru); */
1663 if (rf_reconDebug || rf_pssDebug)
1664 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1665 goto out;
1666 }
1667 pssPtr->blockCount--;
1668 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1669 raidPtr->raidid, psid, pssPtr->blockCount);
1670 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1671
1672 /* unblock recon before calling CauseReconEvent in case
1673 * CauseReconEvent causes us to try to issue a new read before
1674 * returning here. */
1675 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1676
1677
1678 while (pssPtr->blockWaitList) {
1679 /* spin through the block-wait list and
1680 release all the waiters */
1681 cb = pssPtr->blockWaitList;
1682 pssPtr->blockWaitList = cb->next;
1683 cb->next = NULL;
1684 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1685 rf_FreeCallbackDesc(cb);
1686 }
1687 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1688 /* if no recon was requested while recon was blocked */
1689 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1690 }
1691 }
1692 out:
1693 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1694 return (0);
1695 }
1696