rf_reconstruct.c revision 1.38 1 /* $NetBSD: rf_reconstruct.c,v 1.38 2002/09/16 02:35:17 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.38 2002/09/16 02:35:17 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #ifdef DEBUG
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* DEBUG */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* DEBUG */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 int
162 rf_RegisterReconDoneProc(
163 RF_Raid_t * raidPtr,
164 void (*proc) (RF_Raid_t *, void *),
165 void *arg,
166 RF_ReconDoneProc_t ** handlep)
167 {
168 RF_ReconDoneProc_t *p;
169
170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 if (p == NULL)
172 return (ENOMEM);
173 p->proc = proc;
174 p->arg = arg;
175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 p->next = raidPtr->recon_done_procs;
177 raidPtr->recon_done_procs = p;
178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 if (handlep)
180 *handlep = p;
181 return (0);
182 }
183 /**************************************************************************
184 *
185 * sets up the parameters that will be used by the reconstruction process
186 * currently there are none, except for those that the layout-specific
187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188 *
189 * in the kernel, we fire off the recon thread.
190 *
191 **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 void *ignored;
195 {
196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199
200 int
201 rf_ConfigureReconstruction(listp)
202 RF_ShutdownList_t **listp;
203 {
204 int rc;
205
206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 if (rf_recond_freelist == NULL)
209 return (ENOMEM);
210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 if (rf_rdp_freelist == NULL) {
213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 return (ENOMEM);
215 }
216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 if (rc) {
218 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
219 rf_ShutdownReconstruction(NULL);
220 return (rc);
221 }
222 return (0);
223 }
224
225 static RF_RaidReconDesc_t *
226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
227 RF_Raid_t *raidPtr;
228 RF_RowCol_t row;
229 RF_RowCol_t col;
230 RF_RaidDisk_t *spareDiskPtr;
231 int numDisksDone;
232 RF_RowCol_t srow;
233 RF_RowCol_t scol;
234 {
235
236 RF_RaidReconDesc_t *reconDesc;
237
238 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
239
240 reconDesc->raidPtr = raidPtr;
241 reconDesc->row = row;
242 reconDesc->col = col;
243 reconDesc->spareDiskPtr = spareDiskPtr;
244 reconDesc->numDisksDone = numDisksDone;
245 reconDesc->srow = srow;
246 reconDesc->scol = scol;
247 reconDesc->state = 0;
248 reconDesc->next = NULL;
249
250 return (reconDesc);
251 }
252
253 static void
254 FreeReconDesc(reconDesc)
255 RF_RaidReconDesc_t *reconDesc;
256 {
257 #if RF_RECON_STATS > 0
258 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
259 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
260 #endif /* RF_RECON_STATS > 0 */
261 printf("RAIDframe: %lu max exec ticks\n",
262 (long) reconDesc->maxReconExecTicks);
263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
264 printf("\n");
265 #endif /* (RF_RECON_STATS > 0) || KERNEL */
266 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
267 }
268
269
270 /*****************************************************************************
271 *
272 * primary routine to reconstruct a failed disk. This should be called from
273 * within its own thread. It won't return until reconstruction completes,
274 * fails, or is aborted.
275 *****************************************************************************/
276 int
277 rf_ReconstructFailedDisk(raidPtr, row, col)
278 RF_Raid_t *raidPtr;
279 RF_RowCol_t row;
280 RF_RowCol_t col;
281 {
282 RF_LayoutSW_t *lp;
283 int rc;
284
285 lp = raidPtr->Layout.map;
286 if (lp->SubmitReconBuffer) {
287 /*
288 * The current infrastructure only supports reconstructing one
289 * disk at a time for each array.
290 */
291 RF_LOCK_MUTEX(raidPtr->mutex);
292 while (raidPtr->reconInProgress) {
293 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
294 }
295 raidPtr->reconInProgress++;
296 RF_UNLOCK_MUTEX(raidPtr->mutex);
297 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
298 RF_LOCK_MUTEX(raidPtr->mutex);
299 raidPtr->reconInProgress--;
300 RF_UNLOCK_MUTEX(raidPtr->mutex);
301 } else {
302 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
303 lp->parityConfig);
304 rc = EIO;
305 }
306 RF_SIGNAL_COND(raidPtr->waitForReconCond);
307 return (rc);
308 }
309
310 int
311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
312 RF_Raid_t *raidPtr;
313 RF_RowCol_t row;
314 RF_RowCol_t col;
315 {
316 RF_ComponentLabel_t c_label;
317 RF_RaidDisk_t *spareDiskPtr = NULL;
318 RF_RaidReconDesc_t *reconDesc;
319 RF_RowCol_t srow, scol;
320 int numDisksDone = 0, rc;
321
322 /* first look for a spare drive onto which to reconstruct the data */
323 /* spare disk descriptors are stored in row 0. This may have to
324 * change eventually */
325
326 RF_LOCK_MUTEX(raidPtr->mutex);
327 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
328
329 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 if (raidPtr->status[row] != rf_rs_degraded) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (EINVAL);
334 }
335 srow = row;
336 scol = (-1);
337 } else {
338 srow = 0;
339 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
340 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
341 spareDiskPtr = &raidPtr->Disks[srow][scol];
342 spareDiskPtr->status = rf_ds_used_spare;
343 break;
344 }
345 }
346 if (!spareDiskPtr) {
347 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
348 RF_UNLOCK_MUTEX(raidPtr->mutex);
349 return (ENOSPC);
350 }
351 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
352 }
353 RF_UNLOCK_MUTEX(raidPtr->mutex);
354
355 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
356 raidPtr->reconDesc = (void *) reconDesc;
357 #if RF_RECON_STATS > 0
358 reconDesc->hsStallCount = 0;
359 reconDesc->numReconExecDelays = 0;
360 reconDesc->numReconEventWaits = 0;
361 #endif /* RF_RECON_STATS > 0 */
362 reconDesc->reconExecTimerRunning = 0;
363 reconDesc->reconExecTicks = 0;
364 reconDesc->maxReconExecTicks = 0;
365 rc = rf_ContinueReconstructFailedDisk(reconDesc);
366
367 if (!rc) {
368 /* fix up the component label */
369 /* Don't actually need the read here.. */
370 raidread_component_label(
371 raidPtr->raid_cinfo[srow][scol].ci_dev,
372 raidPtr->raid_cinfo[srow][scol].ci_vp,
373 &c_label);
374
375 raid_init_component_label( raidPtr, &c_label);
376 c_label.row = row;
377 c_label.column = col;
378 c_label.clean = RF_RAID_DIRTY;
379 c_label.status = rf_ds_optimal;
380 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
381
382 /* We've just done a rebuild based on all the other
383 disks, so at this point the parity is known to be
384 clean, even if it wasn't before. */
385
386 /* XXX doesn't hold for RAID 6!!*/
387
388 raidPtr->parity_good = RF_RAID_CLEAN;
389
390 /* XXXX MORE NEEDED HERE */
391
392 raidwrite_component_label(
393 raidPtr->raid_cinfo[srow][scol].ci_dev,
394 raidPtr->raid_cinfo[srow][scol].ci_vp,
395 &c_label);
396
397 }
398 return (rc);
399 }
400
401 /*
402
403 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
404 and you don't get a spare until the next Monday. With this function
405 (and hot-swappable drives) you can now put your new disk containing
406 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
407 rebuild the data "on the spot".
408
409 */
410
411 int
412 rf_ReconstructInPlace(raidPtr, row, col)
413 RF_Raid_t *raidPtr;
414 RF_RowCol_t row;
415 RF_RowCol_t col;
416 {
417 RF_RaidDisk_t *spareDiskPtr = NULL;
418 RF_RaidReconDesc_t *reconDesc;
419 RF_LayoutSW_t *lp;
420 RF_RaidDisk_t *badDisk;
421 RF_ComponentLabel_t c_label;
422 int numDisksDone = 0, rc;
423 struct partinfo dpart;
424 struct vnode *vp;
425 struct vattr va;
426 struct proc *proc;
427 int retcode;
428 int ac;
429
430 lp = raidPtr->Layout.map;
431 if (lp->SubmitReconBuffer) {
432 /*
433 * The current infrastructure only supports reconstructing one
434 * disk at a time for each array.
435 */
436 RF_LOCK_MUTEX(raidPtr->mutex);
437 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 (raidPtr->numFailures > 0)) {
439 /* XXX 0 above shouldn't be constant!!! */
440 /* some component other than this has failed.
441 Let's not make things worse than they already
442 are... */
443 printf("raid%d: Unable to reconstruct to disk at:\n",
444 raidPtr->raidid);
445 printf("raid%d: Row: %d Col: %d Too many failures.\n",
446 raidPtr->raidid, row, col);
447 RF_UNLOCK_MUTEX(raidPtr->mutex);
448 return (EINVAL);
449 }
450 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
451 printf("raid%d: Unable to reconstruct to disk at:\n",
452 raidPtr->raidid);
453 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col);
454
455 RF_UNLOCK_MUTEX(raidPtr->mutex);
456 return (EINVAL);
457 }
458 if (raidPtr->Disks[row][col].status == rf_ds_spared) {
459 return (EINVAL);
460 }
461
462 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
463 /* "It's gone..." */
464 raidPtr->numFailures++;
465 raidPtr->Disks[row][col].status = rf_ds_failed;
466 raidPtr->status[row] = rf_rs_degraded;
467 rf_update_component_labels(raidPtr,
468 RF_NORMAL_COMPONENT_UPDATE);
469 }
470
471 while (raidPtr->reconInProgress) {
472 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
473 }
474
475 raidPtr->reconInProgress++;
476
477
478 /* first look for a spare drive onto which to reconstruct
479 the data. spare disk descriptors are stored in row 0.
480 This may have to change eventually */
481
482 /* Actually, we don't care if it's failed or not...
483 On a RAID set with correct parity, this function
484 should be callable on any component without ill affects. */
485 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
486 */
487
488 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
489 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
490
491 raidPtr->reconInProgress--;
492 RF_UNLOCK_MUTEX(raidPtr->mutex);
493 return (EINVAL);
494 }
495
496 /* XXX need goop here to see if the disk is alive,
497 and, if not, make it so... */
498
499
500
501 badDisk = &raidPtr->Disks[row][col];
502
503 proc = raidPtr->engine_thread;
504
505 /* This device may have been opened successfully the
506 first time. Close it before trying to open it again.. */
507
508 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
509 #if 0
510 printf("Closed the open device: %s\n",
511 raidPtr->Disks[row][col].devname);
512 #endif
513 vp = raidPtr->raid_cinfo[row][col].ci_vp;
514 ac = raidPtr->Disks[row][col].auto_configured;
515 rf_close_component(raidPtr, vp, ac);
516 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
517 }
518 /* note that this disk was *not* auto_configured (any longer)*/
519 raidPtr->Disks[row][col].auto_configured = 0;
520
521 #if 0
522 printf("About to (re-)open the device for rebuilding: %s\n",
523 raidPtr->Disks[row][col].devname);
524 #endif
525
526 retcode = raidlookup(raidPtr->Disks[row][col].devname,
527 proc, &vp);
528
529 if (retcode) {
530 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
531 raidPtr->Disks[row][col].devname, retcode);
532
533 /* XXX the component isn't responding properly...
534 must be still dead :-( */
535 raidPtr->reconInProgress--;
536 RF_UNLOCK_MUTEX(raidPtr->mutex);
537 return(retcode);
538
539 } else {
540
541 /* Ok, so we can at least do a lookup...
542 How about actually getting a vp for it? */
543
544 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
545 proc)) != 0) {
546 raidPtr->reconInProgress--;
547 RF_UNLOCK_MUTEX(raidPtr->mutex);
548 return(retcode);
549 }
550 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
551 FREAD, proc->p_ucred, proc);
552 if (retcode) {
553 raidPtr->reconInProgress--;
554 RF_UNLOCK_MUTEX(raidPtr->mutex);
555 return(retcode);
556 }
557 raidPtr->Disks[row][col].blockSize =
558 dpart.disklab->d_secsize;
559
560 raidPtr->Disks[row][col].numBlocks =
561 dpart.part->p_size - rf_protectedSectors;
562
563 raidPtr->raid_cinfo[row][col].ci_vp = vp;
564 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
565
566 raidPtr->Disks[row][col].dev = va.va_rdev;
567
568 /* we allow the user to specify that only a
569 fraction of the disks should be used this is
570 just for debug: it speeds up
571 * the parity scan */
572 raidPtr->Disks[row][col].numBlocks =
573 raidPtr->Disks[row][col].numBlocks *
574 rf_sizePercentage / 100;
575 }
576
577
578
579 spareDiskPtr = &raidPtr->Disks[row][col];
580 spareDiskPtr->status = rf_ds_used_spare;
581
582 printf("raid%d: initiating in-place reconstruction on\n",
583 raidPtr->raidid);
584 printf("raid%d: row %d col %d -> spare at row %d col %d\n",
585 raidPtr->raidid, row, col, row, col);
586
587 RF_UNLOCK_MUTEX(raidPtr->mutex);
588
589 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
590 spareDiskPtr, numDisksDone,
591 row, col);
592 raidPtr->reconDesc = (void *) reconDesc;
593 #if RF_RECON_STATS > 0
594 reconDesc->hsStallCount = 0;
595 reconDesc->numReconExecDelays = 0;
596 reconDesc->numReconEventWaits = 0;
597 #endif /* RF_RECON_STATS > 0 */
598 reconDesc->reconExecTimerRunning = 0;
599 reconDesc->reconExecTicks = 0;
600 reconDesc->maxReconExecTicks = 0;
601 rc = rf_ContinueReconstructFailedDisk(reconDesc);
602
603 RF_LOCK_MUTEX(raidPtr->mutex);
604 raidPtr->reconInProgress--;
605 RF_UNLOCK_MUTEX(raidPtr->mutex);
606
607 } else {
608 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
609 lp->parityConfig);
610 rc = EIO;
611 }
612 RF_LOCK_MUTEX(raidPtr->mutex);
613
614 if (!rc) {
615 /* Need to set these here, as at this point it'll be claiming
616 that the disk is in rf_ds_spared! But we know better :-) */
617
618 raidPtr->Disks[row][col].status = rf_ds_optimal;
619 raidPtr->status[row] = rf_rs_optimal;
620
621 /* fix up the component label */
622 /* Don't actually need the read here.. */
623 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
624 raidPtr->raid_cinfo[row][col].ci_vp,
625 &c_label);
626
627 raid_init_component_label(raidPtr, &c_label);
628
629 c_label.row = row;
630 c_label.column = col;
631
632 /* We've just done a rebuild based on all the other
633 disks, so at this point the parity is known to be
634 clean, even if it wasn't before. */
635
636 /* XXX doesn't hold for RAID 6!!*/
637
638 raidPtr->parity_good = RF_RAID_CLEAN;
639
640 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
641 raidPtr->raid_cinfo[row][col].ci_vp,
642 &c_label);
643
644 }
645 RF_UNLOCK_MUTEX(raidPtr->mutex);
646 RF_SIGNAL_COND(raidPtr->waitForReconCond);
647 wakeup(&raidPtr->waitForReconCond);
648 return (rc);
649 }
650
651
652 int
653 rf_ContinueReconstructFailedDisk(reconDesc)
654 RF_RaidReconDesc_t *reconDesc;
655 {
656 RF_Raid_t *raidPtr = reconDesc->raidPtr;
657 RF_RowCol_t row = reconDesc->row;
658 RF_RowCol_t col = reconDesc->col;
659 RF_RowCol_t srow = reconDesc->srow;
660 RF_RowCol_t scol = reconDesc->scol;
661 RF_ReconMap_t *mapPtr;
662
663 RF_ReconEvent_t *event;
664 struct timeval etime, elpsd;
665 unsigned long xor_s, xor_resid_us;
666 int retcode, i, ds;
667
668 switch (reconDesc->state) {
669
670
671 case 0:
672
673 raidPtr->accumXorTimeUs = 0;
674
675 /* create one trace record per physical disk */
676 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
677
678 /* quiesce the array prior to starting recon. this is needed
679 * to assure no nasty interactions with pending user writes.
680 * We need to do this before we change the disk or row status. */
681 reconDesc->state = 1;
682
683 Dprintf("RECON: begin request suspend\n");
684 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
685 Dprintf("RECON: end request suspend\n");
686 rf_StartUserStats(raidPtr); /* zero out the stats kept on
687 * user accs */
688
689 /* fall through to state 1 */
690
691 case 1:
692
693 RF_LOCK_MUTEX(raidPtr->mutex);
694
695 /* create the reconstruction control pointer and install it in
696 * the right slot */
697 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
698 mapPtr = raidPtr->reconControl[row]->reconMap;
699 raidPtr->status[row] = rf_rs_reconstructing;
700 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
701 raidPtr->Disks[row][col].spareRow = srow;
702 raidPtr->Disks[row][col].spareCol = scol;
703
704 RF_UNLOCK_MUTEX(raidPtr->mutex);
705
706 RF_GETTIME(raidPtr->reconControl[row]->starttime);
707
708 /* now start up the actual reconstruction: issue a read for
709 * each surviving disk */
710
711 reconDesc->numDisksDone = 0;
712 for (i = 0; i < raidPtr->numCol; i++) {
713 if (i != col) {
714 /* find and issue the next I/O on the
715 * indicated disk */
716 if (IssueNextReadRequest(raidPtr, row, i)) {
717 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
718 reconDesc->numDisksDone++;
719 }
720 }
721 }
722
723 case 2:
724 Dprintf("RECON: resume requests\n");
725 rf_ResumeNewRequests(raidPtr);
726
727
728 reconDesc->state = 3;
729
730 case 3:
731
732 /* process reconstruction events until all disks report that
733 * they've completed all work */
734 mapPtr = raidPtr->reconControl[row]->reconMap;
735
736
737
738 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
739
740 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
741 RF_ASSERT(event);
742
743 if (ProcessReconEvent(raidPtr, row, event))
744 reconDesc->numDisksDone++;
745 raidPtr->reconControl[row]->numRUsTotal =
746 mapPtr->totalRUs;
747 raidPtr->reconControl[row]->numRUsComplete =
748 mapPtr->totalRUs -
749 rf_UnitsLeftToReconstruct(mapPtr);
750
751 raidPtr->reconControl[row]->percentComplete =
752 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
753 if (rf_prReconSched) {
754 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
755 }
756 }
757
758
759
760 reconDesc->state = 4;
761
762
763 case 4:
764 mapPtr = raidPtr->reconControl[row]->reconMap;
765 if (rf_reconDebug) {
766 printf("RECON: all reads completed\n");
767 }
768 /* at this point all the reads have completed. We now wait
769 * for any pending writes to complete, and then we're done */
770
771 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
772
773 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
774 RF_ASSERT(event);
775
776 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
777 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
778 if (rf_prReconSched) {
779 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
780 }
781 }
782 reconDesc->state = 5;
783
784 case 5:
785 /* Success: mark the dead disk as reconstructed. We quiesce
786 * the array here to assure no nasty interactions with pending
787 * user accesses when we free up the psstatus structure as
788 * part of FreeReconControl() */
789
790 reconDesc->state = 6;
791
792 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
793 rf_StopUserStats(raidPtr);
794 rf_PrintUserStats(raidPtr); /* print out the stats on user
795 * accs accumulated during
796 * recon */
797
798 /* fall through to state 6 */
799 case 6:
800
801
802
803 RF_LOCK_MUTEX(raidPtr->mutex);
804 raidPtr->numFailures--;
805 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
806 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
807 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
808 RF_UNLOCK_MUTEX(raidPtr->mutex);
809 RF_GETTIME(etime);
810 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
811
812 /* XXX -- why is state 7 different from state 6 if there is no
813 * return() here? -- XXX Note that I set elpsd above & use it
814 * below, so if you put a return here you'll have to fix this.
815 * (also, FreeReconControl is called below) */
816
817 case 7:
818
819 rf_ResumeNewRequests(raidPtr);
820
821 printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
822 raidPtr->raidid, row, col);
823 xor_s = raidPtr->accumXorTimeUs / 1000000;
824 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
825 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
826 raidPtr->raidid,
827 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
828 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
829 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
830 raidPtr->raidid,
831 (int) raidPtr->reconControl[row]->starttime.tv_sec,
832 (int) raidPtr->reconControl[row]->starttime.tv_usec,
833 (int) etime.tv_sec, (int) etime.tv_usec);
834
835 #if RF_RECON_STATS > 0
836 printf("raid%d: Total head-sep stall count was %d\n",
837 raidPtr->raidid, (int) reconDesc->hsStallCount);
838 #endif /* RF_RECON_STATS > 0 */
839 rf_FreeReconControl(raidPtr, row);
840 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
841 FreeReconDesc(reconDesc);
842
843 }
844
845 SignalReconDone(raidPtr);
846 return (0);
847 }
848 /*****************************************************************************
849 * do the right thing upon each reconstruction event.
850 * returns nonzero if and only if there is nothing left unread on the
851 * indicated disk
852 *****************************************************************************/
853 static int
854 ProcessReconEvent(raidPtr, frow, event)
855 RF_Raid_t *raidPtr;
856 RF_RowCol_t frow;
857 RF_ReconEvent_t *event;
858 {
859 int retcode = 0, submitblocked;
860 RF_ReconBuffer_t *rbuf;
861 RF_SectorCount_t sectorsPerRU;
862
863 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
864 switch (event->type) {
865
866 /* a read I/O has completed */
867 case RF_REVENT_READDONE:
868 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
869 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
870 frow, event->col, rbuf->parityStripeID);
871 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
872 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
873 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
874 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
875 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
876 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
877 if (!submitblocked)
878 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
879 break;
880
881 /* a write I/O has completed */
882 case RF_REVENT_WRITEDONE:
883 #if RF_DEBUG_RECONBUFFER
884 if (rf_floatingRbufDebug) {
885 rf_CheckFloatingRbufCount(raidPtr, 1);
886 }
887 #endif
888 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
889 rbuf = (RF_ReconBuffer_t *) event->arg;
890 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
891 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
892 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
893 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
894 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
895 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
896
897 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
898 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
899 raidPtr->numFullReconBuffers--;
900 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
901 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
902 } else
903 if (rbuf->type == RF_RBUF_TYPE_FORCED)
904 rf_FreeReconBuffer(rbuf);
905 else
906 RF_ASSERT(0);
907 break;
908
909 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
910 * cleared */
911 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
912 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
913 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
914 * BUFCLEAR event if we
915 * couldn't submit */
916 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
917 break;
918
919 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
920 * blockage has been cleared */
921 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
922 retcode = TryToRead(raidPtr, frow, event->col);
923 break;
924
925 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
926 * reconstruction blockage has been
927 * cleared */
928 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
929 retcode = TryToRead(raidPtr, frow, event->col);
930 break;
931
932 /* a buffer has become ready to write */
933 case RF_REVENT_BUFREADY:
934 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
935 retcode = IssueNextWriteRequest(raidPtr, frow);
936 #if RF_DEBUG_RECONBUFFER
937 if (rf_floatingRbufDebug) {
938 rf_CheckFloatingRbufCount(raidPtr, 1);
939 }
940 #endif
941 break;
942
943 /* we need to skip the current RU entirely because it got
944 * recon'd while we were waiting for something else to happen */
945 case RF_REVENT_SKIP:
946 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
947 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
948 break;
949
950 /* a forced-reconstruction read access has completed. Just
951 * submit the buffer */
952 case RF_REVENT_FORCEDREADDONE:
953 rbuf = (RF_ReconBuffer_t *) event->arg;
954 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
955 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
956 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
957 RF_ASSERT(!submitblocked);
958 break;
959
960 default:
961 RF_PANIC();
962 }
963 rf_FreeReconEventDesc(event);
964 return (retcode);
965 }
966 /*****************************************************************************
967 *
968 * find the next thing that's needed on the indicated disk, and issue
969 * a read request for it. We assume that the reconstruction buffer
970 * associated with this process is free to receive the data. If
971 * reconstruction is blocked on the indicated RU, we issue a
972 * blockage-release request instead of a physical disk read request.
973 * If the current disk gets too far ahead of the others, we issue a
974 * head-separation wait request and return.
975 *
976 * ctrl->{ru_count, curPSID, diskOffset} and
977 * rbuf->failedDiskSectorOffset are maintained to point to the unit
978 * we're currently accessing. Note that this deviates from the
979 * standard C idiom of having counters point to the next thing to be
980 * accessed. This allows us to easily retry when we're blocked by
981 * head separation or reconstruction-blockage events.
982 *
983 * returns nonzero if and only if there is nothing left unread on the
984 * indicated disk
985 *
986 *****************************************************************************/
987 static int
988 IssueNextReadRequest(raidPtr, row, col)
989 RF_Raid_t *raidPtr;
990 RF_RowCol_t row;
991 RF_RowCol_t col;
992 {
993 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
994 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
995 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
996 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
997 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
998 int do_new_check = 0, retcode = 0, status;
999
1000 /* if we are currently the slowest disk, mark that we have to do a new
1001 * check */
1002 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
1003 do_new_check = 1;
1004
1005 while (1) {
1006
1007 ctrl->ru_count++;
1008 if (ctrl->ru_count < RUsPerPU) {
1009 ctrl->diskOffset += sectorsPerRU;
1010 rbuf->failedDiskSectorOffset += sectorsPerRU;
1011 } else {
1012 ctrl->curPSID++;
1013 ctrl->ru_count = 0;
1014 /* code left over from when head-sep was based on
1015 * parity stripe id */
1016 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1017 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1018 return (1); /* finito! */
1019 }
1020 /* find the disk offsets of the start of the parity
1021 * stripe on both the current disk and the failed
1022 * disk. skip this entire parity stripe if either disk
1023 * does not appear in the indicated PS */
1024 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1025 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1026 if (status) {
1027 ctrl->ru_count = RUsPerPU - 1;
1028 continue;
1029 }
1030 }
1031 rbuf->which_ru = ctrl->ru_count;
1032
1033 /* skip this RU if it's already been reconstructed */
1034 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1035 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1036 continue;
1037 }
1038 break;
1039 }
1040 ctrl->headSepCounter++;
1041 if (do_new_check)
1042 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1043
1044
1045 /* at this point, we have definitely decided what to do, and we have
1046 * only to see if we can actually do it now */
1047 rbuf->parityStripeID = ctrl->curPSID;
1048 rbuf->which_ru = ctrl->ru_count;
1049 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1050 sizeof(raidPtr->recon_tracerecs[col]));
1051 raidPtr->recon_tracerecs[col].reconacc = 1;
1052 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1053 retcode = TryToRead(raidPtr, row, col);
1054 return (retcode);
1055 }
1056
1057 /*
1058 * tries to issue the next read on the indicated disk. We may be
1059 * blocked by (a) the heads being too far apart, or (b) recon on the
1060 * indicated RU being blocked due to a write by a user thread. In
1061 * this case, we issue a head-sep or blockage wait request, which will
1062 * cause this same routine to be invoked again later when the blockage
1063 * has cleared.
1064 */
1065
1066 static int
1067 TryToRead(raidPtr, row, col)
1068 RF_Raid_t *raidPtr;
1069 RF_RowCol_t row;
1070 RF_RowCol_t col;
1071 {
1072 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1073 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1074 RF_StripeNum_t psid = ctrl->curPSID;
1075 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1076 RF_DiskQueueData_t *req;
1077 int status, created = 0;
1078 RF_ReconParityStripeStatus_t *pssPtr;
1079
1080 /* if the current disk is too far ahead of the others, issue a
1081 * head-separation wait and return */
1082 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1083 return (0);
1084 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1085 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1086
1087 /* if recon is blocked on the indicated parity stripe, issue a
1088 * block-wait request and return. this also must mark the indicated RU
1089 * in the stripe as under reconstruction if not blocked. */
1090 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1091 if (status == RF_PSS_RECON_BLOCKED) {
1092 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1093 goto out;
1094 } else
1095 if (status == RF_PSS_FORCED_ON_WRITE) {
1096 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1097 goto out;
1098 }
1099 /* make one last check to be sure that the indicated RU didn't get
1100 * reconstructed while we were waiting for something else to happen.
1101 * This is unfortunate in that it causes us to make this check twice
1102 * in the normal case. Might want to make some attempt to re-work
1103 * this so that we only do this check if we've definitely blocked on
1104 * one of the above checks. When this condition is detected, we may
1105 * have just created a bogus status entry, which we need to delete. */
1106 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1107 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1108 if (created)
1109 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1110 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1111 goto out;
1112 }
1113 /* found something to read. issue the I/O */
1114 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1115 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1116 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1117 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1118 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1119 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1120 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1121
1122 /* should be ok to use a NULL proc pointer here, all the bufs we use
1123 * should be in kernel space */
1124 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1125 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1126
1127 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1128
1129 ctrl->rbuf->arg = (void *) req;
1130 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1131 pssPtr->issued[col] = 1;
1132
1133 out:
1134 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1135 return (0);
1136 }
1137
1138
1139 /*
1140 * given a parity stripe ID, we want to find out whether both the
1141 * current disk and the failed disk exist in that parity stripe. If
1142 * not, we want to skip this whole PS. If so, we want to find the
1143 * disk offset of the start of the PS on both the current disk and the
1144 * failed disk.
1145 *
1146 * this works by getting a list of disks comprising the indicated
1147 * parity stripe, and searching the list for the current and failed
1148 * disks. Once we've decided they both exist in the parity stripe, we
1149 * need to decide whether each is data or parity, so that we'll know
1150 * which mapping function to call to get the corresponding disk
1151 * offsets.
1152 *
1153 * this is kind of unpleasant, but doing it this way allows the
1154 * reconstruction code to use parity stripe IDs rather than physical
1155 * disks address to march through the failed disk, which greatly
1156 * simplifies a lot of code, as well as eliminating the need for a
1157 * reverse-mapping function. I also think it will execute faster,
1158 * since the calls to the mapping module are kept to a minimum.
1159 *
1160 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1161 * THE STRIPE IN THE CORRECT ORDER */
1162
1163
1164 static int
1165 ComputePSDiskOffsets(
1166 RF_Raid_t * raidPtr, /* raid descriptor */
1167 RF_StripeNum_t psid, /* parity stripe identifier */
1168 RF_RowCol_t row, /* row and column of disk to find the offsets
1169 * for */
1170 RF_RowCol_t col,
1171 RF_SectorNum_t * outDiskOffset,
1172 RF_SectorNum_t * outFailedDiskSectorOffset,
1173 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1174 RF_RowCol_t * spCol,
1175 RF_SectorNum_t * spOffset)
1176 { /* OUT: offset into disk containing spare unit */
1177 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1178 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1179 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1180 RF_RowCol_t *diskids;
1181 u_int i, j, k, i_offset, j_offset;
1182 RF_RowCol_t prow, pcol;
1183 int testcol, testrow;
1184 RF_RowCol_t stripe;
1185 RF_SectorNum_t poffset;
1186 char i_is_parity = 0, j_is_parity = 0;
1187 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1188
1189 /* get a listing of the disks comprising that stripe */
1190 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1191 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1192 RF_ASSERT(diskids);
1193
1194 /* reject this entire parity stripe if it does not contain the
1195 * indicated disk or it does not contain the failed disk */
1196 if (row != stripe)
1197 goto skipit;
1198 for (i = 0; i < stripeWidth; i++) {
1199 if (col == diskids[i])
1200 break;
1201 }
1202 if (i == stripeWidth)
1203 goto skipit;
1204 for (j = 0; j < stripeWidth; j++) {
1205 if (fcol == diskids[j])
1206 break;
1207 }
1208 if (j == stripeWidth) {
1209 goto skipit;
1210 }
1211 /* find out which disk the parity is on */
1212 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1213
1214 /* find out if either the current RU or the failed RU is parity */
1215 /* also, if the parity occurs in this stripe prior to the data and/or
1216 * failed col, we need to decrement i and/or j */
1217 for (k = 0; k < stripeWidth; k++)
1218 if (diskids[k] == pcol)
1219 break;
1220 RF_ASSERT(k < stripeWidth);
1221 i_offset = i;
1222 j_offset = j;
1223 if (k < i)
1224 i_offset--;
1225 else
1226 if (k == i) {
1227 i_is_parity = 1;
1228 i_offset = 0;
1229 } /* set offsets to zero to disable multiply
1230 * below */
1231 if (k < j)
1232 j_offset--;
1233 else
1234 if (k == j) {
1235 j_is_parity = 1;
1236 j_offset = 0;
1237 }
1238 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1239 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1240 * tells us how far into the stripe the [current,failed] disk is. */
1241
1242 /* call the mapping routine to get the offset into the current disk,
1243 * repeat for failed disk. */
1244 if (i_is_parity)
1245 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1246 else
1247 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1248
1249 RF_ASSERT(row == testrow && col == testcol);
1250
1251 if (j_is_parity)
1252 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1253 else
1254 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1255 RF_ASSERT(row == testrow && fcol == testcol);
1256
1257 /* now locate the spare unit for the failed unit */
1258 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1259 if (j_is_parity)
1260 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1261 else
1262 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1263 } else {
1264 *spRow = raidPtr->reconControl[row]->spareRow;
1265 *spCol = raidPtr->reconControl[row]->spareCol;
1266 *spOffset = *outFailedDiskSectorOffset;
1267 }
1268
1269 return (0);
1270
1271 skipit:
1272 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1273 psid, row, col);
1274 return (1);
1275 }
1276 /* this is called when a buffer has become ready to write to the replacement disk */
1277 static int
1278 IssueNextWriteRequest(raidPtr, row)
1279 RF_Raid_t *raidPtr;
1280 RF_RowCol_t row;
1281 {
1282 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1283 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1284 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1285 RF_ReconBuffer_t *rbuf;
1286 RF_DiskQueueData_t *req;
1287
1288 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1289 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1290 * have gotten the event that sent us here */
1291 RF_ASSERT(rbuf->pssPtr);
1292
1293 rbuf->pssPtr->writeRbuf = rbuf;
1294 rbuf->pssPtr = NULL;
1295
1296 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1297 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1298 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1299 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1300 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1301 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1302
1303 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1304 * kernel space */
1305 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1306 sectorsPerRU, rbuf->buffer,
1307 rbuf->parityStripeID, rbuf->which_ru,
1308 ReconWriteDoneProc, (void *) rbuf, NULL,
1309 &raidPtr->recon_tracerecs[fcol],
1310 (void *) raidPtr, 0, NULL);
1311
1312 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1313
1314 rbuf->arg = (void *) req;
1315 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1316
1317 return (0);
1318 }
1319
1320 /*
1321 * this gets called upon the completion of a reconstruction read
1322 * operation the arg is a pointer to the per-disk reconstruction
1323 * control structure for the process that just finished a read.
1324 *
1325 * called at interrupt context in the kernel, so don't do anything
1326 * illegal here.
1327 */
1328 static int
1329 ReconReadDoneProc(arg, status)
1330 void *arg;
1331 int status;
1332 {
1333 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1334 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1335
1336 if (status) {
1337 /*
1338 * XXX
1339 */
1340 printf("Recon read failed!\n");
1341 RF_PANIC();
1342 }
1343 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1344 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1345 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1346 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1347 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1348
1349 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1350 return (0);
1351 }
1352 /* this gets called upon the completion of a reconstruction write operation.
1353 * the arg is a pointer to the rbuf that was just written
1354 *
1355 * called at interrupt context in the kernel, so don't do anything illegal here.
1356 */
1357 static int
1358 ReconWriteDoneProc(arg, status)
1359 void *arg;
1360 int status;
1361 {
1362 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1363
1364 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1365 if (status) {
1366 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1367 * write failed!\n"); */
1368 RF_PANIC();
1369 }
1370 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1371 return (0);
1372 }
1373
1374
1375 /*
1376 * computes a new minimum head sep, and wakes up anyone who needs to
1377 * be woken as a result
1378 */
1379 static void
1380 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1381 RF_Raid_t *raidPtr;
1382 RF_RowCol_t row;
1383 RF_HeadSepLimit_t hsCtr;
1384 {
1385 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1386 RF_HeadSepLimit_t new_min;
1387 RF_RowCol_t i;
1388 RF_CallbackDesc_t *p;
1389 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1390 * of a minimum */
1391
1392
1393 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1394
1395 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1396 for (i = 0; i < raidPtr->numCol; i++)
1397 if (i != reconCtrlPtr->fcol) {
1398 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1399 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1400 }
1401 /* set the new minimum and wake up anyone who can now run again */
1402 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1403 reconCtrlPtr->minHeadSepCounter = new_min;
1404 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1405 while (reconCtrlPtr->headSepCBList) {
1406 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1407 break;
1408 p = reconCtrlPtr->headSepCBList;
1409 reconCtrlPtr->headSepCBList = p->next;
1410 p->next = NULL;
1411 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1412 rf_FreeCallbackDesc(p);
1413 }
1414
1415 }
1416 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1417 }
1418
1419 /*
1420 * checks to see that the maximum head separation will not be violated
1421 * if we initiate a reconstruction I/O on the indicated disk.
1422 * Limiting the maximum head separation between two disks eliminates
1423 * the nasty buffer-stall conditions that occur when one disk races
1424 * ahead of the others and consumes all of the floating recon buffers.
1425 * This code is complex and unpleasant but it's necessary to avoid
1426 * some very nasty, albeit fairly rare, reconstruction behavior.
1427 *
1428 * returns non-zero if and only if we have to stop working on the
1429 * indicated disk due to a head-separation delay.
1430 */
1431 static int
1432 CheckHeadSeparation(
1433 RF_Raid_t * raidPtr,
1434 RF_PerDiskReconCtrl_t * ctrl,
1435 RF_RowCol_t row,
1436 RF_RowCol_t col,
1437 RF_HeadSepLimit_t hsCtr,
1438 RF_ReconUnitNum_t which_ru)
1439 {
1440 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1441 RF_CallbackDesc_t *cb, *p, *pt;
1442 int retval = 0;
1443
1444 /* if we're too far ahead of the slowest disk, stop working on this
1445 * disk until the slower ones catch up. We do this by scheduling a
1446 * wakeup callback for the time when the slowest disk has caught up.
1447 * We define "caught up" with 20% hysteresis, i.e. the head separation
1448 * must have fallen to at most 80% of the max allowable head
1449 * separation before we'll wake up.
1450 *
1451 */
1452 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1453 if ((raidPtr->headSepLimit >= 0) &&
1454 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1455 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1456 raidPtr->raidid, row, col, ctrl->headSepCounter,
1457 reconCtrlPtr->minHeadSepCounter,
1458 raidPtr->headSepLimit);
1459 cb = rf_AllocCallbackDesc();
1460 /* the minHeadSepCounter value we have to get to before we'll
1461 * wake up. build in 20% hysteresis. */
1462 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1463 cb->row = row;
1464 cb->col = col;
1465 cb->next = NULL;
1466
1467 /* insert this callback descriptor into the sorted list of
1468 * pending head-sep callbacks */
1469 p = reconCtrlPtr->headSepCBList;
1470 if (!p)
1471 reconCtrlPtr->headSepCBList = cb;
1472 else
1473 if (cb->callbackArg.v < p->callbackArg.v) {
1474 cb->next = reconCtrlPtr->headSepCBList;
1475 reconCtrlPtr->headSepCBList = cb;
1476 } else {
1477 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1478 cb->next = p;
1479 pt->next = cb;
1480 }
1481 retval = 1;
1482 #if RF_RECON_STATS > 0
1483 ctrl->reconCtrl->reconDesc->hsStallCount++;
1484 #endif /* RF_RECON_STATS > 0 */
1485 }
1486 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1487
1488 return (retval);
1489 }
1490 /*
1491 * checks to see if reconstruction has been either forced or blocked
1492 * by a user operation. if forced, we skip this RU entirely. else if
1493 * blocked, put ourselves on the wait list. else return 0.
1494 *
1495 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1496 */
1497 static int
1498 CheckForcedOrBlockedReconstruction(
1499 RF_Raid_t * raidPtr,
1500 RF_ReconParityStripeStatus_t * pssPtr,
1501 RF_PerDiskReconCtrl_t * ctrl,
1502 RF_RowCol_t row,
1503 RF_RowCol_t col,
1504 RF_StripeNum_t psid,
1505 RF_ReconUnitNum_t which_ru)
1506 {
1507 RF_CallbackDesc_t *cb;
1508 int retcode = 0;
1509
1510 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1511 retcode = RF_PSS_FORCED_ON_WRITE;
1512 else
1513 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1514 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1515 cb = rf_AllocCallbackDesc(); /* append ourselves to
1516 * the blockage-wait
1517 * list */
1518 cb->row = row;
1519 cb->col = col;
1520 cb->next = pssPtr->blockWaitList;
1521 pssPtr->blockWaitList = cb;
1522 retcode = RF_PSS_RECON_BLOCKED;
1523 }
1524 if (!retcode)
1525 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1526 * reconstruction */
1527
1528 return (retcode);
1529 }
1530 /*
1531 * if reconstruction is currently ongoing for the indicated stripeID,
1532 * reconstruction is forced to completion and we return non-zero to
1533 * indicate that the caller must wait. If not, then reconstruction is
1534 * blocked on the indicated stripe and the routine returns zero. If
1535 * and only if we return non-zero, we'll cause the cbFunc to get
1536 * invoked with the cbArg when the reconstruction has completed.
1537 */
1538 int
1539 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1540 RF_Raid_t *raidPtr;
1541 RF_AccessStripeMap_t *asmap;
1542 void (*cbFunc) (RF_Raid_t *, void *);
1543 void *cbArg;
1544 {
1545 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1546 * we're working on */
1547 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1548 * forcing recon on */
1549 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1550 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1551 * stripe status structure */
1552 RF_StripeNum_t psid; /* parity stripe id */
1553 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1554 * offset */
1555 RF_RowCol_t *diskids;
1556 RF_RowCol_t stripe;
1557 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1558 RF_RowCol_t fcol, diskno, i;
1559 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1560 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1561 RF_CallbackDesc_t *cb;
1562 int created = 0, nPromoted;
1563
1564 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1565
1566 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1567
1568 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1569
1570 /* if recon is not ongoing on this PS, just return */
1571 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1572 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1573 return (0);
1574 }
1575 /* otherwise, we have to wait for reconstruction to complete on this
1576 * RU. */
1577 /* In order to avoid waiting for a potentially large number of
1578 * low-priority accesses to complete, we force a normal-priority (i.e.
1579 * not low-priority) reconstruction on this RU. */
1580 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1581 DDprintf1("Forcing recon on psid %ld\n", psid);
1582 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1583 * forced recon */
1584 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1585 * that we just set */
1586 fcol = raidPtr->reconControl[row]->fcol;
1587
1588 /* get a listing of the disks comprising the indicated stripe */
1589 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1590 RF_ASSERT(row == stripe);
1591
1592 /* For previously issued reads, elevate them to normal
1593 * priority. If the I/O has already completed, it won't be
1594 * found in the queue, and hence this will be a no-op. For
1595 * unissued reads, allocate buffers and issue new reads. The
1596 * fact that we've set the FORCED bit means that the regular
1597 * recon procs will not re-issue these reqs */
1598 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1599 if ((diskno = diskids[i]) != fcol) {
1600 if (pssPtr->issued[diskno]) {
1601 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1602 if (rf_reconDebug && nPromoted)
1603 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1604 } else {
1605 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1606 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1607 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1608 * location */
1609 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1610 new_rbuf->which_ru = which_ru;
1611 new_rbuf->failedDiskSectorOffset = fd_offset;
1612 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1613
1614 /* use NULL b_proc b/c all addrs
1615 * should be in kernel space */
1616 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1617 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1618 NULL, (void *) raidPtr, 0, NULL);
1619
1620 RF_ASSERT(req); /* XXX -- fix this --
1621 * XXX */
1622
1623 new_rbuf->arg = req;
1624 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1625 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1626 }
1627 }
1628 /* if the write is sitting in the disk queue, elevate its
1629 * priority */
1630 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1631 printf("raid%d: promoted write to row %d col %d\n",
1632 raidPtr->raidid, row, fcol);
1633 }
1634 /* install a callback descriptor to be invoked when recon completes on
1635 * this parity stripe. */
1636 cb = rf_AllocCallbackDesc();
1637 /* XXX the following is bogus.. These functions don't really match!!
1638 * GO */
1639 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1640 cb->callbackArg.p = (void *) cbArg;
1641 cb->next = pssPtr->procWaitList;
1642 pssPtr->procWaitList = cb;
1643 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1644 raidPtr->raidid, psid);
1645
1646 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1647 return (1);
1648 }
1649 /* called upon the completion of a forced reconstruction read.
1650 * all we do is schedule the FORCEDREADONE event.
1651 * called at interrupt context in the kernel, so don't do anything illegal here.
1652 */
1653 static void
1654 ForceReconReadDoneProc(arg, status)
1655 void *arg;
1656 int status;
1657 {
1658 RF_ReconBuffer_t *rbuf = arg;
1659
1660 if (status) {
1661 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1662 * recon read
1663 * failed!\n"); */
1664 RF_PANIC();
1665 }
1666 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1667 }
1668 /* releases a block on the reconstruction of the indicated stripe */
1669 int
1670 rf_UnblockRecon(raidPtr, asmap)
1671 RF_Raid_t *raidPtr;
1672 RF_AccessStripeMap_t *asmap;
1673 {
1674 RF_RowCol_t row = asmap->origRow;
1675 RF_StripeNum_t stripeID = asmap->stripeID;
1676 RF_ReconParityStripeStatus_t *pssPtr;
1677 RF_ReconUnitNum_t which_ru;
1678 RF_StripeNum_t psid;
1679 int created = 0;
1680 RF_CallbackDesc_t *cb;
1681
1682 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1683 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1684 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1685
1686 /* When recon is forced, the pss desc can get deleted before we get
1687 * back to unblock recon. But, this can _only_ happen when recon is
1688 * forced. It would be good to put some kind of sanity check here, but
1689 * how to decide if recon was just forced or not? */
1690 if (!pssPtr) {
1691 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1692 * RU %d\n",psid,which_ru); */
1693 if (rf_reconDebug || rf_pssDebug)
1694 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1695 goto out;
1696 }
1697 pssPtr->blockCount--;
1698 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1699 raidPtr->raidid, psid, pssPtr->blockCount);
1700 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1701
1702 /* unblock recon before calling CauseReconEvent in case
1703 * CauseReconEvent causes us to try to issue a new read before
1704 * returning here. */
1705 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1706
1707
1708 while (pssPtr->blockWaitList) {
1709 /* spin through the block-wait list and
1710 release all the waiters */
1711 cb = pssPtr->blockWaitList;
1712 pssPtr->blockWaitList = cb->next;
1713 cb->next = NULL;
1714 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1715 rf_FreeCallbackDesc(cb);
1716 }
1717 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1718 /* if no recon was requested while recon was blocked */
1719 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1720 }
1721 }
1722 out:
1723 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1724 return (0);
1725 }
1726