rf_reconstruct.c revision 1.36 1 /* $NetBSD: rf_reconstruct.c,v 1.36 2002/09/14 17:53:59 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.36 2002/09/14 17:53:59 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #ifdef DEBUG
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* DEBUG */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* DEBUG */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 int
162 rf_RegisterReconDoneProc(
163 RF_Raid_t * raidPtr,
164 void (*proc) (RF_Raid_t *, void *),
165 void *arg,
166 RF_ReconDoneProc_t ** handlep)
167 {
168 RF_ReconDoneProc_t *p;
169
170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 if (p == NULL)
172 return (ENOMEM);
173 p->proc = proc;
174 p->arg = arg;
175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 p->next = raidPtr->recon_done_procs;
177 raidPtr->recon_done_procs = p;
178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 if (handlep)
180 *handlep = p;
181 return (0);
182 }
183 /**************************************************************************
184 *
185 * sets up the parameters that will be used by the reconstruction process
186 * currently there are none, except for those that the layout-specific
187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188 *
189 * in the kernel, we fire off the recon thread.
190 *
191 **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 void *ignored;
195 {
196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199
200 int
201 rf_ConfigureReconstruction(listp)
202 RF_ShutdownList_t **listp;
203 {
204 int rc;
205
206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 if (rf_recond_freelist == NULL)
209 return (ENOMEM);
210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 if (rf_rdp_freelist == NULL) {
213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 return (ENOMEM);
215 }
216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 if (rc) {
218 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
219 rf_ShutdownReconstruction(NULL);
220 return (rc);
221 }
222 return (0);
223 }
224
225 static RF_RaidReconDesc_t *
226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
227 RF_Raid_t *raidPtr;
228 RF_RowCol_t row;
229 RF_RowCol_t col;
230 RF_RaidDisk_t *spareDiskPtr;
231 int numDisksDone;
232 RF_RowCol_t srow;
233 RF_RowCol_t scol;
234 {
235
236 RF_RaidReconDesc_t *reconDesc;
237
238 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
239
240 reconDesc->raidPtr = raidPtr;
241 reconDesc->row = row;
242 reconDesc->col = col;
243 reconDesc->spareDiskPtr = spareDiskPtr;
244 reconDesc->numDisksDone = numDisksDone;
245 reconDesc->srow = srow;
246 reconDesc->scol = scol;
247 reconDesc->state = 0;
248 reconDesc->next = NULL;
249
250 return (reconDesc);
251 }
252
253 static void
254 FreeReconDesc(reconDesc)
255 RF_RaidReconDesc_t *reconDesc;
256 {
257 #if RF_RECON_STATS > 0
258 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
259 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
260 #endif /* RF_RECON_STATS > 0 */
261 printf("RAIDframe: %lu max exec ticks\n",
262 (long) reconDesc->maxReconExecTicks);
263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
264 printf("\n");
265 #endif /* (RF_RECON_STATS > 0) || KERNEL */
266 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
267 }
268
269
270 /*****************************************************************************
271 *
272 * primary routine to reconstruct a failed disk. This should be called from
273 * within its own thread. It won't return until reconstruction completes,
274 * fails, or is aborted.
275 *****************************************************************************/
276 int
277 rf_ReconstructFailedDisk(raidPtr, row, col)
278 RF_Raid_t *raidPtr;
279 RF_RowCol_t row;
280 RF_RowCol_t col;
281 {
282 RF_LayoutSW_t *lp;
283 int rc;
284
285 lp = raidPtr->Layout.map;
286 if (lp->SubmitReconBuffer) {
287 /*
288 * The current infrastructure only supports reconstructing one
289 * disk at a time for each array.
290 */
291 RF_LOCK_MUTEX(raidPtr->mutex);
292 while (raidPtr->reconInProgress) {
293 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
294 }
295 raidPtr->reconInProgress++;
296 RF_UNLOCK_MUTEX(raidPtr->mutex);
297 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
298 RF_LOCK_MUTEX(raidPtr->mutex);
299 raidPtr->reconInProgress--;
300 RF_UNLOCK_MUTEX(raidPtr->mutex);
301 } else {
302 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
303 lp->parityConfig);
304 rc = EIO;
305 }
306 RF_SIGNAL_COND(raidPtr->waitForReconCond);
307 return (rc);
308 }
309
310 int
311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
312 RF_Raid_t *raidPtr;
313 RF_RowCol_t row;
314 RF_RowCol_t col;
315 {
316 RF_ComponentLabel_t c_label;
317 RF_RaidDisk_t *spareDiskPtr = NULL;
318 RF_RaidReconDesc_t *reconDesc;
319 RF_RowCol_t srow, scol;
320 int numDisksDone = 0, rc;
321
322 /* first look for a spare drive onto which to reconstruct the data */
323 /* spare disk descriptors are stored in row 0. This may have to
324 * change eventually */
325
326 RF_LOCK_MUTEX(raidPtr->mutex);
327 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
328
329 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 if (raidPtr->status[row] != rf_rs_degraded) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (EINVAL);
334 }
335 srow = row;
336 scol = (-1);
337 } else {
338 srow = 0;
339 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
340 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
341 spareDiskPtr = &raidPtr->Disks[srow][scol];
342 spareDiskPtr->status = rf_ds_used_spare;
343 break;
344 }
345 }
346 if (!spareDiskPtr) {
347 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
348 RF_UNLOCK_MUTEX(raidPtr->mutex);
349 return (ENOSPC);
350 }
351 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
352 }
353 RF_UNLOCK_MUTEX(raidPtr->mutex);
354
355 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
356 raidPtr->reconDesc = (void *) reconDesc;
357 #if RF_RECON_STATS > 0
358 reconDesc->hsStallCount = 0;
359 reconDesc->numReconExecDelays = 0;
360 reconDesc->numReconEventWaits = 0;
361 #endif /* RF_RECON_STATS > 0 */
362 reconDesc->reconExecTimerRunning = 0;
363 reconDesc->reconExecTicks = 0;
364 reconDesc->maxReconExecTicks = 0;
365 rc = rf_ContinueReconstructFailedDisk(reconDesc);
366
367 if (!rc) {
368 /* fix up the component label */
369 /* Don't actually need the read here.. */
370 raidread_component_label(
371 raidPtr->raid_cinfo[srow][scol].ci_dev,
372 raidPtr->raid_cinfo[srow][scol].ci_vp,
373 &c_label);
374
375 raid_init_component_label( raidPtr, &c_label);
376 c_label.row = row;
377 c_label.column = col;
378 c_label.clean = RF_RAID_DIRTY;
379 c_label.status = rf_ds_optimal;
380 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
381
382 /* We've just done a rebuild based on all the other
383 disks, so at this point the parity is known to be
384 clean, even if it wasn't before. */
385
386 /* XXX doesn't hold for RAID 6!!*/
387
388 raidPtr->parity_good = RF_RAID_CLEAN;
389
390 /* XXXX MORE NEEDED HERE */
391
392 raidwrite_component_label(
393 raidPtr->raid_cinfo[srow][scol].ci_dev,
394 raidPtr->raid_cinfo[srow][scol].ci_vp,
395 &c_label);
396
397 }
398 return (rc);
399 }
400
401 /*
402
403 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
404 and you don't get a spare until the next Monday. With this function
405 (and hot-swappable drives) you can now put your new disk containing
406 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
407 rebuild the data "on the spot".
408
409 */
410
411 int
412 rf_ReconstructInPlace(raidPtr, row, col)
413 RF_Raid_t *raidPtr;
414 RF_RowCol_t row;
415 RF_RowCol_t col;
416 {
417 RF_RaidDisk_t *spareDiskPtr = NULL;
418 RF_RaidReconDesc_t *reconDesc;
419 RF_LayoutSW_t *lp;
420 RF_RaidDisk_t *badDisk;
421 RF_ComponentLabel_t c_label;
422 int numDisksDone = 0, rc;
423 struct partinfo dpart;
424 struct vnode *vp;
425 struct vattr va;
426 struct proc *proc;
427 int retcode;
428 int ac;
429
430 lp = raidPtr->Layout.map;
431 if (lp->SubmitReconBuffer) {
432 /*
433 * The current infrastructure only supports reconstructing one
434 * disk at a time for each array.
435 */
436 RF_LOCK_MUTEX(raidPtr->mutex);
437 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 (raidPtr->numFailures > 0)) {
439 /* XXX 0 above shouldn't be constant!!! */
440 /* some component other than this has failed.
441 Let's not make things worse than they already
442 are... */
443 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
444 printf(" Row: %d Col: %d Too many failures.\n",
445 row, col);
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 return (EINVAL);
448 }
449 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
450 printf("RAIDFRAME: Unable to reconstruct to disk at:\n");
451 printf(" Row: %d Col: %d Reconstruction already occuring!\n", row, col);
452
453 RF_UNLOCK_MUTEX(raidPtr->mutex);
454 return (EINVAL);
455 }
456 if (raidPtr->Disks[row][col].status == rf_ds_spared) {
457 return (EINVAL);
458 }
459
460 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
461 /* "It's gone..." */
462 raidPtr->numFailures++;
463 raidPtr->Disks[row][col].status = rf_ds_failed;
464 raidPtr->status[row] = rf_rs_degraded;
465 rf_update_component_labels(raidPtr,
466 RF_NORMAL_COMPONENT_UPDATE);
467 }
468
469 while (raidPtr->reconInProgress) {
470 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
471 }
472
473 raidPtr->reconInProgress++;
474
475
476 /* first look for a spare drive onto which to reconstruct
477 the data. spare disk descriptors are stored in row 0.
478 This may have to change eventually */
479
480 /* Actually, we don't care if it's failed or not...
481 On a RAID set with correct parity, this function
482 should be callable on any component without ill affects. */
483 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
484 */
485
486 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
487 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
488
489 raidPtr->reconInProgress--;
490 RF_UNLOCK_MUTEX(raidPtr->mutex);
491 return (EINVAL);
492 }
493
494 /* XXX need goop here to see if the disk is alive,
495 and, if not, make it so... */
496
497
498
499 badDisk = &raidPtr->Disks[row][col];
500
501 proc = raidPtr->engine_thread;
502
503 /* This device may have been opened successfully the
504 first time. Close it before trying to open it again.. */
505
506 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
507 printf("Closed the open device: %s\n",
508 raidPtr->Disks[row][col].devname);
509 vp = raidPtr->raid_cinfo[row][col].ci_vp;
510 ac = raidPtr->Disks[row][col].auto_configured;
511 rf_close_component(raidPtr, vp, ac);
512 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
513 }
514 /* note that this disk was *not* auto_configured (any longer)*/
515 raidPtr->Disks[row][col].auto_configured = 0;
516
517 printf("About to (re-)open the device for rebuilding: %s\n",
518 raidPtr->Disks[row][col].devname);
519
520 retcode = raidlookup(raidPtr->Disks[row][col].devname,
521 proc, &vp);
522
523 if (retcode) {
524 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
525 raidPtr->Disks[row][col].devname, retcode);
526
527 /* XXX the component isn't responding properly...
528 must be still dead :-( */
529 raidPtr->reconInProgress--;
530 RF_UNLOCK_MUTEX(raidPtr->mutex);
531 return(retcode);
532
533 } else {
534
535 /* Ok, so we can at least do a lookup...
536 How about actually getting a vp for it? */
537
538 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
539 proc)) != 0) {
540 raidPtr->reconInProgress--;
541 RF_UNLOCK_MUTEX(raidPtr->mutex);
542 return(retcode);
543 }
544 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
545 FREAD, proc->p_ucred, proc);
546 if (retcode) {
547 raidPtr->reconInProgress--;
548 RF_UNLOCK_MUTEX(raidPtr->mutex);
549 return(retcode);
550 }
551 raidPtr->Disks[row][col].blockSize =
552 dpart.disklab->d_secsize;
553
554 raidPtr->Disks[row][col].numBlocks =
555 dpart.part->p_size - rf_protectedSectors;
556
557 raidPtr->raid_cinfo[row][col].ci_vp = vp;
558 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
559
560 raidPtr->Disks[row][col].dev = va.va_rdev;
561
562 /* we allow the user to specify that only a
563 fraction of the disks should be used this is
564 just for debug: it speeds up
565 * the parity scan */
566 raidPtr->Disks[row][col].numBlocks =
567 raidPtr->Disks[row][col].numBlocks *
568 rf_sizePercentage / 100;
569 }
570
571
572
573 spareDiskPtr = &raidPtr->Disks[row][col];
574 spareDiskPtr->status = rf_ds_used_spare;
575
576 printf("RECON: initiating in-place reconstruction on\n");
577 printf(" row %d col %d -> spare at row %d col %d\n",
578 row, col, row, col);
579
580 RF_UNLOCK_MUTEX(raidPtr->mutex);
581
582 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
583 spareDiskPtr, numDisksDone,
584 row, col);
585 raidPtr->reconDesc = (void *) reconDesc;
586 #if RF_RECON_STATS > 0
587 reconDesc->hsStallCount = 0;
588 reconDesc->numReconExecDelays = 0;
589 reconDesc->numReconEventWaits = 0;
590 #endif /* RF_RECON_STATS > 0 */
591 reconDesc->reconExecTimerRunning = 0;
592 reconDesc->reconExecTicks = 0;
593 reconDesc->maxReconExecTicks = 0;
594 rc = rf_ContinueReconstructFailedDisk(reconDesc);
595
596 RF_LOCK_MUTEX(raidPtr->mutex);
597 raidPtr->reconInProgress--;
598 RF_UNLOCK_MUTEX(raidPtr->mutex);
599
600 } else {
601 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
602 lp->parityConfig);
603 rc = EIO;
604 }
605 RF_LOCK_MUTEX(raidPtr->mutex);
606
607 if (!rc) {
608 /* Need to set these here, as at this point it'll be claiming
609 that the disk is in rf_ds_spared! But we know better :-) */
610
611 raidPtr->Disks[row][col].status = rf_ds_optimal;
612 raidPtr->status[row] = rf_rs_optimal;
613
614 /* fix up the component label */
615 /* Don't actually need the read here.. */
616 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
617 raidPtr->raid_cinfo[row][col].ci_vp,
618 &c_label);
619
620 raid_init_component_label(raidPtr, &c_label);
621
622 c_label.row = row;
623 c_label.column = col;
624
625 /* We've just done a rebuild based on all the other
626 disks, so at this point the parity is known to be
627 clean, even if it wasn't before. */
628
629 /* XXX doesn't hold for RAID 6!!*/
630
631 raidPtr->parity_good = RF_RAID_CLEAN;
632
633 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
634 raidPtr->raid_cinfo[row][col].ci_vp,
635 &c_label);
636
637 }
638 RF_UNLOCK_MUTEX(raidPtr->mutex);
639 RF_SIGNAL_COND(raidPtr->waitForReconCond);
640 wakeup(&raidPtr->waitForReconCond);
641 return (rc);
642 }
643
644
645 int
646 rf_ContinueReconstructFailedDisk(reconDesc)
647 RF_RaidReconDesc_t *reconDesc;
648 {
649 RF_Raid_t *raidPtr = reconDesc->raidPtr;
650 RF_RowCol_t row = reconDesc->row;
651 RF_RowCol_t col = reconDesc->col;
652 RF_RowCol_t srow = reconDesc->srow;
653 RF_RowCol_t scol = reconDesc->scol;
654 RF_ReconMap_t *mapPtr;
655
656 RF_ReconEvent_t *event;
657 struct timeval etime, elpsd;
658 unsigned long xor_s, xor_resid_us;
659 int retcode, i, ds;
660
661 switch (reconDesc->state) {
662
663
664 case 0:
665
666 raidPtr->accumXorTimeUs = 0;
667
668 /* create one trace record per physical disk */
669 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
670
671 /* quiesce the array prior to starting recon. this is needed
672 * to assure no nasty interactions with pending user writes.
673 * We need to do this before we change the disk or row status. */
674 reconDesc->state = 1;
675
676 Dprintf("RECON: begin request suspend\n");
677 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
678 Dprintf("RECON: end request suspend\n");
679 rf_StartUserStats(raidPtr); /* zero out the stats kept on
680 * user accs */
681
682 /* fall through to state 1 */
683
684 case 1:
685
686 RF_LOCK_MUTEX(raidPtr->mutex);
687
688 /* create the reconstruction control pointer and install it in
689 * the right slot */
690 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
691 mapPtr = raidPtr->reconControl[row]->reconMap;
692 raidPtr->status[row] = rf_rs_reconstructing;
693 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
694 raidPtr->Disks[row][col].spareRow = srow;
695 raidPtr->Disks[row][col].spareCol = scol;
696
697 RF_UNLOCK_MUTEX(raidPtr->mutex);
698
699 RF_GETTIME(raidPtr->reconControl[row]->starttime);
700
701 /* now start up the actual reconstruction: issue a read for
702 * each surviving disk */
703
704 reconDesc->numDisksDone = 0;
705 for (i = 0; i < raidPtr->numCol; i++) {
706 if (i != col) {
707 /* find and issue the next I/O on the
708 * indicated disk */
709 if (IssueNextReadRequest(raidPtr, row, i)) {
710 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
711 reconDesc->numDisksDone++;
712 }
713 }
714 }
715
716 case 2:
717 Dprintf("RECON: resume requests\n");
718 rf_ResumeNewRequests(raidPtr);
719
720
721 reconDesc->state = 3;
722
723 case 3:
724
725 /* process reconstruction events until all disks report that
726 * they've completed all work */
727 mapPtr = raidPtr->reconControl[row]->reconMap;
728
729
730
731 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
732
733 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
734 RF_ASSERT(event);
735
736 if (ProcessReconEvent(raidPtr, row, event))
737 reconDesc->numDisksDone++;
738 raidPtr->reconControl[row]->numRUsTotal =
739 mapPtr->totalRUs;
740 raidPtr->reconControl[row]->numRUsComplete =
741 mapPtr->totalRUs -
742 rf_UnitsLeftToReconstruct(mapPtr);
743
744 raidPtr->reconControl[row]->percentComplete =
745 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
746 if (rf_prReconSched) {
747 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
748 }
749 }
750
751
752
753 reconDesc->state = 4;
754
755
756 case 4:
757 mapPtr = raidPtr->reconControl[row]->reconMap;
758 if (rf_reconDebug) {
759 printf("RECON: all reads completed\n");
760 }
761 /* at this point all the reads have completed. We now wait
762 * for any pending writes to complete, and then we're done */
763
764 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
765
766 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
767 RF_ASSERT(event);
768
769 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
770 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
771 if (rf_prReconSched) {
772 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
773 }
774 }
775 reconDesc->state = 5;
776
777 case 5:
778 /* Success: mark the dead disk as reconstructed. We quiesce
779 * the array here to assure no nasty interactions with pending
780 * user accesses when we free up the psstatus structure as
781 * part of FreeReconControl() */
782
783 reconDesc->state = 6;
784
785 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
786 rf_StopUserStats(raidPtr);
787 rf_PrintUserStats(raidPtr); /* print out the stats on user
788 * accs accumulated during
789 * recon */
790
791 /* fall through to state 6 */
792 case 6:
793
794
795
796 RF_LOCK_MUTEX(raidPtr->mutex);
797 raidPtr->numFailures--;
798 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
799 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
800 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
801 RF_UNLOCK_MUTEX(raidPtr->mutex);
802 RF_GETTIME(etime);
803 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
804
805 /* XXX -- why is state 7 different from state 6 if there is no
806 * return() here? -- XXX Note that I set elpsd above & use it
807 * below, so if you put a return here you'll have to fix this.
808 * (also, FreeReconControl is called below) */
809
810 case 7:
811
812 rf_ResumeNewRequests(raidPtr);
813
814 printf("Reconstruction of disk at row %d col %d completed\n",
815 row, col);
816 xor_s = raidPtr->accumXorTimeUs / 1000000;
817 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
818 printf("Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
819 (int) elpsd.tv_sec, (int) elpsd.tv_usec, raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
820 printf(" (start time %d sec %d usec, end time %d sec %d usec)\n",
821 (int) raidPtr->reconControl[row]->starttime.tv_sec,
822 (int) raidPtr->reconControl[row]->starttime.tv_usec,
823 (int) etime.tv_sec, (int) etime.tv_usec);
824
825 #if RF_RECON_STATS > 0
826 printf("Total head-sep stall count was %d\n",
827 (int) reconDesc->hsStallCount);
828 #endif /* RF_RECON_STATS > 0 */
829 rf_FreeReconControl(raidPtr, row);
830 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
831 FreeReconDesc(reconDesc);
832
833 }
834
835 SignalReconDone(raidPtr);
836 return (0);
837 }
838 /*****************************************************************************
839 * do the right thing upon each reconstruction event.
840 * returns nonzero if and only if there is nothing left unread on the
841 * indicated disk
842 *****************************************************************************/
843 static int
844 ProcessReconEvent(raidPtr, frow, event)
845 RF_Raid_t *raidPtr;
846 RF_RowCol_t frow;
847 RF_ReconEvent_t *event;
848 {
849 int retcode = 0, submitblocked;
850 RF_ReconBuffer_t *rbuf;
851 RF_SectorCount_t sectorsPerRU;
852
853 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
854 switch (event->type) {
855
856 /* a read I/O has completed */
857 case RF_REVENT_READDONE:
858 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
859 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
860 frow, event->col, rbuf->parityStripeID);
861 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
862 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
863 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
864 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
865 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
866 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
867 if (!submitblocked)
868 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
869 break;
870
871 /* a write I/O has completed */
872 case RF_REVENT_WRITEDONE:
873 if (rf_floatingRbufDebug) {
874 rf_CheckFloatingRbufCount(raidPtr, 1);
875 }
876 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
877 rbuf = (RF_ReconBuffer_t *) event->arg;
878 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
879 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
880 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
881 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
882 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
883 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
884
885 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
886 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
887 raidPtr->numFullReconBuffers--;
888 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
889 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
890 } else
891 if (rbuf->type == RF_RBUF_TYPE_FORCED)
892 rf_FreeReconBuffer(rbuf);
893 else
894 RF_ASSERT(0);
895 break;
896
897 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
898 * cleared */
899 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
900 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
901 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
902 * BUFCLEAR event if we
903 * couldn't submit */
904 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
905 break;
906
907 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
908 * blockage has been cleared */
909 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
910 retcode = TryToRead(raidPtr, frow, event->col);
911 break;
912
913 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
914 * reconstruction blockage has been
915 * cleared */
916 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
917 retcode = TryToRead(raidPtr, frow, event->col);
918 break;
919
920 /* a buffer has become ready to write */
921 case RF_REVENT_BUFREADY:
922 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
923 retcode = IssueNextWriteRequest(raidPtr, frow);
924 if (rf_floatingRbufDebug) {
925 rf_CheckFloatingRbufCount(raidPtr, 1);
926 }
927 break;
928
929 /* we need to skip the current RU entirely because it got
930 * recon'd while we were waiting for something else to happen */
931 case RF_REVENT_SKIP:
932 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
933 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
934 break;
935
936 /* a forced-reconstruction read access has completed. Just
937 * submit the buffer */
938 case RF_REVENT_FORCEDREADDONE:
939 rbuf = (RF_ReconBuffer_t *) event->arg;
940 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
941 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
942 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
943 RF_ASSERT(!submitblocked);
944 break;
945
946 default:
947 RF_PANIC();
948 }
949 rf_FreeReconEventDesc(event);
950 return (retcode);
951 }
952 /*****************************************************************************
953 *
954 * find the next thing that's needed on the indicated disk, and issue
955 * a read request for it. We assume that the reconstruction buffer
956 * associated with this process is free to receive the data. If
957 * reconstruction is blocked on the indicated RU, we issue a
958 * blockage-release request instead of a physical disk read request.
959 * If the current disk gets too far ahead of the others, we issue a
960 * head-separation wait request and return.
961 *
962 * ctrl->{ru_count, curPSID, diskOffset} and
963 * rbuf->failedDiskSectorOffset are maintained to point to the unit
964 * we're currently accessing. Note that this deviates from the
965 * standard C idiom of having counters point to the next thing to be
966 * accessed. This allows us to easily retry when we're blocked by
967 * head separation or reconstruction-blockage events.
968 *
969 * returns nonzero if and only if there is nothing left unread on the
970 * indicated disk
971 *
972 *****************************************************************************/
973 static int
974 IssueNextReadRequest(raidPtr, row, col)
975 RF_Raid_t *raidPtr;
976 RF_RowCol_t row;
977 RF_RowCol_t col;
978 {
979 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
980 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
981 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
982 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
983 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
984 int do_new_check = 0, retcode = 0, status;
985
986 /* if we are currently the slowest disk, mark that we have to do a new
987 * check */
988 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
989 do_new_check = 1;
990
991 while (1) {
992
993 ctrl->ru_count++;
994 if (ctrl->ru_count < RUsPerPU) {
995 ctrl->diskOffset += sectorsPerRU;
996 rbuf->failedDiskSectorOffset += sectorsPerRU;
997 } else {
998 ctrl->curPSID++;
999 ctrl->ru_count = 0;
1000 /* code left over from when head-sep was based on
1001 * parity stripe id */
1002 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1003 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1004 return (1); /* finito! */
1005 }
1006 /* find the disk offsets of the start of the parity
1007 * stripe on both the current disk and the failed
1008 * disk. skip this entire parity stripe if either disk
1009 * does not appear in the indicated PS */
1010 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1011 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1012 if (status) {
1013 ctrl->ru_count = RUsPerPU - 1;
1014 continue;
1015 }
1016 }
1017 rbuf->which_ru = ctrl->ru_count;
1018
1019 /* skip this RU if it's already been reconstructed */
1020 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1021 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1022 continue;
1023 }
1024 break;
1025 }
1026 ctrl->headSepCounter++;
1027 if (do_new_check)
1028 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1029
1030
1031 /* at this point, we have definitely decided what to do, and we have
1032 * only to see if we can actually do it now */
1033 rbuf->parityStripeID = ctrl->curPSID;
1034 rbuf->which_ru = ctrl->ru_count;
1035 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1036 sizeof(raidPtr->recon_tracerecs[col]));
1037 raidPtr->recon_tracerecs[col].reconacc = 1;
1038 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1039 retcode = TryToRead(raidPtr, row, col);
1040 return (retcode);
1041 }
1042
1043 /*
1044 * tries to issue the next read on the indicated disk. We may be
1045 * blocked by (a) the heads being too far apart, or (b) recon on the
1046 * indicated RU being blocked due to a write by a user thread. In
1047 * this case, we issue a head-sep or blockage wait request, which will
1048 * cause this same routine to be invoked again later when the blockage
1049 * has cleared.
1050 */
1051
1052 static int
1053 TryToRead(raidPtr, row, col)
1054 RF_Raid_t *raidPtr;
1055 RF_RowCol_t row;
1056 RF_RowCol_t col;
1057 {
1058 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1059 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1060 RF_StripeNum_t psid = ctrl->curPSID;
1061 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1062 RF_DiskQueueData_t *req;
1063 int status, created = 0;
1064 RF_ReconParityStripeStatus_t *pssPtr;
1065
1066 /* if the current disk is too far ahead of the others, issue a
1067 * head-separation wait and return */
1068 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1069 return (0);
1070 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1071 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1072
1073 /* if recon is blocked on the indicated parity stripe, issue a
1074 * block-wait request and return. this also must mark the indicated RU
1075 * in the stripe as under reconstruction if not blocked. */
1076 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1077 if (status == RF_PSS_RECON_BLOCKED) {
1078 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1079 goto out;
1080 } else
1081 if (status == RF_PSS_FORCED_ON_WRITE) {
1082 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1083 goto out;
1084 }
1085 /* make one last check to be sure that the indicated RU didn't get
1086 * reconstructed while we were waiting for something else to happen.
1087 * This is unfortunate in that it causes us to make this check twice
1088 * in the normal case. Might want to make some attempt to re-work
1089 * this so that we only do this check if we've definitely blocked on
1090 * one of the above checks. When this condition is detected, we may
1091 * have just created a bogus status entry, which we need to delete. */
1092 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1093 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1094 if (created)
1095 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1096 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1097 goto out;
1098 }
1099 /* found something to read. issue the I/O */
1100 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1101 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1102 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1103 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1104 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1105 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1106 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1107
1108 /* should be ok to use a NULL proc pointer here, all the bufs we use
1109 * should be in kernel space */
1110 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1111 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1112
1113 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1114
1115 ctrl->rbuf->arg = (void *) req;
1116 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1117 pssPtr->issued[col] = 1;
1118
1119 out:
1120 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1121 return (0);
1122 }
1123
1124
1125 /*
1126 * given a parity stripe ID, we want to find out whether both the
1127 * current disk and the failed disk exist in that parity stripe. If
1128 * not, we want to skip this whole PS. If so, we want to find the
1129 * disk offset of the start of the PS on both the current disk and the
1130 * failed disk.
1131 *
1132 * this works by getting a list of disks comprising the indicated
1133 * parity stripe, and searching the list for the current and failed
1134 * disks. Once we've decided they both exist in the parity stripe, we
1135 * need to decide whether each is data or parity, so that we'll know
1136 * which mapping function to call to get the corresponding disk
1137 * offsets.
1138 *
1139 * this is kind of unpleasant, but doing it this way allows the
1140 * reconstruction code to use parity stripe IDs rather than physical
1141 * disks address to march through the failed disk, which greatly
1142 * simplifies a lot of code, as well as eliminating the need for a
1143 * reverse-mapping function. I also think it will execute faster,
1144 * since the calls to the mapping module are kept to a minimum.
1145 *
1146 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1147 * THE STRIPE IN THE CORRECT ORDER */
1148
1149
1150 static int
1151 ComputePSDiskOffsets(
1152 RF_Raid_t * raidPtr, /* raid descriptor */
1153 RF_StripeNum_t psid, /* parity stripe identifier */
1154 RF_RowCol_t row, /* row and column of disk to find the offsets
1155 * for */
1156 RF_RowCol_t col,
1157 RF_SectorNum_t * outDiskOffset,
1158 RF_SectorNum_t * outFailedDiskSectorOffset,
1159 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1160 RF_RowCol_t * spCol,
1161 RF_SectorNum_t * spOffset)
1162 { /* OUT: offset into disk containing spare unit */
1163 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1164 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1165 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1166 RF_RowCol_t *diskids;
1167 u_int i, j, k, i_offset, j_offset;
1168 RF_RowCol_t prow, pcol;
1169 int testcol, testrow;
1170 RF_RowCol_t stripe;
1171 RF_SectorNum_t poffset;
1172 char i_is_parity = 0, j_is_parity = 0;
1173 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1174
1175 /* get a listing of the disks comprising that stripe */
1176 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1177 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1178 RF_ASSERT(diskids);
1179
1180 /* reject this entire parity stripe if it does not contain the
1181 * indicated disk or it does not contain the failed disk */
1182 if (row != stripe)
1183 goto skipit;
1184 for (i = 0; i < stripeWidth; i++) {
1185 if (col == diskids[i])
1186 break;
1187 }
1188 if (i == stripeWidth)
1189 goto skipit;
1190 for (j = 0; j < stripeWidth; j++) {
1191 if (fcol == diskids[j])
1192 break;
1193 }
1194 if (j == stripeWidth) {
1195 goto skipit;
1196 }
1197 /* find out which disk the parity is on */
1198 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1199
1200 /* find out if either the current RU or the failed RU is parity */
1201 /* also, if the parity occurs in this stripe prior to the data and/or
1202 * failed col, we need to decrement i and/or j */
1203 for (k = 0; k < stripeWidth; k++)
1204 if (diskids[k] == pcol)
1205 break;
1206 RF_ASSERT(k < stripeWidth);
1207 i_offset = i;
1208 j_offset = j;
1209 if (k < i)
1210 i_offset--;
1211 else
1212 if (k == i) {
1213 i_is_parity = 1;
1214 i_offset = 0;
1215 } /* set offsets to zero to disable multiply
1216 * below */
1217 if (k < j)
1218 j_offset--;
1219 else
1220 if (k == j) {
1221 j_is_parity = 1;
1222 j_offset = 0;
1223 }
1224 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1225 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1226 * tells us how far into the stripe the [current,failed] disk is. */
1227
1228 /* call the mapping routine to get the offset into the current disk,
1229 * repeat for failed disk. */
1230 if (i_is_parity)
1231 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1232 else
1233 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1234
1235 RF_ASSERT(row == testrow && col == testcol);
1236
1237 if (j_is_parity)
1238 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1239 else
1240 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1241 RF_ASSERT(row == testrow && fcol == testcol);
1242
1243 /* now locate the spare unit for the failed unit */
1244 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1245 if (j_is_parity)
1246 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1247 else
1248 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1249 } else {
1250 *spRow = raidPtr->reconControl[row]->spareRow;
1251 *spCol = raidPtr->reconControl[row]->spareCol;
1252 *spOffset = *outFailedDiskSectorOffset;
1253 }
1254
1255 return (0);
1256
1257 skipit:
1258 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1259 psid, row, col);
1260 return (1);
1261 }
1262 /* this is called when a buffer has become ready to write to the replacement disk */
1263 static int
1264 IssueNextWriteRequest(raidPtr, row)
1265 RF_Raid_t *raidPtr;
1266 RF_RowCol_t row;
1267 {
1268 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1269 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1270 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1271 RF_ReconBuffer_t *rbuf;
1272 RF_DiskQueueData_t *req;
1273
1274 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1275 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1276 * have gotten the event that sent us here */
1277 RF_ASSERT(rbuf->pssPtr);
1278
1279 rbuf->pssPtr->writeRbuf = rbuf;
1280 rbuf->pssPtr = NULL;
1281
1282 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1283 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1284 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1285 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1286 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1287 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1288
1289 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1290 * kernel space */
1291 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1292 sectorsPerRU, rbuf->buffer,
1293 rbuf->parityStripeID, rbuf->which_ru,
1294 ReconWriteDoneProc, (void *) rbuf, NULL,
1295 &raidPtr->recon_tracerecs[fcol],
1296 (void *) raidPtr, 0, NULL);
1297
1298 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1299
1300 rbuf->arg = (void *) req;
1301 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1302
1303 return (0);
1304 }
1305
1306 /*
1307 * this gets called upon the completion of a reconstruction read
1308 * operation the arg is a pointer to the per-disk reconstruction
1309 * control structure for the process that just finished a read.
1310 *
1311 * called at interrupt context in the kernel, so don't do anything
1312 * illegal here.
1313 */
1314 static int
1315 ReconReadDoneProc(arg, status)
1316 void *arg;
1317 int status;
1318 {
1319 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1320 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1321
1322 if (status) {
1323 /*
1324 * XXX
1325 */
1326 printf("Recon read failed!\n");
1327 RF_PANIC();
1328 }
1329 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1330 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1331 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1332 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1333 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1334
1335 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1336 return (0);
1337 }
1338 /* this gets called upon the completion of a reconstruction write operation.
1339 * the arg is a pointer to the rbuf that was just written
1340 *
1341 * called at interrupt context in the kernel, so don't do anything illegal here.
1342 */
1343 static int
1344 ReconWriteDoneProc(arg, status)
1345 void *arg;
1346 int status;
1347 {
1348 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1349
1350 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1351 if (status) {
1352 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1353 * write failed!\n"); */
1354 RF_PANIC();
1355 }
1356 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1357 return (0);
1358 }
1359
1360
1361 /*
1362 * computes a new minimum head sep, and wakes up anyone who needs to
1363 * be woken as a result
1364 */
1365 static void
1366 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1367 RF_Raid_t *raidPtr;
1368 RF_RowCol_t row;
1369 RF_HeadSepLimit_t hsCtr;
1370 {
1371 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1372 RF_HeadSepLimit_t new_min;
1373 RF_RowCol_t i;
1374 RF_CallbackDesc_t *p;
1375 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1376 * of a minimum */
1377
1378
1379 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1380
1381 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1382 for (i = 0; i < raidPtr->numCol; i++)
1383 if (i != reconCtrlPtr->fcol) {
1384 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1385 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1386 }
1387 /* set the new minimum and wake up anyone who can now run again */
1388 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1389 reconCtrlPtr->minHeadSepCounter = new_min;
1390 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1391 while (reconCtrlPtr->headSepCBList) {
1392 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1393 break;
1394 p = reconCtrlPtr->headSepCBList;
1395 reconCtrlPtr->headSepCBList = p->next;
1396 p->next = NULL;
1397 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1398 rf_FreeCallbackDesc(p);
1399 }
1400
1401 }
1402 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1403 }
1404
1405 /*
1406 * checks to see that the maximum head separation will not be violated
1407 * if we initiate a reconstruction I/O on the indicated disk.
1408 * Limiting the maximum head separation between two disks eliminates
1409 * the nasty buffer-stall conditions that occur when one disk races
1410 * ahead of the others and consumes all of the floating recon buffers.
1411 * This code is complex and unpleasant but it's necessary to avoid
1412 * some very nasty, albeit fairly rare, reconstruction behavior.
1413 *
1414 * returns non-zero if and only if we have to stop working on the
1415 * indicated disk due to a head-separation delay.
1416 */
1417 static int
1418 CheckHeadSeparation(
1419 RF_Raid_t * raidPtr,
1420 RF_PerDiskReconCtrl_t * ctrl,
1421 RF_RowCol_t row,
1422 RF_RowCol_t col,
1423 RF_HeadSepLimit_t hsCtr,
1424 RF_ReconUnitNum_t which_ru)
1425 {
1426 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1427 RF_CallbackDesc_t *cb, *p, *pt;
1428 int retval = 0;
1429
1430 /* if we're too far ahead of the slowest disk, stop working on this
1431 * disk until the slower ones catch up. We do this by scheduling a
1432 * wakeup callback for the time when the slowest disk has caught up.
1433 * We define "caught up" with 20% hysteresis, i.e. the head separation
1434 * must have fallen to at most 80% of the max allowable head
1435 * separation before we'll wake up.
1436 *
1437 */
1438 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1439 if ((raidPtr->headSepLimit >= 0) &&
1440 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1441 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1442 raidPtr->raidid, row, col, ctrl->headSepCounter,
1443 reconCtrlPtr->minHeadSepCounter,
1444 raidPtr->headSepLimit);
1445 cb = rf_AllocCallbackDesc();
1446 /* the minHeadSepCounter value we have to get to before we'll
1447 * wake up. build in 20% hysteresis. */
1448 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1449 cb->row = row;
1450 cb->col = col;
1451 cb->next = NULL;
1452
1453 /* insert this callback descriptor into the sorted list of
1454 * pending head-sep callbacks */
1455 p = reconCtrlPtr->headSepCBList;
1456 if (!p)
1457 reconCtrlPtr->headSepCBList = cb;
1458 else
1459 if (cb->callbackArg.v < p->callbackArg.v) {
1460 cb->next = reconCtrlPtr->headSepCBList;
1461 reconCtrlPtr->headSepCBList = cb;
1462 } else {
1463 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1464 cb->next = p;
1465 pt->next = cb;
1466 }
1467 retval = 1;
1468 #if RF_RECON_STATS > 0
1469 ctrl->reconCtrl->reconDesc->hsStallCount++;
1470 #endif /* RF_RECON_STATS > 0 */
1471 }
1472 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1473
1474 return (retval);
1475 }
1476 /*
1477 * checks to see if reconstruction has been either forced or blocked
1478 * by a user operation. if forced, we skip this RU entirely. else if
1479 * blocked, put ourselves on the wait list. else return 0.
1480 *
1481 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1482 */
1483 static int
1484 CheckForcedOrBlockedReconstruction(
1485 RF_Raid_t * raidPtr,
1486 RF_ReconParityStripeStatus_t * pssPtr,
1487 RF_PerDiskReconCtrl_t * ctrl,
1488 RF_RowCol_t row,
1489 RF_RowCol_t col,
1490 RF_StripeNum_t psid,
1491 RF_ReconUnitNum_t which_ru)
1492 {
1493 RF_CallbackDesc_t *cb;
1494 int retcode = 0;
1495
1496 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1497 retcode = RF_PSS_FORCED_ON_WRITE;
1498 else
1499 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1500 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1501 cb = rf_AllocCallbackDesc(); /* append ourselves to
1502 * the blockage-wait
1503 * list */
1504 cb->row = row;
1505 cb->col = col;
1506 cb->next = pssPtr->blockWaitList;
1507 pssPtr->blockWaitList = cb;
1508 retcode = RF_PSS_RECON_BLOCKED;
1509 }
1510 if (!retcode)
1511 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1512 * reconstruction */
1513
1514 return (retcode);
1515 }
1516 /*
1517 * if reconstruction is currently ongoing for the indicated stripeID,
1518 * reconstruction is forced to completion and we return non-zero to
1519 * indicate that the caller must wait. If not, then reconstruction is
1520 * blocked on the indicated stripe and the routine returns zero. If
1521 * and only if we return non-zero, we'll cause the cbFunc to get
1522 * invoked with the cbArg when the reconstruction has completed.
1523 */
1524 int
1525 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1526 RF_Raid_t *raidPtr;
1527 RF_AccessStripeMap_t *asmap;
1528 void (*cbFunc) (RF_Raid_t *, void *);
1529 void *cbArg;
1530 {
1531 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1532 * we're working on */
1533 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1534 * forcing recon on */
1535 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1536 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1537 * stripe status structure */
1538 RF_StripeNum_t psid; /* parity stripe id */
1539 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1540 * offset */
1541 RF_RowCol_t *diskids;
1542 RF_RowCol_t stripe;
1543 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1544 RF_RowCol_t fcol, diskno, i;
1545 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1546 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1547 RF_CallbackDesc_t *cb;
1548 int created = 0, nPromoted;
1549
1550 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1551
1552 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1553
1554 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1555
1556 /* if recon is not ongoing on this PS, just return */
1557 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1558 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1559 return (0);
1560 }
1561 /* otherwise, we have to wait for reconstruction to complete on this
1562 * RU. */
1563 /* In order to avoid waiting for a potentially large number of
1564 * low-priority accesses to complete, we force a normal-priority (i.e.
1565 * not low-priority) reconstruction on this RU. */
1566 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1567 DDprintf1("Forcing recon on psid %ld\n", psid);
1568 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1569 * forced recon */
1570 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1571 * that we just set */
1572 fcol = raidPtr->reconControl[row]->fcol;
1573
1574 /* get a listing of the disks comprising the indicated stripe */
1575 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1576 RF_ASSERT(row == stripe);
1577
1578 /* For previously issued reads, elevate them to normal
1579 * priority. If the I/O has already completed, it won't be
1580 * found in the queue, and hence this will be a no-op. For
1581 * unissued reads, allocate buffers and issue new reads. The
1582 * fact that we've set the FORCED bit means that the regular
1583 * recon procs will not re-issue these reqs */
1584 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1585 if ((diskno = diskids[i]) != fcol) {
1586 if (pssPtr->issued[diskno]) {
1587 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1588 if (rf_reconDebug && nPromoted)
1589 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1590 } else {
1591 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1592 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1593 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1594 * location */
1595 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1596 new_rbuf->which_ru = which_ru;
1597 new_rbuf->failedDiskSectorOffset = fd_offset;
1598 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1599
1600 /* use NULL b_proc b/c all addrs
1601 * should be in kernel space */
1602 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1603 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1604 NULL, (void *) raidPtr, 0, NULL);
1605
1606 RF_ASSERT(req); /* XXX -- fix this --
1607 * XXX */
1608
1609 new_rbuf->arg = req;
1610 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1611 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1612 }
1613 }
1614 /* if the write is sitting in the disk queue, elevate its
1615 * priority */
1616 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1617 printf("raid%d: promoted write to row %d col %d\n",
1618 raidPtr->raidid, row, fcol);
1619 }
1620 /* install a callback descriptor to be invoked when recon completes on
1621 * this parity stripe. */
1622 cb = rf_AllocCallbackDesc();
1623 /* XXX the following is bogus.. These functions don't really match!!
1624 * GO */
1625 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1626 cb->callbackArg.p = (void *) cbArg;
1627 cb->next = pssPtr->procWaitList;
1628 pssPtr->procWaitList = cb;
1629 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1630 raidPtr->raidid, psid);
1631
1632 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1633 return (1);
1634 }
1635 /* called upon the completion of a forced reconstruction read.
1636 * all we do is schedule the FORCEDREADONE event.
1637 * called at interrupt context in the kernel, so don't do anything illegal here.
1638 */
1639 static void
1640 ForceReconReadDoneProc(arg, status)
1641 void *arg;
1642 int status;
1643 {
1644 RF_ReconBuffer_t *rbuf = arg;
1645
1646 if (status) {
1647 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1648 * recon read
1649 * failed!\n"); */
1650 RF_PANIC();
1651 }
1652 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1653 }
1654 /* releases a block on the reconstruction of the indicated stripe */
1655 int
1656 rf_UnblockRecon(raidPtr, asmap)
1657 RF_Raid_t *raidPtr;
1658 RF_AccessStripeMap_t *asmap;
1659 {
1660 RF_RowCol_t row = asmap->origRow;
1661 RF_StripeNum_t stripeID = asmap->stripeID;
1662 RF_ReconParityStripeStatus_t *pssPtr;
1663 RF_ReconUnitNum_t which_ru;
1664 RF_StripeNum_t psid;
1665 int created = 0;
1666 RF_CallbackDesc_t *cb;
1667
1668 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1669 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1670 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1671
1672 /* When recon is forced, the pss desc can get deleted before we get
1673 * back to unblock recon. But, this can _only_ happen when recon is
1674 * forced. It would be good to put some kind of sanity check here, but
1675 * how to decide if recon was just forced or not? */
1676 if (!pssPtr) {
1677 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1678 * RU %d\n",psid,which_ru); */
1679 if (rf_reconDebug || rf_pssDebug)
1680 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1681 goto out;
1682 }
1683 pssPtr->blockCount--;
1684 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1685 raidPtr->raidid, psid, pssPtr->blockCount);
1686 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1687
1688 /* unblock recon before calling CauseReconEvent in case
1689 * CauseReconEvent causes us to try to issue a new read before
1690 * returning here. */
1691 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1692
1693
1694 while (pssPtr->blockWaitList) {
1695 /* spin through the block-wait list and
1696 release all the waiters */
1697 cb = pssPtr->blockWaitList;
1698 pssPtr->blockWaitList = cb->next;
1699 cb->next = NULL;
1700 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1701 rf_FreeCallbackDesc(cb);
1702 }
1703 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1704 /* if no recon was requested while recon was blocked */
1705 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1706 }
1707 }
1708 out:
1709 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1710 return (0);
1711 }
1712