Home | History | Annotate | Line # | Download | only in raidframe
rf_reconstruct.c revision 1.40
      1 /*	$NetBSD: rf_reconstruct.c,v 1.40 2002/09/17 03:21:41 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /************************************************************
     30  *
     31  * rf_reconstruct.c -- code to perform on-line reconstruction
     32  *
     33  ************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.40 2002/09/17 03:21:41 oster Exp $");
     37 
     38 #include <sys/time.h>
     39 #include <sys/buf.h>
     40 #include <sys/errno.h>
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/ioctl.h>
     46 #include <sys/fcntl.h>
     47 #include <sys/vnode.h>
     48 #include <dev/raidframe/raidframevar.h>
     49 
     50 #include "rf_raid.h"
     51 #include "rf_reconutil.h"
     52 #include "rf_revent.h"
     53 #include "rf_reconbuffer.h"
     54 #include "rf_acctrace.h"
     55 #include "rf_etimer.h"
     56 #include "rf_dag.h"
     57 #include "rf_desc.h"
     58 #include "rf_debugprint.h"
     59 #include "rf_general.h"
     60 #include "rf_freelist.h"
     61 #include "rf_driver.h"
     62 #include "rf_utils.h"
     63 #include "rf_shutdown.h"
     64 
     65 #include "rf_kintf.h"
     66 
     67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
     68 
     69 #ifdef DEBUG
     70 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     71 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     72 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     73 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     74 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
     75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
     76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
     77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
     78 
     79 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     80 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     81 
     82 #else /* DEBUG */
     83 
     84 #define Dprintf(s) {}
     85 #define Dprintf1(s,a) {}
     86 #define Dprintf2(s,a,b) {}
     87 #define Dprintf3(s,a,b,c) {}
     88 #define Dprintf4(s,a,b,c,d) {}
     89 #define Dprintf5(s,a,b,c,d,e) {}
     90 #define Dprintf6(s,a,b,c,d,e,f) {}
     91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
     92 
     93 #define DDprintf1(s,a) {}
     94 #define DDprintf2(s,a,b) {}
     95 
     96 #endif /* DEBUG */
     97 
     98 
     99 static RF_FreeList_t *rf_recond_freelist;
    100 #define RF_MAX_FREE_RECOND  4
    101 #define RF_RECOND_INC       1
    102 
    103 static RF_RaidReconDesc_t *
    104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
    105     RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
    106     int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
    107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
    108 static int
    109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
    110     RF_ReconEvent_t * event);
    111 static int
    112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
    113     RF_RowCol_t col);
    114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
    115 static int
    116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
    117     RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
    118     RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
    119     RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
    120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
    121 static int ReconReadDoneProc(void *arg, int status);
    122 static int ReconWriteDoneProc(void *arg, int status);
    123 static void
    124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
    125     RF_HeadSepLimit_t hsCtr);
    126 static int
    127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
    128     RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
    129     RF_ReconUnitNum_t which_ru);
    130 static int
    131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
    132     RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
    133     RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
    134     RF_ReconUnitNum_t which_ru);
    135 static void ForceReconReadDoneProc(void *arg, int status);
    136 
    137 static void rf_ShutdownReconstruction(void *);
    138 
    139 struct RF_ReconDoneProc_s {
    140 	void    (*proc) (RF_Raid_t *, void *);
    141 	void   *arg;
    142 	RF_ReconDoneProc_t *next;
    143 };
    144 
    145 static RF_FreeList_t *rf_rdp_freelist;
    146 #define RF_MAX_FREE_RDP 4
    147 #define RF_RDP_INC      1
    148 
    149 static void
    150 SignalReconDone(RF_Raid_t * raidPtr)
    151 {
    152 	RF_ReconDoneProc_t *p;
    153 
    154 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
    155 	for (p = raidPtr->recon_done_procs; p; p = p->next) {
    156 		p->proc(raidPtr, p->arg);
    157 	}
    158 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
    159 }
    160 
    161 int
    162 rf_RegisterReconDoneProc(
    163     RF_Raid_t * raidPtr,
    164     void (*proc) (RF_Raid_t *, void *),
    165     void *arg,
    166     RF_ReconDoneProc_t ** handlep)
    167 {
    168 	RF_ReconDoneProc_t *p;
    169 
    170 	RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
    171 	if (p == NULL)
    172 		return (ENOMEM);
    173 	p->proc = proc;
    174 	p->arg = arg;
    175 	RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
    176 	p->next = raidPtr->recon_done_procs;
    177 	raidPtr->recon_done_procs = p;
    178 	RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
    179 	if (handlep)
    180 		*handlep = p;
    181 	return (0);
    182 }
    183 /**************************************************************************
    184  *
    185  * sets up the parameters that will be used by the reconstruction process
    186  * currently there are none, except for those that the layout-specific
    187  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
    188  *
    189  * in the kernel, we fire off the recon thread.
    190  *
    191  **************************************************************************/
    192 static void
    193 rf_ShutdownReconstruction(ignored)
    194 	void   *ignored;
    195 {
    196 	RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
    197 	RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
    198 }
    199 
    200 int
    201 rf_ConfigureReconstruction(listp)
    202 	RF_ShutdownList_t **listp;
    203 {
    204 	int     rc;
    205 
    206 	RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
    207 	    RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
    208 	if (rf_recond_freelist == NULL)
    209 		return (ENOMEM);
    210 	RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
    211 	    RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
    212 	if (rf_rdp_freelist == NULL) {
    213 		RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
    214 		return (ENOMEM);
    215 	}
    216 	rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
    217 	if (rc) {
    218 		rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
    219 		rf_ShutdownReconstruction(NULL);
    220 		return (rc);
    221 	}
    222 	return (0);
    223 }
    224 
    225 static RF_RaidReconDesc_t *
    226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
    227 	RF_Raid_t *raidPtr;
    228 	RF_RowCol_t row;
    229 	RF_RowCol_t col;
    230 	RF_RaidDisk_t *spareDiskPtr;
    231 	int     numDisksDone;
    232 	RF_RowCol_t srow;
    233 	RF_RowCol_t scol;
    234 {
    235 
    236 	RF_RaidReconDesc_t *reconDesc;
    237 
    238 	RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
    239 
    240 	reconDesc->raidPtr = raidPtr;
    241 	reconDesc->row = row;
    242 	reconDesc->col = col;
    243 	reconDesc->spareDiskPtr = spareDiskPtr;
    244 	reconDesc->numDisksDone = numDisksDone;
    245 	reconDesc->srow = srow;
    246 	reconDesc->scol = scol;
    247 	reconDesc->state = 0;
    248 	reconDesc->next = NULL;
    249 
    250 	return (reconDesc);
    251 }
    252 
    253 static void
    254 FreeReconDesc(reconDesc)
    255 	RF_RaidReconDesc_t *reconDesc;
    256 {
    257 #if RF_RECON_STATS > 0
    258 	printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
    259 	    (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
    260 #endif				/* RF_RECON_STATS > 0 */
    261 	printf("RAIDframe: %lu max exec ticks\n",
    262 	    (long) reconDesc->maxReconExecTicks);
    263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
    264 	printf("\n");
    265 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
    266 	RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
    267 }
    268 
    269 
    270 /*****************************************************************************
    271  *
    272  * primary routine to reconstruct a failed disk.  This should be called from
    273  * within its own thread.  It won't return until reconstruction completes,
    274  * fails, or is aborted.
    275  *****************************************************************************/
    276 int
    277 rf_ReconstructFailedDisk(raidPtr, row, col)
    278 	RF_Raid_t *raidPtr;
    279 	RF_RowCol_t row;
    280 	RF_RowCol_t col;
    281 {
    282 	RF_LayoutSW_t *lp;
    283 	int     rc;
    284 
    285 	lp = raidPtr->Layout.map;
    286 	if (lp->SubmitReconBuffer) {
    287 		/*
    288 	         * The current infrastructure only supports reconstructing one
    289 	         * disk at a time for each array.
    290 	         */
    291 		RF_LOCK_MUTEX(raidPtr->mutex);
    292 		while (raidPtr->reconInProgress) {
    293 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    294 		}
    295 		raidPtr->reconInProgress++;
    296 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    297 		rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
    298 		RF_LOCK_MUTEX(raidPtr->mutex);
    299 		raidPtr->reconInProgress--;
    300 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    301 	} else {
    302 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    303 		    lp->parityConfig);
    304 		rc = EIO;
    305 	}
    306 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    307 	return (rc);
    308 }
    309 
    310 int
    311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
    312 	RF_Raid_t *raidPtr;
    313 	RF_RowCol_t row;
    314 	RF_RowCol_t col;
    315 {
    316 	RF_ComponentLabel_t c_label;
    317 	RF_RaidDisk_t *spareDiskPtr = NULL;
    318 	RF_RaidReconDesc_t *reconDesc;
    319 	RF_RowCol_t srow, scol;
    320 	int     numDisksDone = 0, rc;
    321 
    322 	/* first look for a spare drive onto which to reconstruct the data */
    323 	/* spare disk descriptors are stored in row 0.  This may have to
    324 	 * change eventually */
    325 
    326 	RF_LOCK_MUTEX(raidPtr->mutex);
    327 	RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
    328 
    329 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    330 		if (raidPtr->status[row] != rf_rs_degraded) {
    331 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
    332 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    333 			return (EINVAL);
    334 		}
    335 		srow = row;
    336 		scol = (-1);
    337 	} else {
    338 		srow = 0;
    339 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
    340 			if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
    341 				spareDiskPtr = &raidPtr->Disks[srow][scol];
    342 				spareDiskPtr->status = rf_ds_used_spare;
    343 				break;
    344 			}
    345 		}
    346 		if (!spareDiskPtr) {
    347 			RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
    348 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    349 			return (ENOSPC);
    350 		}
    351 		printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
    352 	}
    353 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    354 
    355 	reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
    356 	raidPtr->reconDesc = (void *) reconDesc;
    357 #if RF_RECON_STATS > 0
    358 	reconDesc->hsStallCount = 0;
    359 	reconDesc->numReconExecDelays = 0;
    360 	reconDesc->numReconEventWaits = 0;
    361 #endif				/* RF_RECON_STATS > 0 */
    362 	reconDesc->reconExecTimerRunning = 0;
    363 	reconDesc->reconExecTicks = 0;
    364 	reconDesc->maxReconExecTicks = 0;
    365 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    366 
    367 	if (!rc) {
    368 		/* fix up the component label */
    369 		/* Don't actually need the read here.. */
    370 		raidread_component_label(
    371                         raidPtr->raid_cinfo[srow][scol].ci_dev,
    372 			raidPtr->raid_cinfo[srow][scol].ci_vp,
    373 			&c_label);
    374 
    375 		raid_init_component_label( raidPtr, &c_label);
    376 		c_label.row = row;
    377 		c_label.column = col;
    378 		c_label.clean = RF_RAID_DIRTY;
    379 		c_label.status = rf_ds_optimal;
    380 		c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
    381 
    382 		/* We've just done a rebuild based on all the other
    383 		   disks, so at this point the parity is known to be
    384 		   clean, even if it wasn't before. */
    385 
    386 		/* XXX doesn't hold for RAID 6!!*/
    387 
    388 		raidPtr->parity_good = RF_RAID_CLEAN;
    389 
    390 		/* XXXX MORE NEEDED HERE */
    391 
    392 		raidwrite_component_label(
    393                         raidPtr->raid_cinfo[srow][scol].ci_dev,
    394 			raidPtr->raid_cinfo[srow][scol].ci_vp,
    395 			&c_label);
    396 
    397 	}
    398 	return (rc);
    399 }
    400 
    401 /*
    402 
    403    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
    404    and you don't get a spare until the next Monday.  With this function
    405    (and hot-swappable drives) you can now put your new disk containing
    406    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
    407    rebuild the data "on the spot".
    408 
    409 */
    410 
    411 int
    412 rf_ReconstructInPlace(raidPtr, row, col)
    413 	RF_Raid_t *raidPtr;
    414 	RF_RowCol_t row;
    415 	RF_RowCol_t col;
    416 {
    417 	RF_RaidDisk_t *spareDiskPtr = NULL;
    418 	RF_RaidReconDesc_t *reconDesc;
    419 	RF_LayoutSW_t *lp;
    420 	RF_RaidDisk_t *badDisk;
    421 	RF_ComponentLabel_t c_label;
    422 	int     numDisksDone = 0, rc;
    423 	struct partinfo dpart;
    424 	struct vnode *vp;
    425 	struct vattr va;
    426 	struct proc *proc;
    427 	int retcode;
    428 	int ac;
    429 
    430 	lp = raidPtr->Layout.map;
    431 	if (lp->SubmitReconBuffer) {
    432 		/*
    433 	         * The current infrastructure only supports reconstructing one
    434 	         * disk at a time for each array.
    435 	         */
    436 		RF_LOCK_MUTEX(raidPtr->mutex);
    437 		if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
    438 		    (raidPtr->numFailures > 0)) {
    439 			/* XXX 0 above shouldn't be constant!!! */
    440 			/* some component other than this has failed.
    441 			   Let's not make things worse than they already
    442 			   are... */
    443 			printf("raid%d: Unable to reconstruct to disk at:\n",
    444 			       raidPtr->raidid);
    445 			printf("raid%d:     Row: %d Col: %d   Too many failures.\n",
    446 			       raidPtr->raidid, row, col);
    447 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    448 			return (EINVAL);
    449 		}
    450 		if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
    451 			printf("raid%d: Unable to reconstruct to disk at:\n",
    452 			       raidPtr->raidid);
    453 			printf("raid%d:    Row: %d Col: %d   Reconstruction already occuring!\n", raidPtr->raidid, row, col);
    454 
    455 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    456 			return (EINVAL);
    457 		}
    458 		if (raidPtr->Disks[row][col].status == rf_ds_spared) {
    459 			return (EINVAL);
    460 		}
    461 
    462 		if (raidPtr->Disks[row][col].status != rf_ds_failed) {
    463 			/* "It's gone..." */
    464 			raidPtr->numFailures++;
    465 			raidPtr->Disks[row][col].status = rf_ds_failed;
    466 			raidPtr->status[row] = rf_rs_degraded;
    467 			rf_update_component_labels(raidPtr,
    468 						   RF_NORMAL_COMPONENT_UPDATE);
    469 		}
    470 
    471 		while (raidPtr->reconInProgress) {
    472 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    473 		}
    474 
    475 		raidPtr->reconInProgress++;
    476 
    477 
    478 		/* first look for a spare drive onto which to reconstruct
    479 		   the data.  spare disk descriptors are stored in row 0.
    480 		   This may have to change eventually */
    481 
    482 		/* Actually, we don't care if it's failed or not...
    483 		   On a RAID set with correct parity, this function
    484 		   should be callable on any component without ill affects. */
    485 		/* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
    486 		 */
    487 
    488 		if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    489 			RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
    490 
    491 			raidPtr->reconInProgress--;
    492 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    493 			return (EINVAL);
    494 		}
    495 
    496 		badDisk = &raidPtr->Disks[row][col];
    497 
    498 		proc = raidPtr->engine_thread;
    499 
    500 		/* This device may have been opened successfully the
    501 		   first time. Close it before trying to open it again.. */
    502 
    503 		if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
    504 #if 0
    505 			printf("Closed the open device: %s\n",
    506 			       raidPtr->Disks[row][col].devname);
    507 #endif
    508 			vp = raidPtr->raid_cinfo[row][col].ci_vp;
    509 			ac = raidPtr->Disks[row][col].auto_configured;
    510 			rf_close_component(raidPtr, vp, ac);
    511 			raidPtr->raid_cinfo[row][col].ci_vp = NULL;
    512 		}
    513 		/* note that this disk was *not* auto_configured (any longer)*/
    514 		raidPtr->Disks[row][col].auto_configured = 0;
    515 
    516 #if 0
    517 		printf("About to (re-)open the device for rebuilding: %s\n",
    518 		       raidPtr->Disks[row][col].devname);
    519 #endif
    520 
    521 		retcode = raidlookup(raidPtr->Disks[row][col].devname,
    522 				     proc, &vp);
    523 
    524 		if (retcode) {
    525 			printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
    526 			       raidPtr->Disks[row][col].devname, retcode);
    527 
    528 			/* the component isn't responding properly...
    529 			   must be still dead :-( */
    530 			raidPtr->reconInProgress--;
    531 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    532 			return(retcode);
    533 
    534 		} else {
    535 
    536 			/* Ok, so we can at least do a lookup...
    537 			   How about actually getting a vp for it? */
    538 
    539 			if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
    540 						   proc)) != 0) {
    541 				raidPtr->reconInProgress--;
    542 				RF_UNLOCK_MUTEX(raidPtr->mutex);
    543 				return(retcode);
    544 			}
    545 			retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
    546 					    FREAD, proc->p_ucred, proc);
    547 			if (retcode) {
    548 				raidPtr->reconInProgress--;
    549 				RF_UNLOCK_MUTEX(raidPtr->mutex);
    550 				return(retcode);
    551 			}
    552 			raidPtr->Disks[row][col].blockSize =
    553 				dpart.disklab->d_secsize;
    554 
    555 			raidPtr->Disks[row][col].numBlocks =
    556 				dpart.part->p_size - rf_protectedSectors;
    557 
    558 			raidPtr->raid_cinfo[row][col].ci_vp = vp;
    559 			raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
    560 
    561 			raidPtr->Disks[row][col].dev = va.va_rdev;
    562 
    563 			/* we allow the user to specify that only a
    564 			   fraction of the disks should be used this is
    565 			   just for debug:  it speeds up
    566 			 * the parity scan */
    567 			raidPtr->Disks[row][col].numBlocks =
    568 				raidPtr->Disks[row][col].numBlocks *
    569 				rf_sizePercentage / 100;
    570 		}
    571 
    572 
    573 
    574 		spareDiskPtr = &raidPtr->Disks[row][col];
    575 		spareDiskPtr->status = rf_ds_used_spare;
    576 
    577 		printf("raid%d: initiating in-place reconstruction on\n",
    578 		       raidPtr->raidid);
    579 		printf("raid%d:    row %d col %d -> spare at row %d col %d\n",
    580 		       raidPtr->raidid, row, col, row, col);
    581 
    582 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    583 
    584 		reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
    585 					       spareDiskPtr, numDisksDone,
    586 					       row, col);
    587 		raidPtr->reconDesc = (void *) reconDesc;
    588 #if RF_RECON_STATS > 0
    589 		reconDesc->hsStallCount = 0;
    590 		reconDesc->numReconExecDelays = 0;
    591 		reconDesc->numReconEventWaits = 0;
    592 #endif				/* RF_RECON_STATS > 0 */
    593 		reconDesc->reconExecTimerRunning = 0;
    594 		reconDesc->reconExecTicks = 0;
    595 		reconDesc->maxReconExecTicks = 0;
    596 		rc = rf_ContinueReconstructFailedDisk(reconDesc);
    597 
    598 		RF_LOCK_MUTEX(raidPtr->mutex);
    599 		raidPtr->reconInProgress--;
    600 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    601 
    602 	} else {
    603 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    604 			     lp->parityConfig);
    605 		rc = EIO;
    606 	}
    607 	RF_LOCK_MUTEX(raidPtr->mutex);
    608 
    609 	if (!rc) {
    610 		/* Need to set these here, as at this point it'll be claiming
    611 		   that the disk is in rf_ds_spared!  But we know better :-) */
    612 
    613 		raidPtr->Disks[row][col].status = rf_ds_optimal;
    614 		raidPtr->status[row] = rf_rs_optimal;
    615 
    616 		/* fix up the component label */
    617 		/* Don't actually need the read here.. */
    618 		raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
    619 					 raidPtr->raid_cinfo[row][col].ci_vp,
    620 					 &c_label);
    621 
    622 		raid_init_component_label(raidPtr, &c_label);
    623 
    624 		c_label.row = row;
    625 		c_label.column = col;
    626 
    627 		/* We've just done a rebuild based on all the other
    628 		   disks, so at this point the parity is known to be
    629 		   clean, even if it wasn't before. */
    630 
    631 		/* XXX doesn't hold for RAID 6!!*/
    632 
    633 		raidPtr->parity_good = RF_RAID_CLEAN;
    634 
    635 		raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
    636 					  raidPtr->raid_cinfo[row][col].ci_vp,
    637 					  &c_label);
    638 
    639 	}
    640 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    641 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    642 	wakeup(&raidPtr->waitForReconCond);
    643 	return (rc);
    644 }
    645 
    646 
    647 int
    648 rf_ContinueReconstructFailedDisk(reconDesc)
    649 	RF_RaidReconDesc_t *reconDesc;
    650 {
    651 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
    652 	RF_RowCol_t row = reconDesc->row;
    653 	RF_RowCol_t col = reconDesc->col;
    654 	RF_RowCol_t srow = reconDesc->srow;
    655 	RF_RowCol_t scol = reconDesc->scol;
    656 	RF_ReconMap_t *mapPtr;
    657 
    658 	RF_ReconEvent_t *event;
    659 	struct timeval etime, elpsd;
    660 	unsigned long xor_s, xor_resid_us;
    661 	int     retcode, i, ds;
    662 
    663 	switch (reconDesc->state) {
    664 
    665 
    666 	case 0:
    667 
    668 		raidPtr->accumXorTimeUs = 0;
    669 
    670 		/* create one trace record per physical disk */
    671 		RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    672 
    673 		/* quiesce the array prior to starting recon.  this is needed
    674 		 * to assure no nasty interactions with pending user writes.
    675 		 * We need to do this before we change the disk or row status. */
    676 		reconDesc->state = 1;
    677 
    678 		Dprintf("RECON: begin request suspend\n");
    679 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
    680 		Dprintf("RECON: end request suspend\n");
    681 		rf_StartUserStats(raidPtr);	/* zero out the stats kept on
    682 						 * user accs */
    683 
    684 		/* fall through to state 1 */
    685 
    686 	case 1:
    687 
    688 		RF_LOCK_MUTEX(raidPtr->mutex);
    689 
    690 		/* create the reconstruction control pointer and install it in
    691 		 * the right slot */
    692 		raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
    693 		mapPtr = raidPtr->reconControl[row]->reconMap;
    694 		raidPtr->status[row] = rf_rs_reconstructing;
    695 		raidPtr->Disks[row][col].status = rf_ds_reconstructing;
    696 		raidPtr->Disks[row][col].spareRow = srow;
    697 		raidPtr->Disks[row][col].spareCol = scol;
    698 
    699 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    700 
    701 		RF_GETTIME(raidPtr->reconControl[row]->starttime);
    702 
    703 		/* now start up the actual reconstruction: issue a read for
    704 		 * each surviving disk */
    705 
    706 		reconDesc->numDisksDone = 0;
    707 		for (i = 0; i < raidPtr->numCol; i++) {
    708 			if (i != col) {
    709 				/* find and issue the next I/O on the
    710 				 * indicated disk */
    711 				if (IssueNextReadRequest(raidPtr, row, i)) {
    712 					Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
    713 					reconDesc->numDisksDone++;
    714 				}
    715 			}
    716 		}
    717 
    718 	case 2:
    719 		Dprintf("RECON: resume requests\n");
    720 		rf_ResumeNewRequests(raidPtr);
    721 
    722 
    723 		reconDesc->state = 3;
    724 
    725 	case 3:
    726 
    727 		/* process reconstruction events until all disks report that
    728 		 * they've completed all work */
    729 		mapPtr = raidPtr->reconControl[row]->reconMap;
    730 
    731 
    732 
    733 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
    734 
    735 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
    736 			RF_ASSERT(event);
    737 
    738 			if (ProcessReconEvent(raidPtr, row, event))
    739 				reconDesc->numDisksDone++;
    740 			raidPtr->reconControl[row]->numRUsTotal =
    741 				mapPtr->totalRUs;
    742 			raidPtr->reconControl[row]->numRUsComplete =
    743 				mapPtr->totalRUs -
    744 				rf_UnitsLeftToReconstruct(mapPtr);
    745 
    746 			raidPtr->reconControl[row]->percentComplete =
    747 				(raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
    748 			if (rf_prReconSched) {
    749 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
    750 			}
    751 		}
    752 
    753 
    754 
    755 		reconDesc->state = 4;
    756 
    757 
    758 	case 4:
    759 		mapPtr = raidPtr->reconControl[row]->reconMap;
    760 		if (rf_reconDebug) {
    761 			printf("RECON: all reads completed\n");
    762 		}
    763 		/* at this point all the reads have completed.  We now wait
    764 		 * for any pending writes to complete, and then we're done */
    765 
    766 		while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
    767 
    768 			event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
    769 			RF_ASSERT(event);
    770 
    771 			(void) ProcessReconEvent(raidPtr, row, event);	/* ignore return code */
    772 			raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
    773 			if (rf_prReconSched) {
    774 				rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
    775 			}
    776 		}
    777 		reconDesc->state = 5;
    778 
    779 	case 5:
    780 		/* Success:  mark the dead disk as reconstructed.  We quiesce
    781 		 * the array here to assure no nasty interactions with pending
    782 		 * user accesses when we free up the psstatus structure as
    783 		 * part of FreeReconControl() */
    784 
    785 		reconDesc->state = 6;
    786 
    787 		retcode = rf_SuspendNewRequestsAndWait(raidPtr);
    788 		rf_StopUserStats(raidPtr);
    789 		rf_PrintUserStats(raidPtr);	/* print out the stats on user
    790 						 * accs accumulated during
    791 						 * recon */
    792 
    793 		/* fall through to state 6 */
    794 	case 6:
    795 
    796 
    797 
    798 		RF_LOCK_MUTEX(raidPtr->mutex);
    799 		raidPtr->numFailures--;
    800 		ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
    801 		raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
    802 		raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
    803 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    804 		RF_GETTIME(etime);
    805 		RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
    806 
    807 		/* XXX -- why is state 7 different from state 6 if there is no
    808 		 * return() here? -- XXX Note that I set elpsd above & use it
    809 		 * below, so if you put a return here you'll have to fix this.
    810 		 * (also, FreeReconControl is called below) */
    811 
    812 	case 7:
    813 
    814 		rf_ResumeNewRequests(raidPtr);
    815 
    816 		printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
    817 		       raidPtr->raidid, row, col);
    818 		xor_s = raidPtr->accumXorTimeUs / 1000000;
    819 		xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
    820 		printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
    821 		       raidPtr->raidid,
    822 		       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
    823 		       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
    824 		printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
    825 		       raidPtr->raidid,
    826 		       (int) raidPtr->reconControl[row]->starttime.tv_sec,
    827 		       (int) raidPtr->reconControl[row]->starttime.tv_usec,
    828 		       (int) etime.tv_sec, (int) etime.tv_usec);
    829 
    830 #if RF_RECON_STATS > 0
    831 		printf("raid%d: Total head-sep stall count was %d\n",
    832 		       raidPtr->raidid, (int) reconDesc->hsStallCount);
    833 #endif				/* RF_RECON_STATS > 0 */
    834 		rf_FreeReconControl(raidPtr, row);
    835 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    836 		FreeReconDesc(reconDesc);
    837 
    838 	}
    839 
    840 	SignalReconDone(raidPtr);
    841 	return (0);
    842 }
    843 /*****************************************************************************
    844  * do the right thing upon each reconstruction event.
    845  * returns nonzero if and only if there is nothing left unread on the
    846  * indicated disk
    847  *****************************************************************************/
    848 static int
    849 ProcessReconEvent(raidPtr, frow, event)
    850 	RF_Raid_t *raidPtr;
    851 	RF_RowCol_t frow;
    852 	RF_ReconEvent_t *event;
    853 {
    854 	int     retcode = 0, submitblocked;
    855 	RF_ReconBuffer_t *rbuf;
    856 	RF_SectorCount_t sectorsPerRU;
    857 
    858 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
    859 	switch (event->type) {
    860 
    861 		/* a read I/O has completed */
    862 	case RF_REVENT_READDONE:
    863 		rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
    864 		Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
    865 		    frow, event->col, rbuf->parityStripeID);
    866 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
    867 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
    868 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
    869 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    870 		submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
    871 		Dprintf1("RECON: submitblocked=%d\n", submitblocked);
    872 		if (!submitblocked)
    873 			retcode = IssueNextReadRequest(raidPtr, frow, event->col);
    874 		break;
    875 
    876 		/* a write I/O has completed */
    877 	case RF_REVENT_WRITEDONE:
    878 #if RF_DEBUG_RECON
    879 		if (rf_floatingRbufDebug) {
    880 			rf_CheckFloatingRbufCount(raidPtr, 1);
    881 		}
    882 #endif
    883 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
    884 		rbuf = (RF_ReconBuffer_t *) event->arg;
    885 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    886 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
    887 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
    888 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
    889 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
    890 		rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
    891 
    892 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
    893 			RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
    894 			raidPtr->numFullReconBuffers--;
    895 			rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
    896 			RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
    897 		} else
    898 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
    899 				rf_FreeReconBuffer(rbuf);
    900 			else
    901 				RF_ASSERT(0);
    902 		break;
    903 
    904 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
    905 					 * cleared */
    906 		Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
    907 		submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
    908 		RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
    909 						 * BUFCLEAR event if we
    910 						 * couldn't submit */
    911 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
    912 		break;
    913 
    914 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
    915 					 * blockage has been cleared */
    916 		DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
    917 		retcode = TryToRead(raidPtr, frow, event->col);
    918 		break;
    919 
    920 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
    921 					 * reconstruction blockage has been
    922 					 * cleared */
    923 		Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
    924 		retcode = TryToRead(raidPtr, frow, event->col);
    925 		break;
    926 
    927 		/* a buffer has become ready to write */
    928 	case RF_REVENT_BUFREADY:
    929 		Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
    930 		retcode = IssueNextWriteRequest(raidPtr, frow);
    931 #if RF_DEBUG_RECON
    932 		if (rf_floatingRbufDebug) {
    933 			rf_CheckFloatingRbufCount(raidPtr, 1);
    934 		}
    935 #endif
    936 		break;
    937 
    938 		/* we need to skip the current RU entirely because it got
    939 		 * recon'd while we were waiting for something else to happen */
    940 	case RF_REVENT_SKIP:
    941 		DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
    942 		retcode = IssueNextReadRequest(raidPtr, frow, event->col);
    943 		break;
    944 
    945 		/* a forced-reconstruction read access has completed.  Just
    946 		 * submit the buffer */
    947 	case RF_REVENT_FORCEDREADDONE:
    948 		rbuf = (RF_ReconBuffer_t *) event->arg;
    949 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    950 		DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
    951 		submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
    952 		RF_ASSERT(!submitblocked);
    953 		break;
    954 
    955 	default:
    956 		RF_PANIC();
    957 	}
    958 	rf_FreeReconEventDesc(event);
    959 	return (retcode);
    960 }
    961 /*****************************************************************************
    962  *
    963  * find the next thing that's needed on the indicated disk, and issue
    964  * a read request for it.  We assume that the reconstruction buffer
    965  * associated with this process is free to receive the data.  If
    966  * reconstruction is blocked on the indicated RU, we issue a
    967  * blockage-release request instead of a physical disk read request.
    968  * If the current disk gets too far ahead of the others, we issue a
    969  * head-separation wait request and return.
    970  *
    971  * ctrl->{ru_count, curPSID, diskOffset} and
    972  * rbuf->failedDiskSectorOffset are maintained to point to the unit
    973  * we're currently accessing.  Note that this deviates from the
    974  * standard C idiom of having counters point to the next thing to be
    975  * accessed.  This allows us to easily retry when we're blocked by
    976  * head separation or reconstruction-blockage events.
    977  *
    978  * returns nonzero if and only if there is nothing left unread on the
    979  * indicated disk
    980  *
    981  *****************************************************************************/
    982 static int
    983 IssueNextReadRequest(raidPtr, row, col)
    984 	RF_Raid_t *raidPtr;
    985 	RF_RowCol_t row;
    986 	RF_RowCol_t col;
    987 {
    988 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
    989 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
    990 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
    991 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
    992 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
    993 	int     do_new_check = 0, retcode = 0, status;
    994 
    995 	/* if we are currently the slowest disk, mark that we have to do a new
    996 	 * check */
    997 	if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
    998 		do_new_check = 1;
    999 
   1000 	while (1) {
   1001 
   1002 		ctrl->ru_count++;
   1003 		if (ctrl->ru_count < RUsPerPU) {
   1004 			ctrl->diskOffset += sectorsPerRU;
   1005 			rbuf->failedDiskSectorOffset += sectorsPerRU;
   1006 		} else {
   1007 			ctrl->curPSID++;
   1008 			ctrl->ru_count = 0;
   1009 			/* code left over from when head-sep was based on
   1010 			 * parity stripe id */
   1011 			if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
   1012 				CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
   1013 				return (1);	/* finito! */
   1014 			}
   1015 			/* find the disk offsets of the start of the parity
   1016 			 * stripe on both the current disk and the failed
   1017 			 * disk. skip this entire parity stripe if either disk
   1018 			 * does not appear in the indicated PS */
   1019 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
   1020 			    &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
   1021 			if (status) {
   1022 				ctrl->ru_count = RUsPerPU - 1;
   1023 				continue;
   1024 			}
   1025 		}
   1026 		rbuf->which_ru = ctrl->ru_count;
   1027 
   1028 		/* skip this RU if it's already been reconstructed */
   1029 		if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
   1030 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
   1031 			continue;
   1032 		}
   1033 		break;
   1034 	}
   1035 	ctrl->headSepCounter++;
   1036 	if (do_new_check)
   1037 		CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter);	/* update min if needed */
   1038 
   1039 
   1040 	/* at this point, we have definitely decided what to do, and we have
   1041 	 * only to see if we can actually do it now */
   1042 	rbuf->parityStripeID = ctrl->curPSID;
   1043 	rbuf->which_ru = ctrl->ru_count;
   1044 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
   1045 	    sizeof(raidPtr->recon_tracerecs[col]));
   1046 	raidPtr->recon_tracerecs[col].reconacc = 1;
   1047 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1048 	retcode = TryToRead(raidPtr, row, col);
   1049 	return (retcode);
   1050 }
   1051 
   1052 /*
   1053  * tries to issue the next read on the indicated disk.  We may be
   1054  * blocked by (a) the heads being too far apart, or (b) recon on the
   1055  * indicated RU being blocked due to a write by a user thread.  In
   1056  * this case, we issue a head-sep or blockage wait request, which will
   1057  * cause this same routine to be invoked again later when the blockage
   1058  * has cleared.
   1059  */
   1060 
   1061 static int
   1062 TryToRead(raidPtr, row, col)
   1063 	RF_Raid_t *raidPtr;
   1064 	RF_RowCol_t row;
   1065 	RF_RowCol_t col;
   1066 {
   1067 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
   1068 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
   1069 	RF_StripeNum_t psid = ctrl->curPSID;
   1070 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
   1071 	RF_DiskQueueData_t *req;
   1072 	int     status, created = 0;
   1073 	RF_ReconParityStripeStatus_t *pssPtr;
   1074 
   1075 	/* if the current disk is too far ahead of the others, issue a
   1076 	 * head-separation wait and return */
   1077 	if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
   1078 		return (0);
   1079 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
   1080 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
   1081 
   1082 	/* if recon is blocked on the indicated parity stripe, issue a
   1083 	 * block-wait request and return. this also must mark the indicated RU
   1084 	 * in the stripe as under reconstruction if not blocked. */
   1085 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
   1086 	if (status == RF_PSS_RECON_BLOCKED) {
   1087 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
   1088 		goto out;
   1089 	} else
   1090 		if (status == RF_PSS_FORCED_ON_WRITE) {
   1091 			rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
   1092 			goto out;
   1093 		}
   1094 	/* make one last check to be sure that the indicated RU didn't get
   1095 	 * reconstructed while we were waiting for something else to happen.
   1096 	 * This is unfortunate in that it causes us to make this check twice
   1097 	 * in the normal case.  Might want to make some attempt to re-work
   1098 	 * this so that we only do this check if we've definitely blocked on
   1099 	 * one of the above checks.  When this condition is detected, we may
   1100 	 * have just created a bogus status entry, which we need to delete. */
   1101 	if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
   1102 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
   1103 		if (created)
   1104 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
   1105 		rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
   1106 		goto out;
   1107 	}
   1108 	/* found something to read.  issue the I/O */
   1109 	Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
   1110 	    psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
   1111 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
   1112 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
   1113 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
   1114 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
   1115 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1116 
   1117 	/* should be ok to use a NULL proc pointer here, all the bufs we use
   1118 	 * should be in kernel space */
   1119 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
   1120 	    ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
   1121 
   1122 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
   1123 
   1124 	ctrl->rbuf->arg = (void *) req;
   1125 	rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
   1126 	pssPtr->issued[col] = 1;
   1127 
   1128 out:
   1129 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1130 	return (0);
   1131 }
   1132 
   1133 
   1134 /*
   1135  * given a parity stripe ID, we want to find out whether both the
   1136  * current disk and the failed disk exist in that parity stripe.  If
   1137  * not, we want to skip this whole PS.  If so, we want to find the
   1138  * disk offset of the start of the PS on both the current disk and the
   1139  * failed disk.
   1140  *
   1141  * this works by getting a list of disks comprising the indicated
   1142  * parity stripe, and searching the list for the current and failed
   1143  * disks.  Once we've decided they both exist in the parity stripe, we
   1144  * need to decide whether each is data or parity, so that we'll know
   1145  * which mapping function to call to get the corresponding disk
   1146  * offsets.
   1147  *
   1148  * this is kind of unpleasant, but doing it this way allows the
   1149  * reconstruction code to use parity stripe IDs rather than physical
   1150  * disks address to march through the failed disk, which greatly
   1151  * simplifies a lot of code, as well as eliminating the need for a
   1152  * reverse-mapping function.  I also think it will execute faster,
   1153  * since the calls to the mapping module are kept to a minimum.
   1154  *
   1155  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
   1156  * THE STRIPE IN THE CORRECT ORDER */
   1157 
   1158 
   1159 static int
   1160 ComputePSDiskOffsets(
   1161     RF_Raid_t * raidPtr,	/* raid descriptor */
   1162     RF_StripeNum_t psid,	/* parity stripe identifier */
   1163     RF_RowCol_t row,		/* row and column of disk to find the offsets
   1164 				 * for */
   1165     RF_RowCol_t col,
   1166     RF_SectorNum_t * outDiskOffset,
   1167     RF_SectorNum_t * outFailedDiskSectorOffset,
   1168     RF_RowCol_t * spRow,	/* OUT: row,col of spare unit for failed unit */
   1169     RF_RowCol_t * spCol,
   1170     RF_SectorNum_t * spOffset)
   1171 {				/* OUT: offset into disk containing spare unit */
   1172 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1173 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
   1174 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
   1175 	RF_RowCol_t *diskids;
   1176 	u_int   i, j, k, i_offset, j_offset;
   1177 	RF_RowCol_t prow, pcol;
   1178 	int     testcol, testrow;
   1179 	RF_RowCol_t stripe;
   1180 	RF_SectorNum_t poffset;
   1181 	char    i_is_parity = 0, j_is_parity = 0;
   1182 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
   1183 
   1184 	/* get a listing of the disks comprising that stripe */
   1185 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
   1186 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
   1187 	RF_ASSERT(diskids);
   1188 
   1189 	/* reject this entire parity stripe if it does not contain the
   1190 	 * indicated disk or it does not contain the failed disk */
   1191 	if (row != stripe)
   1192 		goto skipit;
   1193 	for (i = 0; i < stripeWidth; i++) {
   1194 		if (col == diskids[i])
   1195 			break;
   1196 	}
   1197 	if (i == stripeWidth)
   1198 		goto skipit;
   1199 	for (j = 0; j < stripeWidth; j++) {
   1200 		if (fcol == diskids[j])
   1201 			break;
   1202 	}
   1203 	if (j == stripeWidth) {
   1204 		goto skipit;
   1205 	}
   1206 	/* find out which disk the parity is on */
   1207 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
   1208 
   1209 	/* find out if either the current RU or the failed RU is parity */
   1210 	/* also, if the parity occurs in this stripe prior to the data and/or
   1211 	 * failed col, we need to decrement i and/or j */
   1212 	for (k = 0; k < stripeWidth; k++)
   1213 		if (diskids[k] == pcol)
   1214 			break;
   1215 	RF_ASSERT(k < stripeWidth);
   1216 	i_offset = i;
   1217 	j_offset = j;
   1218 	if (k < i)
   1219 		i_offset--;
   1220 	else
   1221 		if (k == i) {
   1222 			i_is_parity = 1;
   1223 			i_offset = 0;
   1224 		}		/* set offsets to zero to disable multiply
   1225 				 * below */
   1226 	if (k < j)
   1227 		j_offset--;
   1228 	else
   1229 		if (k == j) {
   1230 			j_is_parity = 1;
   1231 			j_offset = 0;
   1232 		}
   1233 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
   1234 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
   1235 	 * tells us how far into the stripe the [current,failed] disk is. */
   1236 
   1237 	/* call the mapping routine to get the offset into the current disk,
   1238 	 * repeat for failed disk. */
   1239 	if (i_is_parity)
   1240 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
   1241 	else
   1242 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
   1243 
   1244 	RF_ASSERT(row == testrow && col == testcol);
   1245 
   1246 	if (j_is_parity)
   1247 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1248 	else
   1249 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1250 	RF_ASSERT(row == testrow && fcol == testcol);
   1251 
   1252 	/* now locate the spare unit for the failed unit */
   1253 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
   1254 		if (j_is_parity)
   1255 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
   1256 		else
   1257 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
   1258 	} else {
   1259 		*spRow = raidPtr->reconControl[row]->spareRow;
   1260 		*spCol = raidPtr->reconControl[row]->spareCol;
   1261 		*spOffset = *outFailedDiskSectorOffset;
   1262 	}
   1263 
   1264 	return (0);
   1265 
   1266 skipit:
   1267 	Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
   1268 	    psid, row, col);
   1269 	return (1);
   1270 }
   1271 /* this is called when a buffer has become ready to write to the replacement disk */
   1272 static int
   1273 IssueNextWriteRequest(raidPtr, row)
   1274 	RF_Raid_t *raidPtr;
   1275 	RF_RowCol_t row;
   1276 {
   1277 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1278 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1279 	RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
   1280 	RF_ReconBuffer_t *rbuf;
   1281 	RF_DiskQueueData_t *req;
   1282 
   1283 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
   1284 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
   1285 				 * have gotten the event that sent us here */
   1286 	RF_ASSERT(rbuf->pssPtr);
   1287 
   1288 	rbuf->pssPtr->writeRbuf = rbuf;
   1289 	rbuf->pssPtr = NULL;
   1290 
   1291 	Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
   1292 	    rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
   1293 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
   1294 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
   1295 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
   1296 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
   1297 
   1298 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
   1299 	 * kernel space */
   1300 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
   1301 	    sectorsPerRU, rbuf->buffer,
   1302 	    rbuf->parityStripeID, rbuf->which_ru,
   1303 	    ReconWriteDoneProc, (void *) rbuf, NULL,
   1304 	    &raidPtr->recon_tracerecs[fcol],
   1305 	    (void *) raidPtr, 0, NULL);
   1306 
   1307 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
   1308 
   1309 	rbuf->arg = (void *) req;
   1310 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
   1311 
   1312 	return (0);
   1313 }
   1314 
   1315 /*
   1316  * this gets called upon the completion of a reconstruction read
   1317  * operation the arg is a pointer to the per-disk reconstruction
   1318  * control structure for the process that just finished a read.
   1319  *
   1320  * called at interrupt context in the kernel, so don't do anything
   1321  * illegal here.
   1322  */
   1323 static int
   1324 ReconReadDoneProc(arg, status)
   1325 	void   *arg;
   1326 	int     status;
   1327 {
   1328 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
   1329 	RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
   1330 
   1331 	if (status) {
   1332 		/*
   1333 	         * XXX
   1334 	         */
   1335 		printf("Recon read failed!\n");
   1336 		RF_PANIC();
   1337 	}
   1338 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1339 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1340 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
   1341 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1342 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1343 
   1344 	rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
   1345 	return (0);
   1346 }
   1347 /* this gets called upon the completion of a reconstruction write operation.
   1348  * the arg is a pointer to the rbuf that was just written
   1349  *
   1350  * called at interrupt context in the kernel, so don't do anything illegal here.
   1351  */
   1352 static int
   1353 ReconWriteDoneProc(arg, status)
   1354 	void   *arg;
   1355 	int     status;
   1356 {
   1357 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
   1358 
   1359 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
   1360 	if (status) {
   1361 		printf("Recon write failed!\n");	/* fprintf(stderr,"Recon
   1362 							 * write failed!\n"); */
   1363 		RF_PANIC();
   1364 	}
   1365 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
   1366 	return (0);
   1367 }
   1368 
   1369 
   1370 /*
   1371  * computes a new minimum head sep, and wakes up anyone who needs to
   1372  * be woken as a result
   1373  */
   1374 static void
   1375 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
   1376 	RF_Raid_t *raidPtr;
   1377 	RF_RowCol_t row;
   1378 	RF_HeadSepLimit_t hsCtr;
   1379 {
   1380 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
   1381 	RF_HeadSepLimit_t new_min;
   1382 	RF_RowCol_t i;
   1383 	RF_CallbackDesc_t *p;
   1384 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
   1385 								 * of a minimum */
   1386 
   1387 
   1388 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1389 
   1390 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
   1391 	for (i = 0; i < raidPtr->numCol; i++)
   1392 		if (i != reconCtrlPtr->fcol) {
   1393 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
   1394 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
   1395 		}
   1396 	/* set the new minimum and wake up anyone who can now run again */
   1397 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
   1398 		reconCtrlPtr->minHeadSepCounter = new_min;
   1399 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
   1400 		while (reconCtrlPtr->headSepCBList) {
   1401 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
   1402 				break;
   1403 			p = reconCtrlPtr->headSepCBList;
   1404 			reconCtrlPtr->headSepCBList = p->next;
   1405 			p->next = NULL;
   1406 			rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1407 			rf_FreeCallbackDesc(p);
   1408 		}
   1409 
   1410 	}
   1411 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1412 }
   1413 
   1414 /*
   1415  * checks to see that the maximum head separation will not be violated
   1416  * if we initiate a reconstruction I/O on the indicated disk.
   1417  * Limiting the maximum head separation between two disks eliminates
   1418  * the nasty buffer-stall conditions that occur when one disk races
   1419  * ahead of the others and consumes all of the floating recon buffers.
   1420  * This code is complex and unpleasant but it's necessary to avoid
   1421  * some very nasty, albeit fairly rare, reconstruction behavior.
   1422  *
   1423  * returns non-zero if and only if we have to stop working on the
   1424  * indicated disk due to a head-separation delay.
   1425  */
   1426 static int
   1427 CheckHeadSeparation(
   1428     RF_Raid_t * raidPtr,
   1429     RF_PerDiskReconCtrl_t * ctrl,
   1430     RF_RowCol_t row,
   1431     RF_RowCol_t col,
   1432     RF_HeadSepLimit_t hsCtr,
   1433     RF_ReconUnitNum_t which_ru)
   1434 {
   1435 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
   1436 	RF_CallbackDesc_t *cb, *p, *pt;
   1437 	int     retval = 0;
   1438 
   1439 	/* if we're too far ahead of the slowest disk, stop working on this
   1440 	 * disk until the slower ones catch up.  We do this by scheduling a
   1441 	 * wakeup callback for the time when the slowest disk has caught up.
   1442 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
   1443 	 * must have fallen to at most 80% of the max allowable head
   1444 	 * separation before we'll wake up.
   1445 	 *
   1446 	 */
   1447 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1448 	if ((raidPtr->headSepLimit >= 0) &&
   1449 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
   1450 		Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
   1451 			 raidPtr->raidid, row, col, ctrl->headSepCounter,
   1452 			 reconCtrlPtr->minHeadSepCounter,
   1453 			 raidPtr->headSepLimit);
   1454 		cb = rf_AllocCallbackDesc();
   1455 		/* the minHeadSepCounter value we have to get to before we'll
   1456 		 * wake up.  build in 20% hysteresis. */
   1457 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
   1458 		cb->row = row;
   1459 		cb->col = col;
   1460 		cb->next = NULL;
   1461 
   1462 		/* insert this callback descriptor into the sorted list of
   1463 		 * pending head-sep callbacks */
   1464 		p = reconCtrlPtr->headSepCBList;
   1465 		if (!p)
   1466 			reconCtrlPtr->headSepCBList = cb;
   1467 		else
   1468 			if (cb->callbackArg.v < p->callbackArg.v) {
   1469 				cb->next = reconCtrlPtr->headSepCBList;
   1470 				reconCtrlPtr->headSepCBList = cb;
   1471 			} else {
   1472 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
   1473 				cb->next = p;
   1474 				pt->next = cb;
   1475 			}
   1476 		retval = 1;
   1477 #if RF_RECON_STATS > 0
   1478 		ctrl->reconCtrl->reconDesc->hsStallCount++;
   1479 #endif				/* RF_RECON_STATS > 0 */
   1480 	}
   1481 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1482 
   1483 	return (retval);
   1484 }
   1485 /*
   1486  * checks to see if reconstruction has been either forced or blocked
   1487  * by a user operation.  if forced, we skip this RU entirely.  else if
   1488  * blocked, put ourselves on the wait list.  else return 0.
   1489  *
   1490  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
   1491  */
   1492 static int
   1493 CheckForcedOrBlockedReconstruction(
   1494     RF_Raid_t * raidPtr,
   1495     RF_ReconParityStripeStatus_t * pssPtr,
   1496     RF_PerDiskReconCtrl_t * ctrl,
   1497     RF_RowCol_t row,
   1498     RF_RowCol_t col,
   1499     RF_StripeNum_t psid,
   1500     RF_ReconUnitNum_t which_ru)
   1501 {
   1502 	RF_CallbackDesc_t *cb;
   1503 	int     retcode = 0;
   1504 
   1505 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
   1506 		retcode = RF_PSS_FORCED_ON_WRITE;
   1507 	else
   1508 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
   1509 			Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
   1510 			cb = rf_AllocCallbackDesc();	/* append ourselves to
   1511 							 * the blockage-wait
   1512 							 * list */
   1513 			cb->row = row;
   1514 			cb->col = col;
   1515 			cb->next = pssPtr->blockWaitList;
   1516 			pssPtr->blockWaitList = cb;
   1517 			retcode = RF_PSS_RECON_BLOCKED;
   1518 		}
   1519 	if (!retcode)
   1520 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
   1521 							 * reconstruction */
   1522 
   1523 	return (retcode);
   1524 }
   1525 /*
   1526  * if reconstruction is currently ongoing for the indicated stripeID,
   1527  * reconstruction is forced to completion and we return non-zero to
   1528  * indicate that the caller must wait.  If not, then reconstruction is
   1529  * blocked on the indicated stripe and the routine returns zero.  If
   1530  * and only if we return non-zero, we'll cause the cbFunc to get
   1531  * invoked with the cbArg when the reconstruction has completed.
   1532  */
   1533 int
   1534 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
   1535 	RF_Raid_t *raidPtr;
   1536 	RF_AccessStripeMap_t *asmap;
   1537 	void    (*cbFunc) (RF_Raid_t *, void *);
   1538 	void   *cbArg;
   1539 {
   1540 	RF_RowCol_t row = asmap->physInfo->row;	/* which row of the array
   1541 						 * we're working on */
   1542 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
   1543 							 * forcing recon on */
   1544 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
   1545 	RF_ReconParityStripeStatus_t *pssPtr;	/* a pointer to the parity
   1546 						 * stripe status structure */
   1547 	RF_StripeNum_t psid;	/* parity stripe id */
   1548 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
   1549 						 * offset */
   1550 	RF_RowCol_t *diskids;
   1551 	RF_RowCol_t stripe;
   1552 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
   1553 	RF_RowCol_t fcol, diskno, i;
   1554 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
   1555 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
   1556 	RF_CallbackDesc_t *cb;
   1557 	int     created = 0, nPromoted;
   1558 
   1559 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1560 
   1561 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
   1562 
   1563 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
   1564 
   1565 	/* if recon is not ongoing on this PS, just return */
   1566 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1567 		RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1568 		return (0);
   1569 	}
   1570 	/* otherwise, we have to wait for reconstruction to complete on this
   1571 	 * RU. */
   1572 	/* In order to avoid waiting for a potentially large number of
   1573 	 * low-priority accesses to complete, we force a normal-priority (i.e.
   1574 	 * not low-priority) reconstruction on this RU. */
   1575 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
   1576 		DDprintf1("Forcing recon on psid %ld\n", psid);
   1577 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
   1578 								 * forced recon */
   1579 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
   1580 							 * that we just set */
   1581 		fcol = raidPtr->reconControl[row]->fcol;
   1582 
   1583 		/* get a listing of the disks comprising the indicated stripe */
   1584 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
   1585 		RF_ASSERT(row == stripe);
   1586 
   1587 		/* For previously issued reads, elevate them to normal
   1588 		 * priority.  If the I/O has already completed, it won't be
   1589 		 * found in the queue, and hence this will be a no-op. For
   1590 		 * unissued reads, allocate buffers and issue new reads.  The
   1591 		 * fact that we've set the FORCED bit means that the regular
   1592 		 * recon procs will not re-issue these reqs */
   1593 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
   1594 			if ((diskno = diskids[i]) != fcol) {
   1595 				if (pssPtr->issued[diskno]) {
   1596 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
   1597 					if (rf_reconDebug && nPromoted)
   1598 						printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
   1599 				} else {
   1600 					new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
   1601 					ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
   1602 					    &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
   1603 													 * location */
   1604 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
   1605 					new_rbuf->which_ru = which_ru;
   1606 					new_rbuf->failedDiskSectorOffset = fd_offset;
   1607 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
   1608 
   1609 					/* use NULL b_proc b/c all addrs
   1610 					 * should be in kernel space */
   1611 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
   1612 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
   1613 					    NULL, (void *) raidPtr, 0, NULL);
   1614 
   1615 					RF_ASSERT(req);	/* XXX -- fix this --
   1616 							 * XXX */
   1617 
   1618 					new_rbuf->arg = req;
   1619 					rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
   1620 					Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
   1621 				}
   1622 			}
   1623 		/* if the write is sitting in the disk queue, elevate its
   1624 		 * priority */
   1625 		if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
   1626 			printf("raid%d: promoted write to row %d col %d\n",
   1627 			       raidPtr->raidid, row, fcol);
   1628 	}
   1629 	/* install a callback descriptor to be invoked when recon completes on
   1630 	 * this parity stripe. */
   1631 	cb = rf_AllocCallbackDesc();
   1632 	/* XXX the following is bogus.. These functions don't really match!!
   1633 	 * GO */
   1634 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
   1635 	cb->callbackArg.p = (void *) cbArg;
   1636 	cb->next = pssPtr->procWaitList;
   1637 	pssPtr->procWaitList = cb;
   1638 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
   1639 		  raidPtr->raidid, psid);
   1640 
   1641 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1642 	return (1);
   1643 }
   1644 /* called upon the completion of a forced reconstruction read.
   1645  * all we do is schedule the FORCEDREADONE event.
   1646  * called at interrupt context in the kernel, so don't do anything illegal here.
   1647  */
   1648 static void
   1649 ForceReconReadDoneProc(arg, status)
   1650 	void   *arg;
   1651 	int     status;
   1652 {
   1653 	RF_ReconBuffer_t *rbuf = arg;
   1654 
   1655 	if (status) {
   1656 		printf("Forced recon read failed!\n");	/* fprintf(stderr,"Forced
   1657 							 *  recon read
   1658 							 * failed!\n"); */
   1659 		RF_PANIC();
   1660 	}
   1661 	rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
   1662 }
   1663 /* releases a block on the reconstruction of the indicated stripe */
   1664 int
   1665 rf_UnblockRecon(raidPtr, asmap)
   1666 	RF_Raid_t *raidPtr;
   1667 	RF_AccessStripeMap_t *asmap;
   1668 {
   1669 	RF_RowCol_t row = asmap->origRow;
   1670 	RF_StripeNum_t stripeID = asmap->stripeID;
   1671 	RF_ReconParityStripeStatus_t *pssPtr;
   1672 	RF_ReconUnitNum_t which_ru;
   1673 	RF_StripeNum_t psid;
   1674 	int     created = 0;
   1675 	RF_CallbackDesc_t *cb;
   1676 
   1677 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1678 	RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
   1679 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
   1680 
   1681 	/* When recon is forced, the pss desc can get deleted before we get
   1682 	 * back to unblock recon. But, this can _only_ happen when recon is
   1683 	 * forced. It would be good to put some kind of sanity check here, but
   1684 	 * how to decide if recon was just forced or not? */
   1685 	if (!pssPtr) {
   1686 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
   1687 		 * RU %d\n",psid,which_ru); */
   1688 		if (rf_reconDebug || rf_pssDebug)
   1689 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
   1690 		goto out;
   1691 	}
   1692 	pssPtr->blockCount--;
   1693 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
   1694 		 raidPtr->raidid, psid, pssPtr->blockCount);
   1695 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
   1696 
   1697 		/* unblock recon before calling CauseReconEvent in case
   1698 		 * CauseReconEvent causes us to try to issue a new read before
   1699 		 * returning here. */
   1700 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
   1701 
   1702 
   1703 		while (pssPtr->blockWaitList) {
   1704 			/* spin through the block-wait list and
   1705 			   release all the waiters */
   1706 			cb = pssPtr->blockWaitList;
   1707 			pssPtr->blockWaitList = cb->next;
   1708 			cb->next = NULL;
   1709 			rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
   1710 			rf_FreeCallbackDesc(cb);
   1711 		}
   1712 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1713 			/* if no recon was requested while recon was blocked */
   1714 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
   1715 		}
   1716 	}
   1717 out:
   1718 	RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
   1719 	return (0);
   1720 }
   1721