rf_reconstruct.c revision 1.33.8.1 1 /* $NetBSD: rf_reconstruct.c,v 1.33.8.1 2002/07/15 10:35:52 gehenna Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.33.8.1 2002/07/15 10:35:52 gehenna Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_general.h"
59 #include "rf_freelist.h"
60 #include "rf_debugprint.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #ifdef DEBUG
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* DEBUG */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* DEBUG */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 int
162 rf_RegisterReconDoneProc(
163 RF_Raid_t * raidPtr,
164 void (*proc) (RF_Raid_t *, void *),
165 void *arg,
166 RF_ReconDoneProc_t ** handlep)
167 {
168 RF_ReconDoneProc_t *p;
169
170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 if (p == NULL)
172 return (ENOMEM);
173 p->proc = proc;
174 p->arg = arg;
175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 p->next = raidPtr->recon_done_procs;
177 raidPtr->recon_done_procs = p;
178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 if (handlep)
180 *handlep = p;
181 return (0);
182 }
183 /**************************************************************************
184 *
185 * sets up the parameters that will be used by the reconstruction process
186 * currently there are none, except for those that the layout-specific
187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188 *
189 * in the kernel, we fire off the recon thread.
190 *
191 **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 void *ignored;
195 {
196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199
200 int
201 rf_ConfigureReconstruction(listp)
202 RF_ShutdownList_t **listp;
203 {
204 int rc;
205
206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 if (rf_recond_freelist == NULL)
209 return (ENOMEM);
210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 if (rf_rdp_freelist == NULL) {
213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 return (ENOMEM);
215 }
216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 if (rc) {
218 RF_ERRORMSG3("Unable to add to shutdown list file %s line %d rc=%d\n",
219 __FILE__, __LINE__, rc);
220 rf_ShutdownReconstruction(NULL);
221 return (rc);
222 }
223 return (0);
224 }
225
226 static RF_RaidReconDesc_t *
227 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
228 RF_Raid_t *raidPtr;
229 RF_RowCol_t row;
230 RF_RowCol_t col;
231 RF_RaidDisk_t *spareDiskPtr;
232 int numDisksDone;
233 RF_RowCol_t srow;
234 RF_RowCol_t scol;
235 {
236
237 RF_RaidReconDesc_t *reconDesc;
238
239 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
240
241 reconDesc->raidPtr = raidPtr;
242 reconDesc->row = row;
243 reconDesc->col = col;
244 reconDesc->spareDiskPtr = spareDiskPtr;
245 reconDesc->numDisksDone = numDisksDone;
246 reconDesc->srow = srow;
247 reconDesc->scol = scol;
248 reconDesc->state = 0;
249 reconDesc->next = NULL;
250
251 return (reconDesc);
252 }
253
254 static void
255 FreeReconDesc(reconDesc)
256 RF_RaidReconDesc_t *reconDesc;
257 {
258 #if RF_RECON_STATS > 0
259 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
260 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
261 #endif /* RF_RECON_STATS > 0 */
262 printf("RAIDframe: %lu max exec ticks\n",
263 (long) reconDesc->maxReconExecTicks);
264 #if (RF_RECON_STATS > 0) || defined(KERNEL)
265 printf("\n");
266 #endif /* (RF_RECON_STATS > 0) || KERNEL */
267 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
268 }
269
270
271 /*****************************************************************************
272 *
273 * primary routine to reconstruct a failed disk. This should be called from
274 * within its own thread. It won't return until reconstruction completes,
275 * fails, or is aborted.
276 *****************************************************************************/
277 int
278 rf_ReconstructFailedDisk(raidPtr, row, col)
279 RF_Raid_t *raidPtr;
280 RF_RowCol_t row;
281 RF_RowCol_t col;
282 {
283 RF_LayoutSW_t *lp;
284 int rc;
285
286 lp = raidPtr->Layout.map;
287 if (lp->SubmitReconBuffer) {
288 /*
289 * The current infrastructure only supports reconstructing one
290 * disk at a time for each array.
291 */
292 RF_LOCK_MUTEX(raidPtr->mutex);
293 while (raidPtr->reconInProgress) {
294 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
295 }
296 raidPtr->reconInProgress++;
297 RF_UNLOCK_MUTEX(raidPtr->mutex);
298 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
299 RF_LOCK_MUTEX(raidPtr->mutex);
300 raidPtr->reconInProgress--;
301 RF_UNLOCK_MUTEX(raidPtr->mutex);
302 } else {
303 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
304 lp->parityConfig);
305 rc = EIO;
306 }
307 RF_SIGNAL_COND(raidPtr->waitForReconCond);
308 return (rc);
309 }
310
311 int
312 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
313 RF_Raid_t *raidPtr;
314 RF_RowCol_t row;
315 RF_RowCol_t col;
316 {
317 RF_ComponentLabel_t c_label;
318 RF_RaidDisk_t *spareDiskPtr = NULL;
319 RF_RaidReconDesc_t *reconDesc;
320 RF_RowCol_t srow, scol;
321 int numDisksDone = 0, rc;
322
323 /* first look for a spare drive onto which to reconstruct the data */
324 /* spare disk descriptors are stored in row 0. This may have to
325 * change eventually */
326
327 RF_LOCK_MUTEX(raidPtr->mutex);
328 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
329
330 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
331 if (raidPtr->status[row] != rf_rs_degraded) {
332 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
333 RF_UNLOCK_MUTEX(raidPtr->mutex);
334 return (EINVAL);
335 }
336 srow = row;
337 scol = (-1);
338 } else {
339 srow = 0;
340 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
341 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
342 spareDiskPtr = &raidPtr->Disks[srow][scol];
343 spareDiskPtr->status = rf_ds_used_spare;
344 break;
345 }
346 }
347 if (!spareDiskPtr) {
348 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
349 RF_UNLOCK_MUTEX(raidPtr->mutex);
350 return (ENOSPC);
351 }
352 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
353 }
354 RF_UNLOCK_MUTEX(raidPtr->mutex);
355
356 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
357 raidPtr->reconDesc = (void *) reconDesc;
358 #if RF_RECON_STATS > 0
359 reconDesc->hsStallCount = 0;
360 reconDesc->numReconExecDelays = 0;
361 reconDesc->numReconEventWaits = 0;
362 #endif /* RF_RECON_STATS > 0 */
363 reconDesc->reconExecTimerRunning = 0;
364 reconDesc->reconExecTicks = 0;
365 reconDesc->maxReconExecTicks = 0;
366 rc = rf_ContinueReconstructFailedDisk(reconDesc);
367
368 if (!rc) {
369 /* fix up the component label */
370 /* Don't actually need the read here.. */
371 raidread_component_label(
372 raidPtr->raid_cinfo[srow][scol].ci_dev,
373 raidPtr->raid_cinfo[srow][scol].ci_vp,
374 &c_label);
375
376 raid_init_component_label( raidPtr, &c_label);
377 c_label.row = row;
378 c_label.column = col;
379 c_label.clean = RF_RAID_DIRTY;
380 c_label.status = rf_ds_optimal;
381 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
382
383 /* We've just done a rebuild based on all the other
384 disks, so at this point the parity is known to be
385 clean, even if it wasn't before. */
386
387 /* XXX doesn't hold for RAID 6!!*/
388
389 raidPtr->parity_good = RF_RAID_CLEAN;
390
391 /* XXXX MORE NEEDED HERE */
392
393 raidwrite_component_label(
394 raidPtr->raid_cinfo[srow][scol].ci_dev,
395 raidPtr->raid_cinfo[srow][scol].ci_vp,
396 &c_label);
397
398 }
399 return (rc);
400 }
401
402 /*
403
404 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
405 and you don't get a spare until the next Monday. With this function
406 (and hot-swappable drives) you can now put your new disk containing
407 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
408 rebuild the data "on the spot".
409
410 */
411
412 int
413 rf_ReconstructInPlace(raidPtr, row, col)
414 RF_Raid_t *raidPtr;
415 RF_RowCol_t row;
416 RF_RowCol_t col;
417 {
418 RF_RaidDisk_t *spareDiskPtr = NULL;
419 RF_RaidReconDesc_t *reconDesc;
420 RF_LayoutSW_t *lp;
421 RF_RaidDisk_t *badDisk;
422 RF_ComponentLabel_t c_label;
423 int numDisksDone = 0, rc;
424 struct partinfo dpart;
425 struct vnode *vp;
426 struct vattr va;
427 struct proc *proc;
428 int retcode;
429 int ac;
430
431 lp = raidPtr->Layout.map;
432 if (lp->SubmitReconBuffer) {
433 /*
434 * The current infrastructure only supports reconstructing one
435 * disk at a time for each array.
436 */
437 RF_LOCK_MUTEX(raidPtr->mutex);
438 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
439 (raidPtr->numFailures > 0)) {
440 /* XXX 0 above shouldn't be constant!!! */
441 /* some component other than this has failed.
442 Let's not make things worse than they already
443 are... */
444 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
445 printf(" Row: %d Col: %d Too many failures.\n",
446 row, col);
447 RF_UNLOCK_MUTEX(raidPtr->mutex);
448 return (EINVAL);
449 }
450 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
451 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
452 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
453
454 RF_UNLOCK_MUTEX(raidPtr->mutex);
455 return (EINVAL);
456 }
457
458
459 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
460 /* "It's gone..." */
461 raidPtr->numFailures++;
462 raidPtr->Disks[row][col].status = rf_ds_failed;
463 raidPtr->status[row] = rf_rs_degraded;
464 rf_update_component_labels(raidPtr,
465 RF_NORMAL_COMPONENT_UPDATE);
466 }
467
468 while (raidPtr->reconInProgress) {
469 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
470 }
471
472 raidPtr->reconInProgress++;
473
474
475 /* first look for a spare drive onto which to reconstruct
476 the data. spare disk descriptors are stored in row 0.
477 This may have to change eventually */
478
479 /* Actually, we don't care if it's failed or not...
480 On a RAID set with correct parity, this function
481 should be callable on any component without ill affects. */
482 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
483 */
484
485 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
486 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
487
488 raidPtr->reconInProgress--;
489 RF_UNLOCK_MUTEX(raidPtr->mutex);
490 return (EINVAL);
491 }
492
493 /* XXX need goop here to see if the disk is alive,
494 and, if not, make it so... */
495
496
497
498 badDisk = &raidPtr->Disks[row][col];
499
500 proc = raidPtr->engine_thread;
501
502 /* This device may have been opened successfully the
503 first time. Close it before trying to open it again.. */
504
505 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
506 printf("Closed the open device: %s\n",
507 raidPtr->Disks[row][col].devname);
508 vp = raidPtr->raid_cinfo[row][col].ci_vp;
509 ac = raidPtr->Disks[row][col].auto_configured;
510 rf_close_component(raidPtr, vp, ac);
511 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
512 }
513 /* note that this disk was *not* auto_configured (any longer)*/
514 raidPtr->Disks[row][col].auto_configured = 0;
515
516 printf("About to (re-)open the device for rebuilding: %s\n",
517 raidPtr->Disks[row][col].devname);
518
519 retcode = raidlookup(raidPtr->Disks[row][col].devname,
520 proc, &vp);
521
522 if (retcode) {
523 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
524 raidPtr->Disks[row][col].devname, retcode);
525
526 /* XXX the component isn't responding properly...
527 must be still dead :-( */
528 raidPtr->reconInProgress--;
529 RF_UNLOCK_MUTEX(raidPtr->mutex);
530 return(retcode);
531
532 } else {
533
534 /* Ok, so we can at least do a lookup...
535 How about actually getting a vp for it? */
536
537 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
538 proc)) != 0) {
539 raidPtr->reconInProgress--;
540 RF_UNLOCK_MUTEX(raidPtr->mutex);
541 return(retcode);
542 }
543 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
544 FREAD, proc->p_ucred, proc);
545 if (retcode) {
546 raidPtr->reconInProgress--;
547 RF_UNLOCK_MUTEX(raidPtr->mutex);
548 return(retcode);
549 }
550 raidPtr->Disks[row][col].blockSize =
551 dpart.disklab->d_secsize;
552
553 raidPtr->Disks[row][col].numBlocks =
554 dpart.part->p_size - rf_protectedSectors;
555
556 raidPtr->raid_cinfo[row][col].ci_vp = vp;
557 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
558
559 raidPtr->Disks[row][col].dev = va.va_rdev;
560
561 /* we allow the user to specify that only a
562 fraction of the disks should be used this is
563 just for debug: it speeds up
564 * the parity scan */
565 raidPtr->Disks[row][col].numBlocks =
566 raidPtr->Disks[row][col].numBlocks *
567 rf_sizePercentage / 100;
568 }
569
570
571
572 spareDiskPtr = &raidPtr->Disks[row][col];
573 spareDiskPtr->status = rf_ds_used_spare;
574
575 printf("RECON: initiating in-place reconstruction on\n");
576 printf(" row %d col %d -> spare at row %d col %d\n",
577 row, col, row, col);
578
579 RF_UNLOCK_MUTEX(raidPtr->mutex);
580
581 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
582 spareDiskPtr, numDisksDone,
583 row, col);
584 raidPtr->reconDesc = (void *) reconDesc;
585 #if RF_RECON_STATS > 0
586 reconDesc->hsStallCount = 0;
587 reconDesc->numReconExecDelays = 0;
588 reconDesc->numReconEventWaits = 0;
589 #endif /* RF_RECON_STATS > 0 */
590 reconDesc->reconExecTimerRunning = 0;
591 reconDesc->reconExecTicks = 0;
592 reconDesc->maxReconExecTicks = 0;
593 rc = rf_ContinueReconstructFailedDisk(reconDesc);
594
595 RF_LOCK_MUTEX(raidPtr->mutex);
596 raidPtr->reconInProgress--;
597 RF_UNLOCK_MUTEX(raidPtr->mutex);
598
599 } else {
600 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
601 lp->parityConfig);
602 rc = EIO;
603 }
604 RF_LOCK_MUTEX(raidPtr->mutex);
605
606 if (!rc) {
607 /* Need to set these here, as at this point it'll be claiming
608 that the disk is in rf_ds_spared! But we know better :-) */
609
610 raidPtr->Disks[row][col].status = rf_ds_optimal;
611 raidPtr->status[row] = rf_rs_optimal;
612
613 /* fix up the component label */
614 /* Don't actually need the read here.. */
615 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
616 raidPtr->raid_cinfo[row][col].ci_vp,
617 &c_label);
618
619 raid_init_component_label(raidPtr, &c_label);
620
621 c_label.row = row;
622 c_label.column = col;
623
624 /* We've just done a rebuild based on all the other
625 disks, so at this point the parity is known to be
626 clean, even if it wasn't before. */
627
628 /* XXX doesn't hold for RAID 6!!*/
629
630 raidPtr->parity_good = RF_RAID_CLEAN;
631
632 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
633 raidPtr->raid_cinfo[row][col].ci_vp,
634 &c_label);
635
636 }
637 RF_UNLOCK_MUTEX(raidPtr->mutex);
638 RF_SIGNAL_COND(raidPtr->waitForReconCond);
639 wakeup(&raidPtr->waitForReconCond);
640 return (rc);
641 }
642
643
644 int
645 rf_ContinueReconstructFailedDisk(reconDesc)
646 RF_RaidReconDesc_t *reconDesc;
647 {
648 RF_Raid_t *raidPtr = reconDesc->raidPtr;
649 RF_RowCol_t row = reconDesc->row;
650 RF_RowCol_t col = reconDesc->col;
651 RF_RowCol_t srow = reconDesc->srow;
652 RF_RowCol_t scol = reconDesc->scol;
653 RF_ReconMap_t *mapPtr;
654
655 RF_ReconEvent_t *event;
656 struct timeval etime, elpsd;
657 unsigned long xor_s, xor_resid_us;
658 int retcode, i, ds;
659
660 switch (reconDesc->state) {
661
662
663 case 0:
664
665 raidPtr->accumXorTimeUs = 0;
666
667 /* create one trace record per physical disk */
668 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
669
670 /* quiesce the array prior to starting recon. this is needed
671 * to assure no nasty interactions with pending user writes.
672 * We need to do this before we change the disk or row status. */
673 reconDesc->state = 1;
674
675 Dprintf("RECON: begin request suspend\n");
676 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
677 Dprintf("RECON: end request suspend\n");
678 rf_StartUserStats(raidPtr); /* zero out the stats kept on
679 * user accs */
680
681 /* fall through to state 1 */
682
683 case 1:
684
685 RF_LOCK_MUTEX(raidPtr->mutex);
686
687 /* create the reconstruction control pointer and install it in
688 * the right slot */
689 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
690 mapPtr = raidPtr->reconControl[row]->reconMap;
691 raidPtr->status[row] = rf_rs_reconstructing;
692 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
693 raidPtr->Disks[row][col].spareRow = srow;
694 raidPtr->Disks[row][col].spareCol = scol;
695
696 RF_UNLOCK_MUTEX(raidPtr->mutex);
697
698 RF_GETTIME(raidPtr->reconControl[row]->starttime);
699
700 /* now start up the actual reconstruction: issue a read for
701 * each surviving disk */
702
703 reconDesc->numDisksDone = 0;
704 for (i = 0; i < raidPtr->numCol; i++) {
705 if (i != col) {
706 /* find and issue the next I/O on the
707 * indicated disk */
708 if (IssueNextReadRequest(raidPtr, row, i)) {
709 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
710 reconDesc->numDisksDone++;
711 }
712 }
713 }
714
715 case 2:
716 Dprintf("RECON: resume requests\n");
717 rf_ResumeNewRequests(raidPtr);
718
719
720 reconDesc->state = 3;
721
722 case 3:
723
724 /* process reconstruction events until all disks report that
725 * they've completed all work */
726 mapPtr = raidPtr->reconControl[row]->reconMap;
727
728
729
730 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
731
732 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
733 RF_ASSERT(event);
734
735 if (ProcessReconEvent(raidPtr, row, event))
736 reconDesc->numDisksDone++;
737 raidPtr->reconControl[row]->numRUsTotal =
738 mapPtr->totalRUs;
739 raidPtr->reconControl[row]->numRUsComplete =
740 mapPtr->totalRUs -
741 rf_UnitsLeftToReconstruct(mapPtr);
742
743 raidPtr->reconControl[row]->percentComplete =
744 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
745 if (rf_prReconSched) {
746 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
747 }
748 }
749
750
751
752 reconDesc->state = 4;
753
754
755 case 4:
756 mapPtr = raidPtr->reconControl[row]->reconMap;
757 if (rf_reconDebug) {
758 printf("RECON: all reads completed\n");
759 }
760 /* at this point all the reads have completed. We now wait
761 * for any pending writes to complete, and then we're done */
762
763 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
764
765 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
766 RF_ASSERT(event);
767
768 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
769 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
770 if (rf_prReconSched) {
771 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
772 }
773 }
774 reconDesc->state = 5;
775
776 case 5:
777 /* Success: mark the dead disk as reconstructed. We quiesce
778 * the array here to assure no nasty interactions with pending
779 * user accesses when we free up the psstatus structure as
780 * part of FreeReconControl() */
781
782 reconDesc->state = 6;
783
784 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
785 rf_StopUserStats(raidPtr);
786 rf_PrintUserStats(raidPtr); /* print out the stats on user
787 * accs accumulated during
788 * recon */
789
790 /* fall through to state 6 */
791 case 6:
792
793
794
795 RF_LOCK_MUTEX(raidPtr->mutex);
796 raidPtr->numFailures--;
797 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
798 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
799 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
800 RF_UNLOCK_MUTEX(raidPtr->mutex);
801 RF_GETTIME(etime);
802 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
803
804 /* XXX -- why is state 7 different from state 6 if there is no
805 * return() here? -- XXX Note that I set elpsd above & use it
806 * below, so if you put a return here you'll have to fix this.
807 * (also, FreeReconControl is called below) */
808
809 case 7:
810
811 rf_ResumeNewRequests(raidPtr);
812
813 printf("Reconstruction of disk at row %d col %d completed\n",
814 row, col);
815 xor_s = raidPtr->accumXorTimeUs / 1000000;
816 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
817 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
818 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
819 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
820 (int) raidPtr->reconControl[row]->starttime.tv_sec,
821 (int) raidPtr->reconControl[row]->starttime.tv_usec,
822 (int) etime.tv_sec, (int) etime.tv_usec);
823
824 #if RF_RECON_STATS > 0
825 printf("Total head-sep stall count was %d\n",
826 (int) reconDesc->hsStallCount);
827 #endif /* RF_RECON_STATS > 0 */
828 rf_FreeReconControl(raidPtr, row);
829 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
830 FreeReconDesc(reconDesc);
831
832 }
833
834 SignalReconDone(raidPtr);
835 return (0);
836 }
837 /*****************************************************************************
838 * do the right thing upon each reconstruction event.
839 * returns nonzero if and only if there is nothing left unread on the
840 * indicated disk
841 *****************************************************************************/
842 static int
843 ProcessReconEvent(raidPtr, frow, event)
844 RF_Raid_t *raidPtr;
845 RF_RowCol_t frow;
846 RF_ReconEvent_t *event;
847 {
848 int retcode = 0, submitblocked;
849 RF_ReconBuffer_t *rbuf;
850 RF_SectorCount_t sectorsPerRU;
851
852 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
853 switch (event->type) {
854
855 /* a read I/O has completed */
856 case RF_REVENT_READDONE:
857 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
858 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
859 frow, event->col, rbuf->parityStripeID);
860 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
861 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
862 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
863 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
864 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
865 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
866 if (!submitblocked)
867 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
868 break;
869
870 /* a write I/O has completed */
871 case RF_REVENT_WRITEDONE:
872 if (rf_floatingRbufDebug) {
873 rf_CheckFloatingRbufCount(raidPtr, 1);
874 }
875 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
876 rbuf = (RF_ReconBuffer_t *) event->arg;
877 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
878 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
879 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
880 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
881 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
882 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
883
884 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
885 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
886 raidPtr->numFullReconBuffers--;
887 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
888 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
889 } else
890 if (rbuf->type == RF_RBUF_TYPE_FORCED)
891 rf_FreeReconBuffer(rbuf);
892 else
893 RF_ASSERT(0);
894 break;
895
896 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
897 * cleared */
898 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
899 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
900 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
901 * BUFCLEAR event if we
902 * couldn't submit */
903 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
904 break;
905
906 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
907 * blockage has been cleared */
908 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
909 retcode = TryToRead(raidPtr, frow, event->col);
910 break;
911
912 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
913 * reconstruction blockage has been
914 * cleared */
915 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
916 retcode = TryToRead(raidPtr, frow, event->col);
917 break;
918
919 /* a buffer has become ready to write */
920 case RF_REVENT_BUFREADY:
921 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
922 retcode = IssueNextWriteRequest(raidPtr, frow);
923 if (rf_floatingRbufDebug) {
924 rf_CheckFloatingRbufCount(raidPtr, 1);
925 }
926 break;
927
928 /* we need to skip the current RU entirely because it got
929 * recon'd while we were waiting for something else to happen */
930 case RF_REVENT_SKIP:
931 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
932 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
933 break;
934
935 /* a forced-reconstruction read access has completed. Just
936 * submit the buffer */
937 case RF_REVENT_FORCEDREADDONE:
938 rbuf = (RF_ReconBuffer_t *) event->arg;
939 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
940 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
941 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
942 RF_ASSERT(!submitblocked);
943 break;
944
945 default:
946 RF_PANIC();
947 }
948 rf_FreeReconEventDesc(event);
949 return (retcode);
950 }
951 /*****************************************************************************
952 *
953 * find the next thing that's needed on the indicated disk, and issue
954 * a read request for it. We assume that the reconstruction buffer
955 * associated with this process is free to receive the data. If
956 * reconstruction is blocked on the indicated RU, we issue a
957 * blockage-release request instead of a physical disk read request.
958 * If the current disk gets too far ahead of the others, we issue a
959 * head-separation wait request and return.
960 *
961 * ctrl->{ru_count, curPSID, diskOffset} and
962 * rbuf->failedDiskSectorOffset are maintained to point to the unit
963 * we're currently accessing. Note that this deviates from the
964 * standard C idiom of having counters point to the next thing to be
965 * accessed. This allows us to easily retry when we're blocked by
966 * head separation or reconstruction-blockage events.
967 *
968 * returns nonzero if and only if there is nothing left unread on the
969 * indicated disk
970 *
971 *****************************************************************************/
972 static int
973 IssueNextReadRequest(raidPtr, row, col)
974 RF_Raid_t *raidPtr;
975 RF_RowCol_t row;
976 RF_RowCol_t col;
977 {
978 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
979 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
980 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
981 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
982 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
983 int do_new_check = 0, retcode = 0, status;
984
985 /* if we are currently the slowest disk, mark that we have to do a new
986 * check */
987 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
988 do_new_check = 1;
989
990 while (1) {
991
992 ctrl->ru_count++;
993 if (ctrl->ru_count < RUsPerPU) {
994 ctrl->diskOffset += sectorsPerRU;
995 rbuf->failedDiskSectorOffset += sectorsPerRU;
996 } else {
997 ctrl->curPSID++;
998 ctrl->ru_count = 0;
999 /* code left over from when head-sep was based on
1000 * parity stripe id */
1001 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1002 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1003 return (1); /* finito! */
1004 }
1005 /* find the disk offsets of the start of the parity
1006 * stripe on both the current disk and the failed
1007 * disk. skip this entire parity stripe if either disk
1008 * does not appear in the indicated PS */
1009 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1010 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1011 if (status) {
1012 ctrl->ru_count = RUsPerPU - 1;
1013 continue;
1014 }
1015 }
1016 rbuf->which_ru = ctrl->ru_count;
1017
1018 /* skip this RU if it's already been reconstructed */
1019 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1020 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1021 continue;
1022 }
1023 break;
1024 }
1025 ctrl->headSepCounter++;
1026 if (do_new_check)
1027 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1028
1029
1030 /* at this point, we have definitely decided what to do, and we have
1031 * only to see if we can actually do it now */
1032 rbuf->parityStripeID = ctrl->curPSID;
1033 rbuf->which_ru = ctrl->ru_count;
1034 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1035 sizeof(raidPtr->recon_tracerecs[col]));
1036 raidPtr->recon_tracerecs[col].reconacc = 1;
1037 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1038 retcode = TryToRead(raidPtr, row, col);
1039 return (retcode);
1040 }
1041
1042 /*
1043 * tries to issue the next read on the indicated disk. We may be
1044 * blocked by (a) the heads being too far apart, or (b) recon on the
1045 * indicated RU being blocked due to a write by a user thread. In
1046 * this case, we issue a head-sep or blockage wait request, which will
1047 * cause this same routine to be invoked again later when the blockage
1048 * has cleared.
1049 */
1050
1051 static int
1052 TryToRead(raidPtr, row, col)
1053 RF_Raid_t *raidPtr;
1054 RF_RowCol_t row;
1055 RF_RowCol_t col;
1056 {
1057 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1058 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1059 RF_StripeNum_t psid = ctrl->curPSID;
1060 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1061 RF_DiskQueueData_t *req;
1062 int status, created = 0;
1063 RF_ReconParityStripeStatus_t *pssPtr;
1064
1065 /* if the current disk is too far ahead of the others, issue a
1066 * head-separation wait and return */
1067 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1068 return (0);
1069 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1070 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1071
1072 /* if recon is blocked on the indicated parity stripe, issue a
1073 * block-wait request and return. this also must mark the indicated RU
1074 * in the stripe as under reconstruction if not blocked. */
1075 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1076 if (status == RF_PSS_RECON_BLOCKED) {
1077 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1078 goto out;
1079 } else
1080 if (status == RF_PSS_FORCED_ON_WRITE) {
1081 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1082 goto out;
1083 }
1084 /* make one last check to be sure that the indicated RU didn't get
1085 * reconstructed while we were waiting for something else to happen.
1086 * This is unfortunate in that it causes us to make this check twice
1087 * in the normal case. Might want to make some attempt to re-work
1088 * this so that we only do this check if we've definitely blocked on
1089 * one of the above checks. When this condition is detected, we may
1090 * have just created a bogus status entry, which we need to delete. */
1091 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1092 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1093 if (created)
1094 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1095 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1096 goto out;
1097 }
1098 /* found something to read. issue the I/O */
1099 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1100 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1101 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1102 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1103 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1104 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1105 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1106
1107 /* should be ok to use a NULL proc pointer here, all the bufs we use
1108 * should be in kernel space */
1109 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1110 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1111
1112 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1113
1114 ctrl->rbuf->arg = (void *) req;
1115 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1116 pssPtr->issued[col] = 1;
1117
1118 out:
1119 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1120 return (0);
1121 }
1122
1123
1124 /*
1125 * given a parity stripe ID, we want to find out whether both the
1126 * current disk and the failed disk exist in that parity stripe. If
1127 * not, we want to skip this whole PS. If so, we want to find the
1128 * disk offset of the start of the PS on both the current disk and the
1129 * failed disk.
1130 *
1131 * this works by getting a list of disks comprising the indicated
1132 * parity stripe, and searching the list for the current and failed
1133 * disks. Once we've decided they both exist in the parity stripe, we
1134 * need to decide whether each is data or parity, so that we'll know
1135 * which mapping function to call to get the corresponding disk
1136 * offsets.
1137 *
1138 * this is kind of unpleasant, but doing it this way allows the
1139 * reconstruction code to use parity stripe IDs rather than physical
1140 * disks address to march through the failed disk, which greatly
1141 * simplifies a lot of code, as well as eliminating the need for a
1142 * reverse-mapping function. I also think it will execute faster,
1143 * since the calls to the mapping module are kept to a minimum.
1144 *
1145 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1146 * THE STRIPE IN THE CORRECT ORDER */
1147
1148
1149 static int
1150 ComputePSDiskOffsets(
1151 RF_Raid_t * raidPtr, /* raid descriptor */
1152 RF_StripeNum_t psid, /* parity stripe identifier */
1153 RF_RowCol_t row, /* row and column of disk to find the offsets
1154 * for */
1155 RF_RowCol_t col,
1156 RF_SectorNum_t * outDiskOffset,
1157 RF_SectorNum_t * outFailedDiskSectorOffset,
1158 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1159 RF_RowCol_t * spCol,
1160 RF_SectorNum_t * spOffset)
1161 { /* OUT: offset into disk containing spare unit */
1162 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1163 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1164 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1165 RF_RowCol_t *diskids;
1166 u_int i, j, k, i_offset, j_offset;
1167 RF_RowCol_t prow, pcol;
1168 int testcol, testrow;
1169 RF_RowCol_t stripe;
1170 RF_SectorNum_t poffset;
1171 char i_is_parity = 0, j_is_parity = 0;
1172 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1173
1174 /* get a listing of the disks comprising that stripe */
1175 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1176 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1177 RF_ASSERT(diskids);
1178
1179 /* reject this entire parity stripe if it does not contain the
1180 * indicated disk or it does not contain the failed disk */
1181 if (row != stripe)
1182 goto skipit;
1183 for (i = 0; i < stripeWidth; i++) {
1184 if (col == diskids[i])
1185 break;
1186 }
1187 if (i == stripeWidth)
1188 goto skipit;
1189 for (j = 0; j < stripeWidth; j++) {
1190 if (fcol == diskids[j])
1191 break;
1192 }
1193 if (j == stripeWidth) {
1194 goto skipit;
1195 }
1196 /* find out which disk the parity is on */
1197 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1198
1199 /* find out if either the current RU or the failed RU is parity */
1200 /* also, if the parity occurs in this stripe prior to the data and/or
1201 * failed col, we need to decrement i and/or j */
1202 for (k = 0; k < stripeWidth; k++)
1203 if (diskids[k] == pcol)
1204 break;
1205 RF_ASSERT(k < stripeWidth);
1206 i_offset = i;
1207 j_offset = j;
1208 if (k < i)
1209 i_offset--;
1210 else
1211 if (k == i) {
1212 i_is_parity = 1;
1213 i_offset = 0;
1214 } /* set offsets to zero to disable multiply
1215 * below */
1216 if (k < j)
1217 j_offset--;
1218 else
1219 if (k == j) {
1220 j_is_parity = 1;
1221 j_offset = 0;
1222 }
1223 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1224 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1225 * tells us how far into the stripe the [current,failed] disk is. */
1226
1227 /* call the mapping routine to get the offset into the current disk,
1228 * repeat for failed disk. */
1229 if (i_is_parity)
1230 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1231 else
1232 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1233
1234 RF_ASSERT(row == testrow && col == testcol);
1235
1236 if (j_is_parity)
1237 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1238 else
1239 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1240 RF_ASSERT(row == testrow && fcol == testcol);
1241
1242 /* now locate the spare unit for the failed unit */
1243 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1244 if (j_is_parity)
1245 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1246 else
1247 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1248 } else {
1249 *spRow = raidPtr->reconControl[row]->spareRow;
1250 *spCol = raidPtr->reconControl[row]->spareCol;
1251 *spOffset = *outFailedDiskSectorOffset;
1252 }
1253
1254 return (0);
1255
1256 skipit:
1257 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1258 psid, row, col);
1259 return (1);
1260 }
1261 /* this is called when a buffer has become ready to write to the replacement disk */
1262 static int
1263 IssueNextWriteRequest(raidPtr, row)
1264 RF_Raid_t *raidPtr;
1265 RF_RowCol_t row;
1266 {
1267 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1268 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1269 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1270 RF_ReconBuffer_t *rbuf;
1271 RF_DiskQueueData_t *req;
1272
1273 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1274 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1275 * have gotten the event that sent us here */
1276 RF_ASSERT(rbuf->pssPtr);
1277
1278 rbuf->pssPtr->writeRbuf = rbuf;
1279 rbuf->pssPtr = NULL;
1280
1281 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1282 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1283 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1284 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1285 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1286 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1287
1288 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1289 * kernel space */
1290 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1291 sectorsPerRU, rbuf->buffer,
1292 rbuf->parityStripeID, rbuf->which_ru,
1293 ReconWriteDoneProc, (void *) rbuf, NULL,
1294 &raidPtr->recon_tracerecs[fcol],
1295 (void *) raidPtr, 0, NULL);
1296
1297 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1298
1299 rbuf->arg = (void *) req;
1300 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1301
1302 return (0);
1303 }
1304
1305 /*
1306 * this gets called upon the completion of a reconstruction read
1307 * operation the arg is a pointer to the per-disk reconstruction
1308 * control structure for the process that just finished a read.
1309 *
1310 * called at interrupt context in the kernel, so don't do anything
1311 * illegal here.
1312 */
1313 static int
1314 ReconReadDoneProc(arg, status)
1315 void *arg;
1316 int status;
1317 {
1318 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1319 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1320
1321 if (status) {
1322 /*
1323 * XXX
1324 */
1325 printf("Recon read failed!\n");
1326 RF_PANIC();
1327 }
1328 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1329 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1330 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1331 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1332 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1333
1334 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1335 return (0);
1336 }
1337 /* this gets called upon the completion of a reconstruction write operation.
1338 * the arg is a pointer to the rbuf that was just written
1339 *
1340 * called at interrupt context in the kernel, so don't do anything illegal here.
1341 */
1342 static int
1343 ReconWriteDoneProc(arg, status)
1344 void *arg;
1345 int status;
1346 {
1347 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1348
1349 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1350 if (status) {
1351 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1352 * write failed!\n"); */
1353 RF_PANIC();
1354 }
1355 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1356 return (0);
1357 }
1358
1359
1360 /*
1361 * computes a new minimum head sep, and wakes up anyone who needs to
1362 * be woken as a result
1363 */
1364 static void
1365 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1366 RF_Raid_t *raidPtr;
1367 RF_RowCol_t row;
1368 RF_HeadSepLimit_t hsCtr;
1369 {
1370 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1371 RF_HeadSepLimit_t new_min;
1372 RF_RowCol_t i;
1373 RF_CallbackDesc_t *p;
1374 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1375 * of a minimum */
1376
1377
1378 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1379
1380 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1381 for (i = 0; i < raidPtr->numCol; i++)
1382 if (i != reconCtrlPtr->fcol) {
1383 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1384 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1385 }
1386 /* set the new minimum and wake up anyone who can now run again */
1387 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1388 reconCtrlPtr->minHeadSepCounter = new_min;
1389 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1390 while (reconCtrlPtr->headSepCBList) {
1391 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1392 break;
1393 p = reconCtrlPtr->headSepCBList;
1394 reconCtrlPtr->headSepCBList = p->next;
1395 p->next = NULL;
1396 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1397 rf_FreeCallbackDesc(p);
1398 }
1399
1400 }
1401 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1402 }
1403
1404 /*
1405 * checks to see that the maximum head separation will not be violated
1406 * if we initiate a reconstruction I/O on the indicated disk.
1407 * Limiting the maximum head separation between two disks eliminates
1408 * the nasty buffer-stall conditions that occur when one disk races
1409 * ahead of the others and consumes all of the floating recon buffers.
1410 * This code is complex and unpleasant but it's necessary to avoid
1411 * some very nasty, albeit fairly rare, reconstruction behavior.
1412 *
1413 * returns non-zero if and only if we have to stop working on the
1414 * indicated disk due to a head-separation delay.
1415 */
1416 static int
1417 CheckHeadSeparation(
1418 RF_Raid_t * raidPtr,
1419 RF_PerDiskReconCtrl_t * ctrl,
1420 RF_RowCol_t row,
1421 RF_RowCol_t col,
1422 RF_HeadSepLimit_t hsCtr,
1423 RF_ReconUnitNum_t which_ru)
1424 {
1425 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1426 RF_CallbackDesc_t *cb, *p, *pt;
1427 int retval = 0;
1428
1429 /* if we're too far ahead of the slowest disk, stop working on this
1430 * disk until the slower ones catch up. We do this by scheduling a
1431 * wakeup callback for the time when the slowest disk has caught up.
1432 * We define "caught up" with 20% hysteresis, i.e. the head separation
1433 * must have fallen to at most 80% of the max allowable head
1434 * separation before we'll wake up.
1435 *
1436 */
1437 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1438 if ((raidPtr->headSepLimit >= 0) &&
1439 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1440 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1441 raidPtr->raidid, row, col, ctrl->headSepCounter,
1442 reconCtrlPtr->minHeadSepCounter,
1443 raidPtr->headSepLimit);
1444 cb = rf_AllocCallbackDesc();
1445 /* the minHeadSepCounter value we have to get to before we'll
1446 * wake up. build in 20% hysteresis. */
1447 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1448 cb->row = row;
1449 cb->col = col;
1450 cb->next = NULL;
1451
1452 /* insert this callback descriptor into the sorted list of
1453 * pending head-sep callbacks */
1454 p = reconCtrlPtr->headSepCBList;
1455 if (!p)
1456 reconCtrlPtr->headSepCBList = cb;
1457 else
1458 if (cb->callbackArg.v < p->callbackArg.v) {
1459 cb->next = reconCtrlPtr->headSepCBList;
1460 reconCtrlPtr->headSepCBList = cb;
1461 } else {
1462 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1463 cb->next = p;
1464 pt->next = cb;
1465 }
1466 retval = 1;
1467 #if RF_RECON_STATS > 0
1468 ctrl->reconCtrl->reconDesc->hsStallCount++;
1469 #endif /* RF_RECON_STATS > 0 */
1470 }
1471 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1472
1473 return (retval);
1474 }
1475 /*
1476 * checks to see if reconstruction has been either forced or blocked
1477 * by a user operation. if forced, we skip this RU entirely. else if
1478 * blocked, put ourselves on the wait list. else return 0.
1479 *
1480 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1481 */
1482 static int
1483 CheckForcedOrBlockedReconstruction(
1484 RF_Raid_t * raidPtr,
1485 RF_ReconParityStripeStatus_t * pssPtr,
1486 RF_PerDiskReconCtrl_t * ctrl,
1487 RF_RowCol_t row,
1488 RF_RowCol_t col,
1489 RF_StripeNum_t psid,
1490 RF_ReconUnitNum_t which_ru)
1491 {
1492 RF_CallbackDesc_t *cb;
1493 int retcode = 0;
1494
1495 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1496 retcode = RF_PSS_FORCED_ON_WRITE;
1497 else
1498 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1499 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1500 cb = rf_AllocCallbackDesc(); /* append ourselves to
1501 * the blockage-wait
1502 * list */
1503 cb->row = row;
1504 cb->col = col;
1505 cb->next = pssPtr->blockWaitList;
1506 pssPtr->blockWaitList = cb;
1507 retcode = RF_PSS_RECON_BLOCKED;
1508 }
1509 if (!retcode)
1510 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1511 * reconstruction */
1512
1513 return (retcode);
1514 }
1515 /*
1516 * if reconstruction is currently ongoing for the indicated stripeID,
1517 * reconstruction is forced to completion and we return non-zero to
1518 * indicate that the caller must wait. If not, then reconstruction is
1519 * blocked on the indicated stripe and the routine returns zero. If
1520 * and only if we return non-zero, we'll cause the cbFunc to get
1521 * invoked with the cbArg when the reconstruction has completed.
1522 */
1523 int
1524 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1525 RF_Raid_t *raidPtr;
1526 RF_AccessStripeMap_t *asmap;
1527 void (*cbFunc) (RF_Raid_t *, void *);
1528 void *cbArg;
1529 {
1530 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1531 * we're working on */
1532 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1533 * forcing recon on */
1534 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1535 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1536 * stripe status structure */
1537 RF_StripeNum_t psid; /* parity stripe id */
1538 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1539 * offset */
1540 RF_RowCol_t *diskids;
1541 RF_RowCol_t stripe;
1542 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1543 RF_RowCol_t fcol, diskno, i;
1544 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1545 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1546 RF_CallbackDesc_t *cb;
1547 int created = 0, nPromoted;
1548
1549 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1550
1551 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1552
1553 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1554
1555 /* if recon is not ongoing on this PS, just return */
1556 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1557 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1558 return (0);
1559 }
1560 /* otherwise, we have to wait for reconstruction to complete on this
1561 * RU. */
1562 /* In order to avoid waiting for a potentially large number of
1563 * low-priority accesses to complete, we force a normal-priority (i.e.
1564 * not low-priority) reconstruction on this RU. */
1565 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1566 DDprintf1("Forcing recon on psid %ld\n", psid);
1567 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1568 * forced recon */
1569 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1570 * that we just set */
1571 fcol = raidPtr->reconControl[row]->fcol;
1572
1573 /* get a listing of the disks comprising the indicated stripe */
1574 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1575 RF_ASSERT(row == stripe);
1576
1577 /* For previously issued reads, elevate them to normal
1578 * priority. If the I/O has already completed, it won't be
1579 * found in the queue, and hence this will be a no-op. For
1580 * unissued reads, allocate buffers and issue new reads. The
1581 * fact that we've set the FORCED bit means that the regular
1582 * recon procs will not re-issue these reqs */
1583 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1584 if ((diskno = diskids[i]) != fcol) {
1585 if (pssPtr->issued[diskno]) {
1586 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1587 if (rf_reconDebug && nPromoted)
1588 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1589 } else {
1590 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1591 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1592 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1593 * location */
1594 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1595 new_rbuf->which_ru = which_ru;
1596 new_rbuf->failedDiskSectorOffset = fd_offset;
1597 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1598
1599 /* use NULL b_proc b/c all addrs
1600 * should be in kernel space */
1601 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1602 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1603 NULL, (void *) raidPtr, 0, NULL);
1604
1605 RF_ASSERT(req); /* XXX -- fix this --
1606 * XXX */
1607
1608 new_rbuf->arg = req;
1609 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1610 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1611 }
1612 }
1613 /* if the write is sitting in the disk queue, elevate its
1614 * priority */
1615 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1616 printf("raid%d: promoted write to row %d col %d\n",
1617 raidPtr->raidid, row, fcol);
1618 }
1619 /* install a callback descriptor to be invoked when recon completes on
1620 * this parity stripe. */
1621 cb = rf_AllocCallbackDesc();
1622 /* XXX the following is bogus.. These functions don't really match!!
1623 * GO */
1624 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1625 cb->callbackArg.p = (void *) cbArg;
1626 cb->next = pssPtr->procWaitList;
1627 pssPtr->procWaitList = cb;
1628 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1629 raidPtr->raidid, psid);
1630
1631 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1632 return (1);
1633 }
1634 /* called upon the completion of a forced reconstruction read.
1635 * all we do is schedule the FORCEDREADONE event.
1636 * called at interrupt context in the kernel, so don't do anything illegal here.
1637 */
1638 static void
1639 ForceReconReadDoneProc(arg, status)
1640 void *arg;
1641 int status;
1642 {
1643 RF_ReconBuffer_t *rbuf = arg;
1644
1645 if (status) {
1646 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1647 * recon read
1648 * failed!\n"); */
1649 RF_PANIC();
1650 }
1651 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1652 }
1653 /* releases a block on the reconstruction of the indicated stripe */
1654 int
1655 rf_UnblockRecon(raidPtr, asmap)
1656 RF_Raid_t *raidPtr;
1657 RF_AccessStripeMap_t *asmap;
1658 {
1659 RF_RowCol_t row = asmap->origRow;
1660 RF_StripeNum_t stripeID = asmap->stripeID;
1661 RF_ReconParityStripeStatus_t *pssPtr;
1662 RF_ReconUnitNum_t which_ru;
1663 RF_StripeNum_t psid;
1664 int created = 0;
1665 RF_CallbackDesc_t *cb;
1666
1667 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1668 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1669 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1670
1671 /* When recon is forced, the pss desc can get deleted before we get
1672 * back to unblock recon. But, this can _only_ happen when recon is
1673 * forced. It would be good to put some kind of sanity check here, but
1674 * how to decide if recon was just forced or not? */
1675 if (!pssPtr) {
1676 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1677 * RU %d\n",psid,which_ru); */
1678 if (rf_reconDebug || rf_pssDebug)
1679 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1680 goto out;
1681 }
1682 pssPtr->blockCount--;
1683 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1684 raidPtr->raidid, psid, pssPtr->blockCount);
1685 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1686
1687 /* unblock recon before calling CauseReconEvent in case
1688 * CauseReconEvent causes us to try to issue a new read before
1689 * returning here. */
1690 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1691
1692
1693 while (pssPtr->blockWaitList) {
1694 /* spin through the block-wait list and
1695 release all the waiters */
1696 cb = pssPtr->blockWaitList;
1697 pssPtr->blockWaitList = cb->next;
1698 cb->next = NULL;
1699 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1700 rf_FreeCallbackDesc(cb);
1701 }
1702 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1703 /* if no recon was requested while recon was blocked */
1704 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1705 }
1706 }
1707 out:
1708 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1709 return (0);
1710 }
1711