rf_reconstruct.c revision 1.32 1 /* $NetBSD: rf_reconstruct.c,v 1.32 2001/11/15 09:48:14 lukem Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.32 2001/11/15 09:48:14 lukem Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_general.h"
59 #include "rf_freelist.h"
60 #include "rf_debugprint.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 static RF_FreeList_t *rf_recond_freelist;
82 #define RF_MAX_FREE_RECOND 4
83 #define RF_RECOND_INC 1
84
85 static RF_RaidReconDesc_t *
86 AllocRaidReconDesc(RF_Raid_t * raidPtr,
87 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
88 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
89 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
90 static int
91 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
92 RF_ReconEvent_t * event);
93 static int
94 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
95 RF_RowCol_t col);
96 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
97 static int
98 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
99 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
100 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
101 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
102 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
103 static int ReconReadDoneProc(void *arg, int status);
104 static int ReconWriteDoneProc(void *arg, int status);
105 static void
106 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
107 RF_HeadSepLimit_t hsCtr);
108 static int
109 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
110 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
111 RF_ReconUnitNum_t which_ru);
112 static int
113 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
114 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
115 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
116 RF_ReconUnitNum_t which_ru);
117 static void ForceReconReadDoneProc(void *arg, int status);
118
119 static void rf_ShutdownReconstruction(void *);
120
121 struct RF_ReconDoneProc_s {
122 void (*proc) (RF_Raid_t *, void *);
123 void *arg;
124 RF_ReconDoneProc_t *next;
125 };
126
127 static RF_FreeList_t *rf_rdp_freelist;
128 #define RF_MAX_FREE_RDP 4
129 #define RF_RDP_INC 1
130
131 static void
132 SignalReconDone(RF_Raid_t * raidPtr)
133 {
134 RF_ReconDoneProc_t *p;
135
136 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
137 for (p = raidPtr->recon_done_procs; p; p = p->next) {
138 p->proc(raidPtr, p->arg);
139 }
140 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
141 }
142
143 int
144 rf_RegisterReconDoneProc(
145 RF_Raid_t * raidPtr,
146 void (*proc) (RF_Raid_t *, void *),
147 void *arg,
148 RF_ReconDoneProc_t ** handlep)
149 {
150 RF_ReconDoneProc_t *p;
151
152 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
153 if (p == NULL)
154 return (ENOMEM);
155 p->proc = proc;
156 p->arg = arg;
157 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
158 p->next = raidPtr->recon_done_procs;
159 raidPtr->recon_done_procs = p;
160 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
161 if (handlep)
162 *handlep = p;
163 return (0);
164 }
165 /**************************************************************************
166 *
167 * sets up the parameters that will be used by the reconstruction process
168 * currently there are none, except for those that the layout-specific
169 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
170 *
171 * in the kernel, we fire off the recon thread.
172 *
173 **************************************************************************/
174 static void
175 rf_ShutdownReconstruction(ignored)
176 void *ignored;
177 {
178 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
179 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
180 }
181
182 int
183 rf_ConfigureReconstruction(listp)
184 RF_ShutdownList_t **listp;
185 {
186 int rc;
187
188 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
189 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
190 if (rf_recond_freelist == NULL)
191 return (ENOMEM);
192 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
193 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
194 if (rf_rdp_freelist == NULL) {
195 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
196 return (ENOMEM);
197 }
198 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
199 if (rc) {
200 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
201 __FILE__, __LINE__, rc);
202 rf_ShutdownReconstruction(NULL);
203 return (rc);
204 }
205 return (0);
206 }
207
208 static RF_RaidReconDesc_t *
209 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
210 RF_Raid_t *raidPtr;
211 RF_RowCol_t row;
212 RF_RowCol_t col;
213 RF_RaidDisk_t *spareDiskPtr;
214 int numDisksDone;
215 RF_RowCol_t srow;
216 RF_RowCol_t scol;
217 {
218
219 RF_RaidReconDesc_t *reconDesc;
220
221 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
222
223 reconDesc->raidPtr = raidPtr;
224 reconDesc->row = row;
225 reconDesc->col = col;
226 reconDesc->spareDiskPtr = spareDiskPtr;
227 reconDesc->numDisksDone = numDisksDone;
228 reconDesc->srow = srow;
229 reconDesc->scol = scol;
230 reconDesc->state = 0;
231 reconDesc->next = NULL;
232
233 return (reconDesc);
234 }
235
236 static void
237 FreeReconDesc(reconDesc)
238 RF_RaidReconDesc_t *reconDesc;
239 {
240 #if RF_RECON_STATS > 0
241 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
242 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
243 #endif /* RF_RECON_STATS > 0 */
244 printf("RAIDframe: %lu max exec ticks\n",
245 (long) reconDesc->maxReconExecTicks);
246 #if (RF_RECON_STATS > 0) || defined(KERNEL)
247 printf("\n");
248 #endif /* (RF_RECON_STATS > 0) || KERNEL */
249 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
250 }
251
252
253 /*****************************************************************************
254 *
255 * primary routine to reconstruct a failed disk. This should be called from
256 * within its own thread. It won't return until reconstruction completes,
257 * fails, or is aborted.
258 *****************************************************************************/
259 int
260 rf_ReconstructFailedDisk(raidPtr, row, col)
261 RF_Raid_t *raidPtr;
262 RF_RowCol_t row;
263 RF_RowCol_t col;
264 {
265 RF_LayoutSW_t *lp;
266 int rc;
267
268 lp = raidPtr->Layout.map;
269 if (lp->SubmitReconBuffer) {
270 /*
271 * The current infrastructure only supports reconstructing one
272 * disk at a time for each array.
273 */
274 RF_LOCK_MUTEX(raidPtr->mutex);
275 while (raidPtr->reconInProgress) {
276 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
277 }
278 raidPtr->reconInProgress++;
279 RF_UNLOCK_MUTEX(raidPtr->mutex);
280 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
281 RF_LOCK_MUTEX(raidPtr->mutex);
282 raidPtr->reconInProgress--;
283 RF_UNLOCK_MUTEX(raidPtr->mutex);
284 } else {
285 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
286 lp->parityConfig);
287 rc = EIO;
288 }
289 RF_SIGNAL_COND(raidPtr->waitForReconCond);
290 wakeup(&raidPtr->waitForReconCond); /* XXX Methinks this will be
291 * needed at some point... GO */
292 return (rc);
293 }
294
295 int
296 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
297 RF_Raid_t *raidPtr;
298 RF_RowCol_t row;
299 RF_RowCol_t col;
300 {
301 RF_ComponentLabel_t c_label;
302 RF_RaidDisk_t *spareDiskPtr = NULL;
303 RF_RaidReconDesc_t *reconDesc;
304 RF_RowCol_t srow, scol;
305 int numDisksDone = 0, rc;
306
307 /* first look for a spare drive onto which to reconstruct the data */
308 /* spare disk descriptors are stored in row 0. This may have to
309 * change eventually */
310
311 RF_LOCK_MUTEX(raidPtr->mutex);
312 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
313
314 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
315 if (raidPtr->status[row] != rf_rs_degraded) {
316 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
317 RF_UNLOCK_MUTEX(raidPtr->mutex);
318 return (EINVAL);
319 }
320 srow = row;
321 scol = (-1);
322 } else {
323 srow = 0;
324 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
325 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
326 spareDiskPtr = &raidPtr->Disks[srow][scol];
327 spareDiskPtr->status = rf_ds_used_spare;
328 break;
329 }
330 }
331 if (!spareDiskPtr) {
332 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
333 RF_UNLOCK_MUTEX(raidPtr->mutex);
334 return (ENOSPC);
335 }
336 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
337 }
338 RF_UNLOCK_MUTEX(raidPtr->mutex);
339
340 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
341 raidPtr->reconDesc = (void *) reconDesc;
342 #if RF_RECON_STATS > 0
343 reconDesc->hsStallCount = 0;
344 reconDesc->numReconExecDelays = 0;
345 reconDesc->numReconEventWaits = 0;
346 #endif /* RF_RECON_STATS > 0 */
347 reconDesc->reconExecTimerRunning = 0;
348 reconDesc->reconExecTicks = 0;
349 reconDesc->maxReconExecTicks = 0;
350 rc = rf_ContinueReconstructFailedDisk(reconDesc);
351
352 if (!rc) {
353 /* fix up the component label */
354 /* Don't actually need the read here.. */
355 raidread_component_label(
356 raidPtr->raid_cinfo[srow][scol].ci_dev,
357 raidPtr->raid_cinfo[srow][scol].ci_vp,
358 &c_label);
359
360 raid_init_component_label( raidPtr, &c_label);
361 c_label.row = row;
362 c_label.column = col;
363 c_label.clean = RF_RAID_DIRTY;
364 c_label.status = rf_ds_optimal;
365 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
366
367 /* We've just done a rebuild based on all the other
368 disks, so at this point the parity is known to be
369 clean, even if it wasn't before. */
370
371 /* XXX doesn't hold for RAID 6!!*/
372
373 raidPtr->parity_good = RF_RAID_CLEAN;
374
375 /* XXXX MORE NEEDED HERE */
376
377 raidwrite_component_label(
378 raidPtr->raid_cinfo[srow][scol].ci_dev,
379 raidPtr->raid_cinfo[srow][scol].ci_vp,
380 &c_label);
381
382 }
383 return (rc);
384 }
385
386 /*
387
388 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
389 and you don't get a spare until the next Monday. With this function
390 (and hot-swappable drives) you can now put your new disk containing
391 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
392 rebuild the data "on the spot".
393
394 */
395
396 int
397 rf_ReconstructInPlace(raidPtr, row, col)
398 RF_Raid_t *raidPtr;
399 RF_RowCol_t row;
400 RF_RowCol_t col;
401 {
402 RF_RaidDisk_t *spareDiskPtr = NULL;
403 RF_RaidReconDesc_t *reconDesc;
404 RF_LayoutSW_t *lp;
405 RF_RaidDisk_t *badDisk;
406 RF_ComponentLabel_t c_label;
407 int numDisksDone = 0, rc;
408 struct partinfo dpart;
409 struct vnode *vp;
410 struct vattr va;
411 struct proc *proc;
412 int retcode;
413 int ac;
414
415 lp = raidPtr->Layout.map;
416 if (lp->SubmitReconBuffer) {
417 /*
418 * The current infrastructure only supports reconstructing one
419 * disk at a time for each array.
420 */
421 RF_LOCK_MUTEX(raidPtr->mutex);
422 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
423 (raidPtr->numFailures > 0)) {
424 /* XXX 0 above shouldn't be constant!!! */
425 /* some component other than this has failed.
426 Let's not make things worse than they already
427 are... */
428 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
429 printf(" Row: %d Col: %d Too many failures.\n",
430 row, col);
431 RF_UNLOCK_MUTEX(raidPtr->mutex);
432 return (EINVAL);
433 }
434 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
435 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
436 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
437
438 RF_UNLOCK_MUTEX(raidPtr->mutex);
439 return (EINVAL);
440 }
441
442
443 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
444 /* "It's gone..." */
445 raidPtr->numFailures++;
446 raidPtr->Disks[row][col].status = rf_ds_failed;
447 raidPtr->status[row] = rf_rs_degraded;
448 rf_update_component_labels(raidPtr,
449 RF_NORMAL_COMPONENT_UPDATE);
450 }
451
452 while (raidPtr->reconInProgress) {
453 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
454 }
455
456 raidPtr->reconInProgress++;
457
458
459 /* first look for a spare drive onto which to reconstruct
460 the data. spare disk descriptors are stored in row 0.
461 This may have to change eventually */
462
463 /* Actually, we don't care if it's failed or not...
464 On a RAID set with correct parity, this function
465 should be callable on any component without ill affects. */
466 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
467 */
468
469 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
470 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
471
472 raidPtr->reconInProgress--;
473 RF_UNLOCK_MUTEX(raidPtr->mutex);
474 return (EINVAL);
475 }
476
477 /* XXX need goop here to see if the disk is alive,
478 and, if not, make it so... */
479
480
481
482 badDisk = &raidPtr->Disks[row][col];
483
484 proc = raidPtr->engine_thread;
485
486 /* This device may have been opened successfully the
487 first time. Close it before trying to open it again.. */
488
489 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
490 printf("Closed the open device: %s\n",
491 raidPtr->Disks[row][col].devname);
492 vp = raidPtr->raid_cinfo[row][col].ci_vp;
493 ac = raidPtr->Disks[row][col].auto_configured;
494 rf_close_component(raidPtr, vp, ac);
495 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
496 }
497 /* note that this disk was *not* auto_configured (any longer)*/
498 raidPtr->Disks[row][col].auto_configured = 0;
499
500 printf("About to (re-)open the device for rebuilding: %s\n",
501 raidPtr->Disks[row][col].devname);
502
503 retcode = raidlookup(raidPtr->Disks[row][col].devname,
504 proc, &vp);
505
506 if (retcode) {
507 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
508 raidPtr->Disks[row][col].devname, retcode);
509
510 /* XXX the component isn't responding properly...
511 must be still dead :-( */
512 raidPtr->reconInProgress--;
513 RF_UNLOCK_MUTEX(raidPtr->mutex);
514 return(retcode);
515
516 } else {
517
518 /* Ok, so we can at least do a lookup...
519 How about actually getting a vp for it? */
520
521 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
522 proc)) != 0) {
523 raidPtr->reconInProgress--;
524 RF_UNLOCK_MUTEX(raidPtr->mutex);
525 return(retcode);
526 }
527 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
528 FREAD, proc->p_ucred, proc);
529 if (retcode) {
530 raidPtr->reconInProgress--;
531 RF_UNLOCK_MUTEX(raidPtr->mutex);
532 return(retcode);
533 }
534 raidPtr->Disks[row][col].blockSize =
535 dpart.disklab->d_secsize;
536
537 raidPtr->Disks[row][col].numBlocks =
538 dpart.part->p_size - rf_protectedSectors;
539
540 raidPtr->raid_cinfo[row][col].ci_vp = vp;
541 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
542
543 raidPtr->Disks[row][col].dev = va.va_rdev;
544
545 /* we allow the user to specify that only a
546 fraction of the disks should be used this is
547 just for debug: it speeds up
548 * the parity scan */
549 raidPtr->Disks[row][col].numBlocks =
550 raidPtr->Disks[row][col].numBlocks *
551 rf_sizePercentage / 100;
552 }
553
554
555
556 spareDiskPtr = &raidPtr->Disks[row][col];
557 spareDiskPtr->status = rf_ds_used_spare;
558
559 printf("RECON: initiating in-place reconstruction on\n");
560 printf(" row %d col %d -> spare at row %d col %d\n",
561 row, col, row, col);
562
563 RF_UNLOCK_MUTEX(raidPtr->mutex);
564
565 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
566 spareDiskPtr, numDisksDone,
567 row, col);
568 raidPtr->reconDesc = (void *) reconDesc;
569 #if RF_RECON_STATS > 0
570 reconDesc->hsStallCount = 0;
571 reconDesc->numReconExecDelays = 0;
572 reconDesc->numReconEventWaits = 0;
573 #endif /* RF_RECON_STATS > 0 */
574 reconDesc->reconExecTimerRunning = 0;
575 reconDesc->reconExecTicks = 0;
576 reconDesc->maxReconExecTicks = 0;
577 rc = rf_ContinueReconstructFailedDisk(reconDesc);
578
579 RF_LOCK_MUTEX(raidPtr->mutex);
580 raidPtr->reconInProgress--;
581 RF_UNLOCK_MUTEX(raidPtr->mutex);
582
583 } else {
584 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
585 lp->parityConfig);
586 rc = EIO;
587 }
588 RF_LOCK_MUTEX(raidPtr->mutex);
589
590 if (!rc) {
591 /* Need to set these here, as at this point it'll be claiming
592 that the disk is in rf_ds_spared! But we know better :-) */
593
594 raidPtr->Disks[row][col].status = rf_ds_optimal;
595 raidPtr->status[row] = rf_rs_optimal;
596
597 /* fix up the component label */
598 /* Don't actually need the read here.. */
599 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
600 raidPtr->raid_cinfo[row][col].ci_vp,
601 &c_label);
602
603 raid_init_component_label(raidPtr, &c_label);
604
605 c_label.row = row;
606 c_label.column = col;
607
608 /* We've just done a rebuild based on all the other
609 disks, so at this point the parity is known to be
610 clean, even if it wasn't before. */
611
612 /* XXX doesn't hold for RAID 6!!*/
613
614 raidPtr->parity_good = RF_RAID_CLEAN;
615
616 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
617 raidPtr->raid_cinfo[row][col].ci_vp,
618 &c_label);
619
620 }
621 RF_UNLOCK_MUTEX(raidPtr->mutex);
622 RF_SIGNAL_COND(raidPtr->waitForReconCond);
623 wakeup(&raidPtr->waitForReconCond);
624 return (rc);
625 }
626
627
628 int
629 rf_ContinueReconstructFailedDisk(reconDesc)
630 RF_RaidReconDesc_t *reconDesc;
631 {
632 RF_Raid_t *raidPtr = reconDesc->raidPtr;
633 RF_RowCol_t row = reconDesc->row;
634 RF_RowCol_t col = reconDesc->col;
635 RF_RowCol_t srow = reconDesc->srow;
636 RF_RowCol_t scol = reconDesc->scol;
637 RF_ReconMap_t *mapPtr;
638
639 RF_ReconEvent_t *event;
640 struct timeval etime, elpsd;
641 unsigned long xor_s, xor_resid_us;
642 int retcode, i, ds;
643
644 switch (reconDesc->state) {
645
646
647 case 0:
648
649 raidPtr->accumXorTimeUs = 0;
650
651 /* create one trace record per physical disk */
652 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
653
654 /* quiesce the array prior to starting recon. this is needed
655 * to assure no nasty interactions with pending user writes.
656 * We need to do this before we change the disk or row status. */
657 reconDesc->state = 1;
658
659 Dprintf("RECON: begin request suspend\n");
660 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
661 Dprintf("RECON: end request suspend\n");
662 rf_StartUserStats(raidPtr); /* zero out the stats kept on
663 * user accs */
664
665 /* fall through to state 1 */
666
667 case 1:
668
669 RF_LOCK_MUTEX(raidPtr->mutex);
670
671 /* create the reconstruction control pointer and install it in
672 * the right slot */
673 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
674 mapPtr = raidPtr->reconControl[row]->reconMap;
675 raidPtr->status[row] = rf_rs_reconstructing;
676 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
677 raidPtr->Disks[row][col].spareRow = srow;
678 raidPtr->Disks[row][col].spareCol = scol;
679
680 RF_UNLOCK_MUTEX(raidPtr->mutex);
681
682 RF_GETTIME(raidPtr->reconControl[row]->starttime);
683
684 /* now start up the actual reconstruction: issue a read for
685 * each surviving disk */
686
687 reconDesc->numDisksDone = 0;
688 for (i = 0; i < raidPtr->numCol; i++) {
689 if (i != col) {
690 /* find and issue the next I/O on the
691 * indicated disk */
692 if (IssueNextReadRequest(raidPtr, row, i)) {
693 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
694 reconDesc->numDisksDone++;
695 }
696 }
697 }
698
699 case 2:
700 Dprintf("RECON: resume requests\n");
701 rf_ResumeNewRequests(raidPtr);
702
703
704 reconDesc->state = 3;
705
706 case 3:
707
708 /* process reconstruction events until all disks report that
709 * they've completed all work */
710 mapPtr = raidPtr->reconControl[row]->reconMap;
711
712
713
714 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
715
716 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
717 RF_ASSERT(event);
718
719 if (ProcessReconEvent(raidPtr, row, event))
720 reconDesc->numDisksDone++;
721 raidPtr->reconControl[row]->numRUsTotal =
722 mapPtr->totalRUs;
723 raidPtr->reconControl[row]->numRUsComplete =
724 mapPtr->totalRUs -
725 rf_UnitsLeftToReconstruct(mapPtr);
726
727 raidPtr->reconControl[row]->percentComplete =
728 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
729 if (rf_prReconSched) {
730 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
731 }
732 }
733
734
735
736 reconDesc->state = 4;
737
738
739 case 4:
740 mapPtr = raidPtr->reconControl[row]->reconMap;
741 if (rf_reconDebug) {
742 printf("RECON: all reads completed\n");
743 }
744 /* at this point all the reads have completed. We now wait
745 * for any pending writes to complete, and then we're done */
746
747 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
748
749 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
750 RF_ASSERT(event);
751
752 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
753 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
754 if (rf_prReconSched) {
755 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
756 }
757 }
758 reconDesc->state = 5;
759
760 case 5:
761 /* Success: mark the dead disk as reconstructed. We quiesce
762 * the array here to assure no nasty interactions with pending
763 * user accesses when we free up the psstatus structure as
764 * part of FreeReconControl() */
765
766 reconDesc->state = 6;
767
768 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
769 rf_StopUserStats(raidPtr);
770 rf_PrintUserStats(raidPtr); /* print out the stats on user
771 * accs accumulated during
772 * recon */
773
774 /* fall through to state 6 */
775 case 6:
776
777
778
779 RF_LOCK_MUTEX(raidPtr->mutex);
780 raidPtr->numFailures--;
781 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
782 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
783 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
784 RF_UNLOCK_MUTEX(raidPtr->mutex);
785 RF_GETTIME(etime);
786 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
787
788 /* XXX -- why is state 7 different from state 6 if there is no
789 * return() here? -- XXX Note that I set elpsd above & use it
790 * below, so if you put a return here you'll have to fix this.
791 * (also, FreeReconControl is called below) */
792
793 case 7:
794
795 rf_ResumeNewRequests(raidPtr);
796
797 printf("Reconstruction of disk at row %d col %d completed\n",
798 row, col);
799 xor_s = raidPtr->accumXorTimeUs / 1000000;
800 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
801 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
802 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
803 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
804 (int) raidPtr->reconControl[row]->starttime.tv_sec,
805 (int) raidPtr->reconControl[row]->starttime.tv_usec,
806 (int) etime.tv_sec, (int) etime.tv_usec);
807
808 #if RF_RECON_STATS > 0
809 printf("Total head-sep stall count was %d\n",
810 (int) reconDesc->hsStallCount);
811 #endif /* RF_RECON_STATS > 0 */
812 rf_FreeReconControl(raidPtr, row);
813 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
814 FreeReconDesc(reconDesc);
815
816 }
817
818 SignalReconDone(raidPtr);
819 return (0);
820 }
821 /*****************************************************************************
822 * do the right thing upon each reconstruction event.
823 * returns nonzero if and only if there is nothing left unread on the
824 * indicated disk
825 *****************************************************************************/
826 static int
827 ProcessReconEvent(raidPtr, frow, event)
828 RF_Raid_t *raidPtr;
829 RF_RowCol_t frow;
830 RF_ReconEvent_t *event;
831 {
832 int retcode = 0, submitblocked;
833 RF_ReconBuffer_t *rbuf;
834 RF_SectorCount_t sectorsPerRU;
835
836 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
837 switch (event->type) {
838
839 /* a read I/O has completed */
840 case RF_REVENT_READDONE:
841 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
842 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
843 frow, event->col, rbuf->parityStripeID);
844 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
845 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
846 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
847 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
848 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
849 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
850 if (!submitblocked)
851 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
852 break;
853
854 /* a write I/O has completed */
855 case RF_REVENT_WRITEDONE:
856 if (rf_floatingRbufDebug) {
857 rf_CheckFloatingRbufCount(raidPtr, 1);
858 }
859 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
860 rbuf = (RF_ReconBuffer_t *) event->arg;
861 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
862 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
863 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
864 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
865 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
866 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
867
868 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
869 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
870 raidPtr->numFullReconBuffers--;
871 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
872 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
873 } else
874 if (rbuf->type == RF_RBUF_TYPE_FORCED)
875 rf_FreeReconBuffer(rbuf);
876 else
877 RF_ASSERT(0);
878 break;
879
880 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
881 * cleared */
882 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
883 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
884 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
885 * BUFCLEAR event if we
886 * couldn't submit */
887 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
888 break;
889
890 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
891 * blockage has been cleared */
892 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
893 retcode = TryToRead(raidPtr, frow, event->col);
894 break;
895
896 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
897 * reconstruction blockage has been
898 * cleared */
899 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
900 retcode = TryToRead(raidPtr, frow, event->col);
901 break;
902
903 /* a buffer has become ready to write */
904 case RF_REVENT_BUFREADY:
905 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
906 retcode = IssueNextWriteRequest(raidPtr, frow);
907 if (rf_floatingRbufDebug) {
908 rf_CheckFloatingRbufCount(raidPtr, 1);
909 }
910 break;
911
912 /* we need to skip the current RU entirely because it got
913 * recon'd while we were waiting for something else to happen */
914 case RF_REVENT_SKIP:
915 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
916 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
917 break;
918
919 /* a forced-reconstruction read access has completed. Just
920 * submit the buffer */
921 case RF_REVENT_FORCEDREADDONE:
922 rbuf = (RF_ReconBuffer_t *) event->arg;
923 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
924 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
925 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
926 RF_ASSERT(!submitblocked);
927 break;
928
929 default:
930 RF_PANIC();
931 }
932 rf_FreeReconEventDesc(event);
933 return (retcode);
934 }
935 /*****************************************************************************
936 *
937 * find the next thing that's needed on the indicated disk, and issue
938 * a read request for it. We assume that the reconstruction buffer
939 * associated with this process is free to receive the data. If
940 * reconstruction is blocked on the indicated RU, we issue a
941 * blockage-release request instead of a physical disk read request.
942 * If the current disk gets too far ahead of the others, we issue a
943 * head-separation wait request and return.
944 *
945 * ctrl->{ru_count, curPSID, diskOffset} and
946 * rbuf->failedDiskSectorOffset are maintained to point to the unit
947 * we're currently accessing. Note that this deviates from the
948 * standard C idiom of having counters point to the next thing to be
949 * accessed. This allows us to easily retry when we're blocked by
950 * head separation or reconstruction-blockage events.
951 *
952 * returns nonzero if and only if there is nothing left unread on the
953 * indicated disk
954 *
955 *****************************************************************************/
956 static int
957 IssueNextReadRequest(raidPtr, row, col)
958 RF_Raid_t *raidPtr;
959 RF_RowCol_t row;
960 RF_RowCol_t col;
961 {
962 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
963 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
964 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
965 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
966 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
967 int do_new_check = 0, retcode = 0, status;
968
969 /* if we are currently the slowest disk, mark that we have to do a new
970 * check */
971 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
972 do_new_check = 1;
973
974 while (1) {
975
976 ctrl->ru_count++;
977 if (ctrl->ru_count < RUsPerPU) {
978 ctrl->diskOffset += sectorsPerRU;
979 rbuf->failedDiskSectorOffset += sectorsPerRU;
980 } else {
981 ctrl->curPSID++;
982 ctrl->ru_count = 0;
983 /* code left over from when head-sep was based on
984 * parity stripe id */
985 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
986 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
987 return (1); /* finito! */
988 }
989 /* find the disk offsets of the start of the parity
990 * stripe on both the current disk and the failed
991 * disk. skip this entire parity stripe if either disk
992 * does not appear in the indicated PS */
993 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
994 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
995 if (status) {
996 ctrl->ru_count = RUsPerPU - 1;
997 continue;
998 }
999 }
1000 rbuf->which_ru = ctrl->ru_count;
1001
1002 /* skip this RU if it's already been reconstructed */
1003 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1004 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1005 continue;
1006 }
1007 break;
1008 }
1009 ctrl->headSepCounter++;
1010 if (do_new_check)
1011 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1012
1013
1014 /* at this point, we have definitely decided what to do, and we have
1015 * only to see if we can actually do it now */
1016 rbuf->parityStripeID = ctrl->curPSID;
1017 rbuf->which_ru = ctrl->ru_count;
1018 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1019 sizeof(raidPtr->recon_tracerecs[col]));
1020 raidPtr->recon_tracerecs[col].reconacc = 1;
1021 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1022 retcode = TryToRead(raidPtr, row, col);
1023 return (retcode);
1024 }
1025
1026 /*
1027 * tries to issue the next read on the indicated disk. We may be
1028 * blocked by (a) the heads being too far apart, or (b) recon on the
1029 * indicated RU being blocked due to a write by a user thread. In
1030 * this case, we issue a head-sep or blockage wait request, which will
1031 * cause this same routine to be invoked again later when the blockage
1032 * has cleared.
1033 */
1034
1035 static int
1036 TryToRead(raidPtr, row, col)
1037 RF_Raid_t *raidPtr;
1038 RF_RowCol_t row;
1039 RF_RowCol_t col;
1040 {
1041 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1042 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1043 RF_StripeNum_t psid = ctrl->curPSID;
1044 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1045 RF_DiskQueueData_t *req;
1046 int status, created = 0;
1047 RF_ReconParityStripeStatus_t *pssPtr;
1048
1049 /* if the current disk is too far ahead of the others, issue a
1050 * head-separation wait and return */
1051 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1052 return (0);
1053 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1054 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1055
1056 /* if recon is blocked on the indicated parity stripe, issue a
1057 * block-wait request and return. this also must mark the indicated RU
1058 * in the stripe as under reconstruction if not blocked. */
1059 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1060 if (status == RF_PSS_RECON_BLOCKED) {
1061 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1062 goto out;
1063 } else
1064 if (status == RF_PSS_FORCED_ON_WRITE) {
1065 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1066 goto out;
1067 }
1068 /* make one last check to be sure that the indicated RU didn't get
1069 * reconstructed while we were waiting for something else to happen.
1070 * This is unfortunate in that it causes us to make this check twice
1071 * in the normal case. Might want to make some attempt to re-work
1072 * this so that we only do this check if we've definitely blocked on
1073 * one of the above checks. When this condition is detected, we may
1074 * have just created a bogus status entry, which we need to delete. */
1075 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1076 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1077 if (created)
1078 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1079 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1080 goto out;
1081 }
1082 /* found something to read. issue the I/O */
1083 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1084 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1085 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1086 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1087 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1088 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1089 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1090
1091 /* should be ok to use a NULL proc pointer here, all the bufs we use
1092 * should be in kernel space */
1093 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1094 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1095
1096 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1097
1098 ctrl->rbuf->arg = (void *) req;
1099 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1100 pssPtr->issued[col] = 1;
1101
1102 out:
1103 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1104 return (0);
1105 }
1106
1107
1108 /*
1109 * given a parity stripe ID, we want to find out whether both the
1110 * current disk and the failed disk exist in that parity stripe. If
1111 * not, we want to skip this whole PS. If so, we want to find the
1112 * disk offset of the start of the PS on both the current disk and the
1113 * failed disk.
1114 *
1115 * this works by getting a list of disks comprising the indicated
1116 * parity stripe, and searching the list for the current and failed
1117 * disks. Once we've decided they both exist in the parity stripe, we
1118 * need to decide whether each is data or parity, so that we'll know
1119 * which mapping function to call to get the corresponding disk
1120 * offsets.
1121 *
1122 * this is kind of unpleasant, but doing it this way allows the
1123 * reconstruction code to use parity stripe IDs rather than physical
1124 * disks address to march through the failed disk, which greatly
1125 * simplifies a lot of code, as well as eliminating the need for a
1126 * reverse-mapping function. I also think it will execute faster,
1127 * since the calls to the mapping module are kept to a minimum.
1128 *
1129 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1130 * THE STRIPE IN THE CORRECT ORDER */
1131
1132
1133 static int
1134 ComputePSDiskOffsets(
1135 RF_Raid_t * raidPtr, /* raid descriptor */
1136 RF_StripeNum_t psid, /* parity stripe identifier */
1137 RF_RowCol_t row, /* row and column of disk to find the offsets
1138 * for */
1139 RF_RowCol_t col,
1140 RF_SectorNum_t * outDiskOffset,
1141 RF_SectorNum_t * outFailedDiskSectorOffset,
1142 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1143 RF_RowCol_t * spCol,
1144 RF_SectorNum_t * spOffset)
1145 { /* OUT: offset into disk containing spare unit */
1146 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1147 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1148 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1149 RF_RowCol_t *diskids;
1150 u_int i, j, k, i_offset, j_offset;
1151 RF_RowCol_t prow, pcol;
1152 int testcol, testrow;
1153 RF_RowCol_t stripe;
1154 RF_SectorNum_t poffset;
1155 char i_is_parity = 0, j_is_parity = 0;
1156 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1157
1158 /* get a listing of the disks comprising that stripe */
1159 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1160 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1161 RF_ASSERT(diskids);
1162
1163 /* reject this entire parity stripe if it does not contain the
1164 * indicated disk or it does not contain the failed disk */
1165 if (row != stripe)
1166 goto skipit;
1167 for (i = 0; i < stripeWidth; i++) {
1168 if (col == diskids[i])
1169 break;
1170 }
1171 if (i == stripeWidth)
1172 goto skipit;
1173 for (j = 0; j < stripeWidth; j++) {
1174 if (fcol == diskids[j])
1175 break;
1176 }
1177 if (j == stripeWidth) {
1178 goto skipit;
1179 }
1180 /* find out which disk the parity is on */
1181 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1182
1183 /* find out if either the current RU or the failed RU is parity */
1184 /* also, if the parity occurs in this stripe prior to the data and/or
1185 * failed col, we need to decrement i and/or j */
1186 for (k = 0; k < stripeWidth; k++)
1187 if (diskids[k] == pcol)
1188 break;
1189 RF_ASSERT(k < stripeWidth);
1190 i_offset = i;
1191 j_offset = j;
1192 if (k < i)
1193 i_offset--;
1194 else
1195 if (k == i) {
1196 i_is_parity = 1;
1197 i_offset = 0;
1198 } /* set offsets to zero to disable multiply
1199 * below */
1200 if (k < j)
1201 j_offset--;
1202 else
1203 if (k == j) {
1204 j_is_parity = 1;
1205 j_offset = 0;
1206 }
1207 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1208 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1209 * tells us how far into the stripe the [current,failed] disk is. */
1210
1211 /* call the mapping routine to get the offset into the current disk,
1212 * repeat for failed disk. */
1213 if (i_is_parity)
1214 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1215 else
1216 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1217
1218 RF_ASSERT(row == testrow && col == testcol);
1219
1220 if (j_is_parity)
1221 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1222 else
1223 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1224 RF_ASSERT(row == testrow && fcol == testcol);
1225
1226 /* now locate the spare unit for the failed unit */
1227 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1228 if (j_is_parity)
1229 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1230 else
1231 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1232 } else {
1233 *spRow = raidPtr->reconControl[row]->spareRow;
1234 *spCol = raidPtr->reconControl[row]->spareCol;
1235 *spOffset = *outFailedDiskSectorOffset;
1236 }
1237
1238 return (0);
1239
1240 skipit:
1241 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1242 psid, row, col);
1243 return (1);
1244 }
1245 /* this is called when a buffer has become ready to write to the replacement disk */
1246 static int
1247 IssueNextWriteRequest(raidPtr, row)
1248 RF_Raid_t *raidPtr;
1249 RF_RowCol_t row;
1250 {
1251 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1252 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1253 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1254 RF_ReconBuffer_t *rbuf;
1255 RF_DiskQueueData_t *req;
1256
1257 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1258 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1259 * have gotten the event that sent us here */
1260 RF_ASSERT(rbuf->pssPtr);
1261
1262 rbuf->pssPtr->writeRbuf = rbuf;
1263 rbuf->pssPtr = NULL;
1264
1265 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1266 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1267 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1268 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1269 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1270 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1271
1272 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1273 * kernel space */
1274 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1275 sectorsPerRU, rbuf->buffer,
1276 rbuf->parityStripeID, rbuf->which_ru,
1277 ReconWriteDoneProc, (void *) rbuf, NULL,
1278 &raidPtr->recon_tracerecs[fcol],
1279 (void *) raidPtr, 0, NULL);
1280
1281 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1282
1283 rbuf->arg = (void *) req;
1284 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1285
1286 return (0);
1287 }
1288
1289 /*
1290 * this gets called upon the completion of a reconstruction read
1291 * operation the arg is a pointer to the per-disk reconstruction
1292 * control structure for the process that just finished a read.
1293 *
1294 * called at interrupt context in the kernel, so don't do anything
1295 * illegal here.
1296 */
1297 static int
1298 ReconReadDoneProc(arg, status)
1299 void *arg;
1300 int status;
1301 {
1302 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1303 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1304
1305 if (status) {
1306 /*
1307 * XXX
1308 */
1309 printf("Recon read failed!\n");
1310 RF_PANIC();
1311 }
1312 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1313 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1314 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1315 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1316 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1317
1318 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1319 return (0);
1320 }
1321 /* this gets called upon the completion of a reconstruction write operation.
1322 * the arg is a pointer to the rbuf that was just written
1323 *
1324 * called at interrupt context in the kernel, so don't do anything illegal here.
1325 */
1326 static int
1327 ReconWriteDoneProc(arg, status)
1328 void *arg;
1329 int status;
1330 {
1331 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1332
1333 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1334 if (status) {
1335 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1336 * write failed!\n"); */
1337 RF_PANIC();
1338 }
1339 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1340 return (0);
1341 }
1342
1343
1344 /*
1345 * computes a new minimum head sep, and wakes up anyone who needs to
1346 * be woken as a result
1347 */
1348 static void
1349 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1350 RF_Raid_t *raidPtr;
1351 RF_RowCol_t row;
1352 RF_HeadSepLimit_t hsCtr;
1353 {
1354 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1355 RF_HeadSepLimit_t new_min;
1356 RF_RowCol_t i;
1357 RF_CallbackDesc_t *p;
1358 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1359 * of a minimum */
1360
1361
1362 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1363
1364 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1365 for (i = 0; i < raidPtr->numCol; i++)
1366 if (i != reconCtrlPtr->fcol) {
1367 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1368 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1369 }
1370 /* set the new minimum and wake up anyone who can now run again */
1371 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1372 reconCtrlPtr->minHeadSepCounter = new_min;
1373 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1374 while (reconCtrlPtr->headSepCBList) {
1375 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1376 break;
1377 p = reconCtrlPtr->headSepCBList;
1378 reconCtrlPtr->headSepCBList = p->next;
1379 p->next = NULL;
1380 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1381 rf_FreeCallbackDesc(p);
1382 }
1383
1384 }
1385 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1386 }
1387
1388 /*
1389 * checks to see that the maximum head separation will not be violated
1390 * if we initiate a reconstruction I/O on the indicated disk.
1391 * Limiting the maximum head separation between two disks eliminates
1392 * the nasty buffer-stall conditions that occur when one disk races
1393 * ahead of the others and consumes all of the floating recon buffers.
1394 * This code is complex and unpleasant but it's necessary to avoid
1395 * some very nasty, albeit fairly rare, reconstruction behavior.
1396 *
1397 * returns non-zero if and only if we have to stop working on the
1398 * indicated disk due to a head-separation delay.
1399 */
1400 static int
1401 CheckHeadSeparation(
1402 RF_Raid_t * raidPtr,
1403 RF_PerDiskReconCtrl_t * ctrl,
1404 RF_RowCol_t row,
1405 RF_RowCol_t col,
1406 RF_HeadSepLimit_t hsCtr,
1407 RF_ReconUnitNum_t which_ru)
1408 {
1409 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1410 RF_CallbackDesc_t *cb, *p, *pt;
1411 int retval = 0;
1412
1413 /* if we're too far ahead of the slowest disk, stop working on this
1414 * disk until the slower ones catch up. We do this by scheduling a
1415 * wakeup callback for the time when the slowest disk has caught up.
1416 * We define "caught up" with 20% hysteresis, i.e. the head separation
1417 * must have fallen to at most 80% of the max allowable head
1418 * separation before we'll wake up.
1419 *
1420 */
1421 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1422 if ((raidPtr->headSepLimit >= 0) &&
1423 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1424 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1425 raidPtr->raidid, row, col, ctrl->headSepCounter,
1426 reconCtrlPtr->minHeadSepCounter,
1427 raidPtr->headSepLimit);
1428 cb = rf_AllocCallbackDesc();
1429 /* the minHeadSepCounter value we have to get to before we'll
1430 * wake up. build in 20% hysteresis. */
1431 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1432 cb->row = row;
1433 cb->col = col;
1434 cb->next = NULL;
1435
1436 /* insert this callback descriptor into the sorted list of
1437 * pending head-sep callbacks */
1438 p = reconCtrlPtr->headSepCBList;
1439 if (!p)
1440 reconCtrlPtr->headSepCBList = cb;
1441 else
1442 if (cb->callbackArg.v < p->callbackArg.v) {
1443 cb->next = reconCtrlPtr->headSepCBList;
1444 reconCtrlPtr->headSepCBList = cb;
1445 } else {
1446 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1447 cb->next = p;
1448 pt->next = cb;
1449 }
1450 retval = 1;
1451 #if RF_RECON_STATS > 0
1452 ctrl->reconCtrl->reconDesc->hsStallCount++;
1453 #endif /* RF_RECON_STATS > 0 */
1454 }
1455 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1456
1457 return (retval);
1458 }
1459 /*
1460 * checks to see if reconstruction has been either forced or blocked
1461 * by a user operation. if forced, we skip this RU entirely. else if
1462 * blocked, put ourselves on the wait list. else return 0.
1463 *
1464 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1465 */
1466 static int
1467 CheckForcedOrBlockedReconstruction(
1468 RF_Raid_t * raidPtr,
1469 RF_ReconParityStripeStatus_t * pssPtr,
1470 RF_PerDiskReconCtrl_t * ctrl,
1471 RF_RowCol_t row,
1472 RF_RowCol_t col,
1473 RF_StripeNum_t psid,
1474 RF_ReconUnitNum_t which_ru)
1475 {
1476 RF_CallbackDesc_t *cb;
1477 int retcode = 0;
1478
1479 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1480 retcode = RF_PSS_FORCED_ON_WRITE;
1481 else
1482 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1483 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1484 cb = rf_AllocCallbackDesc(); /* append ourselves to
1485 * the blockage-wait
1486 * list */
1487 cb->row = row;
1488 cb->col = col;
1489 cb->next = pssPtr->blockWaitList;
1490 pssPtr->blockWaitList = cb;
1491 retcode = RF_PSS_RECON_BLOCKED;
1492 }
1493 if (!retcode)
1494 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1495 * reconstruction */
1496
1497 return (retcode);
1498 }
1499 /*
1500 * if reconstruction is currently ongoing for the indicated stripeID,
1501 * reconstruction is forced to completion and we return non-zero to
1502 * indicate that the caller must wait. If not, then reconstruction is
1503 * blocked on the indicated stripe and the routine returns zero. If
1504 * and only if we return non-zero, we'll cause the cbFunc to get
1505 * invoked with the cbArg when the reconstruction has completed.
1506 */
1507 int
1508 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1509 RF_Raid_t *raidPtr;
1510 RF_AccessStripeMap_t *asmap;
1511 void (*cbFunc) (RF_Raid_t *, void *);
1512 void *cbArg;
1513 {
1514 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1515 * we're working on */
1516 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1517 * forcing recon on */
1518 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1519 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1520 * stripe status structure */
1521 RF_StripeNum_t psid; /* parity stripe id */
1522 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1523 * offset */
1524 RF_RowCol_t *diskids;
1525 RF_RowCol_t stripe;
1526 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1527 RF_RowCol_t fcol, diskno, i;
1528 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1529 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1530 RF_CallbackDesc_t *cb;
1531 int created = 0, nPromoted;
1532
1533 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1534
1535 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1536
1537 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1538
1539 /* if recon is not ongoing on this PS, just return */
1540 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1541 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1542 return (0);
1543 }
1544 /* otherwise, we have to wait for reconstruction to complete on this
1545 * RU. */
1546 /* In order to avoid waiting for a potentially large number of
1547 * low-priority accesses to complete, we force a normal-priority (i.e.
1548 * not low-priority) reconstruction on this RU. */
1549 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1550 DDprintf1("Forcing recon on psid %ld\n", psid);
1551 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1552 * forced recon */
1553 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1554 * that we just set */
1555 fcol = raidPtr->reconControl[row]->fcol;
1556
1557 /* get a listing of the disks comprising the indicated stripe */
1558 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1559 RF_ASSERT(row == stripe);
1560
1561 /* For previously issued reads, elevate them to normal
1562 * priority. If the I/O has already completed, it won't be
1563 * found in the queue, and hence this will be a no-op. For
1564 * unissued reads, allocate buffers and issue new reads. The
1565 * fact that we've set the FORCED bit means that the regular
1566 * recon procs will not re-issue these reqs */
1567 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1568 if ((diskno = diskids[i]) != fcol) {
1569 if (pssPtr->issued[diskno]) {
1570 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1571 if (rf_reconDebug && nPromoted)
1572 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1573 } else {
1574 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1575 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1576 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1577 * location */
1578 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1579 new_rbuf->which_ru = which_ru;
1580 new_rbuf->failedDiskSectorOffset = fd_offset;
1581 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1582
1583 /* use NULL b_proc b/c all addrs
1584 * should be in kernel space */
1585 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1586 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1587 NULL, (void *) raidPtr, 0, NULL);
1588
1589 RF_ASSERT(req); /* XXX -- fix this --
1590 * XXX */
1591
1592 new_rbuf->arg = req;
1593 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1594 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1595 }
1596 }
1597 /* if the write is sitting in the disk queue, elevate its
1598 * priority */
1599 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1600 printf("raid%d: promoted write to row %d col %d\n",
1601 raidPtr->raidid, row, fcol);
1602 }
1603 /* install a callback descriptor to be invoked when recon completes on
1604 * this parity stripe. */
1605 cb = rf_AllocCallbackDesc();
1606 /* XXX the following is bogus.. These functions don't really match!!
1607 * GO */
1608 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1609 cb->callbackArg.p = (void *) cbArg;
1610 cb->next = pssPtr->procWaitList;
1611 pssPtr->procWaitList = cb;
1612 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1613 raidPtr->raidid, psid);
1614
1615 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1616 return (1);
1617 }
1618 /* called upon the completion of a forced reconstruction read.
1619 * all we do is schedule the FORCEDREADONE event.
1620 * called at interrupt context in the kernel, so don't do anything illegal here.
1621 */
1622 static void
1623 ForceReconReadDoneProc(arg, status)
1624 void *arg;
1625 int status;
1626 {
1627 RF_ReconBuffer_t *rbuf = arg;
1628
1629 if (status) {
1630 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1631 * recon read
1632 * failed!\n"); */
1633 RF_PANIC();
1634 }
1635 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1636 }
1637 /* releases a block on the reconstruction of the indicated stripe */
1638 int
1639 rf_UnblockRecon(raidPtr, asmap)
1640 RF_Raid_t *raidPtr;
1641 RF_AccessStripeMap_t *asmap;
1642 {
1643 RF_RowCol_t row = asmap->origRow;
1644 RF_StripeNum_t stripeID = asmap->stripeID;
1645 RF_ReconParityStripeStatus_t *pssPtr;
1646 RF_ReconUnitNum_t which_ru;
1647 RF_StripeNum_t psid;
1648 int created = 0;
1649 RF_CallbackDesc_t *cb;
1650
1651 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1652 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1653 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1654
1655 /* When recon is forced, the pss desc can get deleted before we get
1656 * back to unblock recon. But, this can _only_ happen when recon is
1657 * forced. It would be good to put some kind of sanity check here, but
1658 * how to decide if recon was just forced or not? */
1659 if (!pssPtr) {
1660 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1661 * RU %d\n",psid,which_ru); */
1662 if (rf_reconDebug || rf_pssDebug)
1663 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1664 goto out;
1665 }
1666 pssPtr->blockCount--;
1667 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1668 raidPtr->raidid, psid, pssPtr->blockCount);
1669 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1670
1671 /* unblock recon before calling CauseReconEvent in case
1672 * CauseReconEvent causes us to try to issue a new read before
1673 * returning here. */
1674 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1675
1676
1677 while (pssPtr->blockWaitList) {
1678 /* spin through the block-wait list and
1679 release all the waiters */
1680 cb = pssPtr->blockWaitList;
1681 pssPtr->blockWaitList = cb->next;
1682 cb->next = NULL;
1683 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1684 rf_FreeCallbackDesc(cb);
1685 }
1686 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1687 /* if no recon was requested while recon was blocked */
1688 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1689 }
1690 }
1691 out:
1692 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1693 return (0);
1694 }
1695