rf_reconstruct.c revision 1.40 1 /* $NetBSD: rf_reconstruct.c,v 1.40 2002/09/17 03:21:41 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.40 2002/09/17 03:21:41 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #ifdef DEBUG
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* DEBUG */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* DEBUG */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 int
162 rf_RegisterReconDoneProc(
163 RF_Raid_t * raidPtr,
164 void (*proc) (RF_Raid_t *, void *),
165 void *arg,
166 RF_ReconDoneProc_t ** handlep)
167 {
168 RF_ReconDoneProc_t *p;
169
170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 if (p == NULL)
172 return (ENOMEM);
173 p->proc = proc;
174 p->arg = arg;
175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 p->next = raidPtr->recon_done_procs;
177 raidPtr->recon_done_procs = p;
178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 if (handlep)
180 *handlep = p;
181 return (0);
182 }
183 /**************************************************************************
184 *
185 * sets up the parameters that will be used by the reconstruction process
186 * currently there are none, except for those that the layout-specific
187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188 *
189 * in the kernel, we fire off the recon thread.
190 *
191 **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 void *ignored;
195 {
196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199
200 int
201 rf_ConfigureReconstruction(listp)
202 RF_ShutdownList_t **listp;
203 {
204 int rc;
205
206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 if (rf_recond_freelist == NULL)
209 return (ENOMEM);
210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 if (rf_rdp_freelist == NULL) {
213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 return (ENOMEM);
215 }
216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 if (rc) {
218 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
219 rf_ShutdownReconstruction(NULL);
220 return (rc);
221 }
222 return (0);
223 }
224
225 static RF_RaidReconDesc_t *
226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
227 RF_Raid_t *raidPtr;
228 RF_RowCol_t row;
229 RF_RowCol_t col;
230 RF_RaidDisk_t *spareDiskPtr;
231 int numDisksDone;
232 RF_RowCol_t srow;
233 RF_RowCol_t scol;
234 {
235
236 RF_RaidReconDesc_t *reconDesc;
237
238 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
239
240 reconDesc->raidPtr = raidPtr;
241 reconDesc->row = row;
242 reconDesc->col = col;
243 reconDesc->spareDiskPtr = spareDiskPtr;
244 reconDesc->numDisksDone = numDisksDone;
245 reconDesc->srow = srow;
246 reconDesc->scol = scol;
247 reconDesc->state = 0;
248 reconDesc->next = NULL;
249
250 return (reconDesc);
251 }
252
253 static void
254 FreeReconDesc(reconDesc)
255 RF_RaidReconDesc_t *reconDesc;
256 {
257 #if RF_RECON_STATS > 0
258 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
259 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
260 #endif /* RF_RECON_STATS > 0 */
261 printf("RAIDframe: %lu max exec ticks\n",
262 (long) reconDesc->maxReconExecTicks);
263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
264 printf("\n");
265 #endif /* (RF_RECON_STATS > 0) || KERNEL */
266 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
267 }
268
269
270 /*****************************************************************************
271 *
272 * primary routine to reconstruct a failed disk. This should be called from
273 * within its own thread. It won't return until reconstruction completes,
274 * fails, or is aborted.
275 *****************************************************************************/
276 int
277 rf_ReconstructFailedDisk(raidPtr, row, col)
278 RF_Raid_t *raidPtr;
279 RF_RowCol_t row;
280 RF_RowCol_t col;
281 {
282 RF_LayoutSW_t *lp;
283 int rc;
284
285 lp = raidPtr->Layout.map;
286 if (lp->SubmitReconBuffer) {
287 /*
288 * The current infrastructure only supports reconstructing one
289 * disk at a time for each array.
290 */
291 RF_LOCK_MUTEX(raidPtr->mutex);
292 while (raidPtr->reconInProgress) {
293 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
294 }
295 raidPtr->reconInProgress++;
296 RF_UNLOCK_MUTEX(raidPtr->mutex);
297 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
298 RF_LOCK_MUTEX(raidPtr->mutex);
299 raidPtr->reconInProgress--;
300 RF_UNLOCK_MUTEX(raidPtr->mutex);
301 } else {
302 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
303 lp->parityConfig);
304 rc = EIO;
305 }
306 RF_SIGNAL_COND(raidPtr->waitForReconCond);
307 return (rc);
308 }
309
310 int
311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
312 RF_Raid_t *raidPtr;
313 RF_RowCol_t row;
314 RF_RowCol_t col;
315 {
316 RF_ComponentLabel_t c_label;
317 RF_RaidDisk_t *spareDiskPtr = NULL;
318 RF_RaidReconDesc_t *reconDesc;
319 RF_RowCol_t srow, scol;
320 int numDisksDone = 0, rc;
321
322 /* first look for a spare drive onto which to reconstruct the data */
323 /* spare disk descriptors are stored in row 0. This may have to
324 * change eventually */
325
326 RF_LOCK_MUTEX(raidPtr->mutex);
327 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
328
329 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 if (raidPtr->status[row] != rf_rs_degraded) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (EINVAL);
334 }
335 srow = row;
336 scol = (-1);
337 } else {
338 srow = 0;
339 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
340 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
341 spareDiskPtr = &raidPtr->Disks[srow][scol];
342 spareDiskPtr->status = rf_ds_used_spare;
343 break;
344 }
345 }
346 if (!spareDiskPtr) {
347 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
348 RF_UNLOCK_MUTEX(raidPtr->mutex);
349 return (ENOSPC);
350 }
351 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
352 }
353 RF_UNLOCK_MUTEX(raidPtr->mutex);
354
355 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
356 raidPtr->reconDesc = (void *) reconDesc;
357 #if RF_RECON_STATS > 0
358 reconDesc->hsStallCount = 0;
359 reconDesc->numReconExecDelays = 0;
360 reconDesc->numReconEventWaits = 0;
361 #endif /* RF_RECON_STATS > 0 */
362 reconDesc->reconExecTimerRunning = 0;
363 reconDesc->reconExecTicks = 0;
364 reconDesc->maxReconExecTicks = 0;
365 rc = rf_ContinueReconstructFailedDisk(reconDesc);
366
367 if (!rc) {
368 /* fix up the component label */
369 /* Don't actually need the read here.. */
370 raidread_component_label(
371 raidPtr->raid_cinfo[srow][scol].ci_dev,
372 raidPtr->raid_cinfo[srow][scol].ci_vp,
373 &c_label);
374
375 raid_init_component_label( raidPtr, &c_label);
376 c_label.row = row;
377 c_label.column = col;
378 c_label.clean = RF_RAID_DIRTY;
379 c_label.status = rf_ds_optimal;
380 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
381
382 /* We've just done a rebuild based on all the other
383 disks, so at this point the parity is known to be
384 clean, even if it wasn't before. */
385
386 /* XXX doesn't hold for RAID 6!!*/
387
388 raidPtr->parity_good = RF_RAID_CLEAN;
389
390 /* XXXX MORE NEEDED HERE */
391
392 raidwrite_component_label(
393 raidPtr->raid_cinfo[srow][scol].ci_dev,
394 raidPtr->raid_cinfo[srow][scol].ci_vp,
395 &c_label);
396
397 }
398 return (rc);
399 }
400
401 /*
402
403 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
404 and you don't get a spare until the next Monday. With this function
405 (and hot-swappable drives) you can now put your new disk containing
406 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
407 rebuild the data "on the spot".
408
409 */
410
411 int
412 rf_ReconstructInPlace(raidPtr, row, col)
413 RF_Raid_t *raidPtr;
414 RF_RowCol_t row;
415 RF_RowCol_t col;
416 {
417 RF_RaidDisk_t *spareDiskPtr = NULL;
418 RF_RaidReconDesc_t *reconDesc;
419 RF_LayoutSW_t *lp;
420 RF_RaidDisk_t *badDisk;
421 RF_ComponentLabel_t c_label;
422 int numDisksDone = 0, rc;
423 struct partinfo dpart;
424 struct vnode *vp;
425 struct vattr va;
426 struct proc *proc;
427 int retcode;
428 int ac;
429
430 lp = raidPtr->Layout.map;
431 if (lp->SubmitReconBuffer) {
432 /*
433 * The current infrastructure only supports reconstructing one
434 * disk at a time for each array.
435 */
436 RF_LOCK_MUTEX(raidPtr->mutex);
437 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 (raidPtr->numFailures > 0)) {
439 /* XXX 0 above shouldn't be constant!!! */
440 /* some component other than this has failed.
441 Let's not make things worse than they already
442 are... */
443 printf("raid%d: Unable to reconstruct to disk at:\n",
444 raidPtr->raidid);
445 printf("raid%d: Row: %d Col: %d Too many failures.\n",
446 raidPtr->raidid, row, col);
447 RF_UNLOCK_MUTEX(raidPtr->mutex);
448 return (EINVAL);
449 }
450 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
451 printf("raid%d: Unable to reconstruct to disk at:\n",
452 raidPtr->raidid);
453 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col);
454
455 RF_UNLOCK_MUTEX(raidPtr->mutex);
456 return (EINVAL);
457 }
458 if (raidPtr->Disks[row][col].status == rf_ds_spared) {
459 return (EINVAL);
460 }
461
462 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
463 /* "It's gone..." */
464 raidPtr->numFailures++;
465 raidPtr->Disks[row][col].status = rf_ds_failed;
466 raidPtr->status[row] = rf_rs_degraded;
467 rf_update_component_labels(raidPtr,
468 RF_NORMAL_COMPONENT_UPDATE);
469 }
470
471 while (raidPtr->reconInProgress) {
472 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
473 }
474
475 raidPtr->reconInProgress++;
476
477
478 /* first look for a spare drive onto which to reconstruct
479 the data. spare disk descriptors are stored in row 0.
480 This may have to change eventually */
481
482 /* Actually, we don't care if it's failed or not...
483 On a RAID set with correct parity, this function
484 should be callable on any component without ill affects. */
485 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
486 */
487
488 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
489 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
490
491 raidPtr->reconInProgress--;
492 RF_UNLOCK_MUTEX(raidPtr->mutex);
493 return (EINVAL);
494 }
495
496 badDisk = &raidPtr->Disks[row][col];
497
498 proc = raidPtr->engine_thread;
499
500 /* This device may have been opened successfully the
501 first time. Close it before trying to open it again.. */
502
503 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
504 #if 0
505 printf("Closed the open device: %s\n",
506 raidPtr->Disks[row][col].devname);
507 #endif
508 vp = raidPtr->raid_cinfo[row][col].ci_vp;
509 ac = raidPtr->Disks[row][col].auto_configured;
510 rf_close_component(raidPtr, vp, ac);
511 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
512 }
513 /* note that this disk was *not* auto_configured (any longer)*/
514 raidPtr->Disks[row][col].auto_configured = 0;
515
516 #if 0
517 printf("About to (re-)open the device for rebuilding: %s\n",
518 raidPtr->Disks[row][col].devname);
519 #endif
520
521 retcode = raidlookup(raidPtr->Disks[row][col].devname,
522 proc, &vp);
523
524 if (retcode) {
525 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
526 raidPtr->Disks[row][col].devname, retcode);
527
528 /* the component isn't responding properly...
529 must be still dead :-( */
530 raidPtr->reconInProgress--;
531 RF_UNLOCK_MUTEX(raidPtr->mutex);
532 return(retcode);
533
534 } else {
535
536 /* Ok, so we can at least do a lookup...
537 How about actually getting a vp for it? */
538
539 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
540 proc)) != 0) {
541 raidPtr->reconInProgress--;
542 RF_UNLOCK_MUTEX(raidPtr->mutex);
543 return(retcode);
544 }
545 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
546 FREAD, proc->p_ucred, proc);
547 if (retcode) {
548 raidPtr->reconInProgress--;
549 RF_UNLOCK_MUTEX(raidPtr->mutex);
550 return(retcode);
551 }
552 raidPtr->Disks[row][col].blockSize =
553 dpart.disklab->d_secsize;
554
555 raidPtr->Disks[row][col].numBlocks =
556 dpart.part->p_size - rf_protectedSectors;
557
558 raidPtr->raid_cinfo[row][col].ci_vp = vp;
559 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
560
561 raidPtr->Disks[row][col].dev = va.va_rdev;
562
563 /* we allow the user to specify that only a
564 fraction of the disks should be used this is
565 just for debug: it speeds up
566 * the parity scan */
567 raidPtr->Disks[row][col].numBlocks =
568 raidPtr->Disks[row][col].numBlocks *
569 rf_sizePercentage / 100;
570 }
571
572
573
574 spareDiskPtr = &raidPtr->Disks[row][col];
575 spareDiskPtr->status = rf_ds_used_spare;
576
577 printf("raid%d: initiating in-place reconstruction on\n",
578 raidPtr->raidid);
579 printf("raid%d: row %d col %d -> spare at row %d col %d\n",
580 raidPtr->raidid, row, col, row, col);
581
582 RF_UNLOCK_MUTEX(raidPtr->mutex);
583
584 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
585 spareDiskPtr, numDisksDone,
586 row, col);
587 raidPtr->reconDesc = (void *) reconDesc;
588 #if RF_RECON_STATS > 0
589 reconDesc->hsStallCount = 0;
590 reconDesc->numReconExecDelays = 0;
591 reconDesc->numReconEventWaits = 0;
592 #endif /* RF_RECON_STATS > 0 */
593 reconDesc->reconExecTimerRunning = 0;
594 reconDesc->reconExecTicks = 0;
595 reconDesc->maxReconExecTicks = 0;
596 rc = rf_ContinueReconstructFailedDisk(reconDesc);
597
598 RF_LOCK_MUTEX(raidPtr->mutex);
599 raidPtr->reconInProgress--;
600 RF_UNLOCK_MUTEX(raidPtr->mutex);
601
602 } else {
603 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
604 lp->parityConfig);
605 rc = EIO;
606 }
607 RF_LOCK_MUTEX(raidPtr->mutex);
608
609 if (!rc) {
610 /* Need to set these here, as at this point it'll be claiming
611 that the disk is in rf_ds_spared! But we know better :-) */
612
613 raidPtr->Disks[row][col].status = rf_ds_optimal;
614 raidPtr->status[row] = rf_rs_optimal;
615
616 /* fix up the component label */
617 /* Don't actually need the read here.. */
618 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
619 raidPtr->raid_cinfo[row][col].ci_vp,
620 &c_label);
621
622 raid_init_component_label(raidPtr, &c_label);
623
624 c_label.row = row;
625 c_label.column = col;
626
627 /* We've just done a rebuild based on all the other
628 disks, so at this point the parity is known to be
629 clean, even if it wasn't before. */
630
631 /* XXX doesn't hold for RAID 6!!*/
632
633 raidPtr->parity_good = RF_RAID_CLEAN;
634
635 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
636 raidPtr->raid_cinfo[row][col].ci_vp,
637 &c_label);
638
639 }
640 RF_UNLOCK_MUTEX(raidPtr->mutex);
641 RF_SIGNAL_COND(raidPtr->waitForReconCond);
642 wakeup(&raidPtr->waitForReconCond);
643 return (rc);
644 }
645
646
647 int
648 rf_ContinueReconstructFailedDisk(reconDesc)
649 RF_RaidReconDesc_t *reconDesc;
650 {
651 RF_Raid_t *raidPtr = reconDesc->raidPtr;
652 RF_RowCol_t row = reconDesc->row;
653 RF_RowCol_t col = reconDesc->col;
654 RF_RowCol_t srow = reconDesc->srow;
655 RF_RowCol_t scol = reconDesc->scol;
656 RF_ReconMap_t *mapPtr;
657
658 RF_ReconEvent_t *event;
659 struct timeval etime, elpsd;
660 unsigned long xor_s, xor_resid_us;
661 int retcode, i, ds;
662
663 switch (reconDesc->state) {
664
665
666 case 0:
667
668 raidPtr->accumXorTimeUs = 0;
669
670 /* create one trace record per physical disk */
671 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
672
673 /* quiesce the array prior to starting recon. this is needed
674 * to assure no nasty interactions with pending user writes.
675 * We need to do this before we change the disk or row status. */
676 reconDesc->state = 1;
677
678 Dprintf("RECON: begin request suspend\n");
679 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
680 Dprintf("RECON: end request suspend\n");
681 rf_StartUserStats(raidPtr); /* zero out the stats kept on
682 * user accs */
683
684 /* fall through to state 1 */
685
686 case 1:
687
688 RF_LOCK_MUTEX(raidPtr->mutex);
689
690 /* create the reconstruction control pointer and install it in
691 * the right slot */
692 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
693 mapPtr = raidPtr->reconControl[row]->reconMap;
694 raidPtr->status[row] = rf_rs_reconstructing;
695 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
696 raidPtr->Disks[row][col].spareRow = srow;
697 raidPtr->Disks[row][col].spareCol = scol;
698
699 RF_UNLOCK_MUTEX(raidPtr->mutex);
700
701 RF_GETTIME(raidPtr->reconControl[row]->starttime);
702
703 /* now start up the actual reconstruction: issue a read for
704 * each surviving disk */
705
706 reconDesc->numDisksDone = 0;
707 for (i = 0; i < raidPtr->numCol; i++) {
708 if (i != col) {
709 /* find and issue the next I/O on the
710 * indicated disk */
711 if (IssueNextReadRequest(raidPtr, row, i)) {
712 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
713 reconDesc->numDisksDone++;
714 }
715 }
716 }
717
718 case 2:
719 Dprintf("RECON: resume requests\n");
720 rf_ResumeNewRequests(raidPtr);
721
722
723 reconDesc->state = 3;
724
725 case 3:
726
727 /* process reconstruction events until all disks report that
728 * they've completed all work */
729 mapPtr = raidPtr->reconControl[row]->reconMap;
730
731
732
733 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
734
735 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
736 RF_ASSERT(event);
737
738 if (ProcessReconEvent(raidPtr, row, event))
739 reconDesc->numDisksDone++;
740 raidPtr->reconControl[row]->numRUsTotal =
741 mapPtr->totalRUs;
742 raidPtr->reconControl[row]->numRUsComplete =
743 mapPtr->totalRUs -
744 rf_UnitsLeftToReconstruct(mapPtr);
745
746 raidPtr->reconControl[row]->percentComplete =
747 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
748 if (rf_prReconSched) {
749 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
750 }
751 }
752
753
754
755 reconDesc->state = 4;
756
757
758 case 4:
759 mapPtr = raidPtr->reconControl[row]->reconMap;
760 if (rf_reconDebug) {
761 printf("RECON: all reads completed\n");
762 }
763 /* at this point all the reads have completed. We now wait
764 * for any pending writes to complete, and then we're done */
765
766 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
767
768 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
769 RF_ASSERT(event);
770
771 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
772 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
773 if (rf_prReconSched) {
774 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
775 }
776 }
777 reconDesc->state = 5;
778
779 case 5:
780 /* Success: mark the dead disk as reconstructed. We quiesce
781 * the array here to assure no nasty interactions with pending
782 * user accesses when we free up the psstatus structure as
783 * part of FreeReconControl() */
784
785 reconDesc->state = 6;
786
787 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
788 rf_StopUserStats(raidPtr);
789 rf_PrintUserStats(raidPtr); /* print out the stats on user
790 * accs accumulated during
791 * recon */
792
793 /* fall through to state 6 */
794 case 6:
795
796
797
798 RF_LOCK_MUTEX(raidPtr->mutex);
799 raidPtr->numFailures--;
800 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
801 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
802 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
803 RF_UNLOCK_MUTEX(raidPtr->mutex);
804 RF_GETTIME(etime);
805 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
806
807 /* XXX -- why is state 7 different from state 6 if there is no
808 * return() here? -- XXX Note that I set elpsd above & use it
809 * below, so if you put a return here you'll have to fix this.
810 * (also, FreeReconControl is called below) */
811
812 case 7:
813
814 rf_ResumeNewRequests(raidPtr);
815
816 printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
817 raidPtr->raidid, row, col);
818 xor_s = raidPtr->accumXorTimeUs / 1000000;
819 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
820 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
821 raidPtr->raidid,
822 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
823 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
824 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
825 raidPtr->raidid,
826 (int) raidPtr->reconControl[row]->starttime.tv_sec,
827 (int) raidPtr->reconControl[row]->starttime.tv_usec,
828 (int) etime.tv_sec, (int) etime.tv_usec);
829
830 #if RF_RECON_STATS > 0
831 printf("raid%d: Total head-sep stall count was %d\n",
832 raidPtr->raidid, (int) reconDesc->hsStallCount);
833 #endif /* RF_RECON_STATS > 0 */
834 rf_FreeReconControl(raidPtr, row);
835 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
836 FreeReconDesc(reconDesc);
837
838 }
839
840 SignalReconDone(raidPtr);
841 return (0);
842 }
843 /*****************************************************************************
844 * do the right thing upon each reconstruction event.
845 * returns nonzero if and only if there is nothing left unread on the
846 * indicated disk
847 *****************************************************************************/
848 static int
849 ProcessReconEvent(raidPtr, frow, event)
850 RF_Raid_t *raidPtr;
851 RF_RowCol_t frow;
852 RF_ReconEvent_t *event;
853 {
854 int retcode = 0, submitblocked;
855 RF_ReconBuffer_t *rbuf;
856 RF_SectorCount_t sectorsPerRU;
857
858 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
859 switch (event->type) {
860
861 /* a read I/O has completed */
862 case RF_REVENT_READDONE:
863 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
864 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
865 frow, event->col, rbuf->parityStripeID);
866 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
867 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
868 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
869 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
870 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
871 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
872 if (!submitblocked)
873 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
874 break;
875
876 /* a write I/O has completed */
877 case RF_REVENT_WRITEDONE:
878 #if RF_DEBUG_RECON
879 if (rf_floatingRbufDebug) {
880 rf_CheckFloatingRbufCount(raidPtr, 1);
881 }
882 #endif
883 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
884 rbuf = (RF_ReconBuffer_t *) event->arg;
885 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
886 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
887 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
888 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
889 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
890 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
891
892 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
893 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
894 raidPtr->numFullReconBuffers--;
895 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
896 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
897 } else
898 if (rbuf->type == RF_RBUF_TYPE_FORCED)
899 rf_FreeReconBuffer(rbuf);
900 else
901 RF_ASSERT(0);
902 break;
903
904 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
905 * cleared */
906 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
907 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
908 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
909 * BUFCLEAR event if we
910 * couldn't submit */
911 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
912 break;
913
914 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
915 * blockage has been cleared */
916 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
917 retcode = TryToRead(raidPtr, frow, event->col);
918 break;
919
920 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
921 * reconstruction blockage has been
922 * cleared */
923 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
924 retcode = TryToRead(raidPtr, frow, event->col);
925 break;
926
927 /* a buffer has become ready to write */
928 case RF_REVENT_BUFREADY:
929 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
930 retcode = IssueNextWriteRequest(raidPtr, frow);
931 #if RF_DEBUG_RECON
932 if (rf_floatingRbufDebug) {
933 rf_CheckFloatingRbufCount(raidPtr, 1);
934 }
935 #endif
936 break;
937
938 /* we need to skip the current RU entirely because it got
939 * recon'd while we were waiting for something else to happen */
940 case RF_REVENT_SKIP:
941 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
942 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
943 break;
944
945 /* a forced-reconstruction read access has completed. Just
946 * submit the buffer */
947 case RF_REVENT_FORCEDREADDONE:
948 rbuf = (RF_ReconBuffer_t *) event->arg;
949 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
950 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
951 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
952 RF_ASSERT(!submitblocked);
953 break;
954
955 default:
956 RF_PANIC();
957 }
958 rf_FreeReconEventDesc(event);
959 return (retcode);
960 }
961 /*****************************************************************************
962 *
963 * find the next thing that's needed on the indicated disk, and issue
964 * a read request for it. We assume that the reconstruction buffer
965 * associated with this process is free to receive the data. If
966 * reconstruction is blocked on the indicated RU, we issue a
967 * blockage-release request instead of a physical disk read request.
968 * If the current disk gets too far ahead of the others, we issue a
969 * head-separation wait request and return.
970 *
971 * ctrl->{ru_count, curPSID, diskOffset} and
972 * rbuf->failedDiskSectorOffset are maintained to point to the unit
973 * we're currently accessing. Note that this deviates from the
974 * standard C idiom of having counters point to the next thing to be
975 * accessed. This allows us to easily retry when we're blocked by
976 * head separation or reconstruction-blockage events.
977 *
978 * returns nonzero if and only if there is nothing left unread on the
979 * indicated disk
980 *
981 *****************************************************************************/
982 static int
983 IssueNextReadRequest(raidPtr, row, col)
984 RF_Raid_t *raidPtr;
985 RF_RowCol_t row;
986 RF_RowCol_t col;
987 {
988 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
989 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
990 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
991 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
992 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
993 int do_new_check = 0, retcode = 0, status;
994
995 /* if we are currently the slowest disk, mark that we have to do a new
996 * check */
997 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
998 do_new_check = 1;
999
1000 while (1) {
1001
1002 ctrl->ru_count++;
1003 if (ctrl->ru_count < RUsPerPU) {
1004 ctrl->diskOffset += sectorsPerRU;
1005 rbuf->failedDiskSectorOffset += sectorsPerRU;
1006 } else {
1007 ctrl->curPSID++;
1008 ctrl->ru_count = 0;
1009 /* code left over from when head-sep was based on
1010 * parity stripe id */
1011 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1012 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1013 return (1); /* finito! */
1014 }
1015 /* find the disk offsets of the start of the parity
1016 * stripe on both the current disk and the failed
1017 * disk. skip this entire parity stripe if either disk
1018 * does not appear in the indicated PS */
1019 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1020 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1021 if (status) {
1022 ctrl->ru_count = RUsPerPU - 1;
1023 continue;
1024 }
1025 }
1026 rbuf->which_ru = ctrl->ru_count;
1027
1028 /* skip this RU if it's already been reconstructed */
1029 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1030 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1031 continue;
1032 }
1033 break;
1034 }
1035 ctrl->headSepCounter++;
1036 if (do_new_check)
1037 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1038
1039
1040 /* at this point, we have definitely decided what to do, and we have
1041 * only to see if we can actually do it now */
1042 rbuf->parityStripeID = ctrl->curPSID;
1043 rbuf->which_ru = ctrl->ru_count;
1044 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1045 sizeof(raidPtr->recon_tracerecs[col]));
1046 raidPtr->recon_tracerecs[col].reconacc = 1;
1047 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1048 retcode = TryToRead(raidPtr, row, col);
1049 return (retcode);
1050 }
1051
1052 /*
1053 * tries to issue the next read on the indicated disk. We may be
1054 * blocked by (a) the heads being too far apart, or (b) recon on the
1055 * indicated RU being blocked due to a write by a user thread. In
1056 * this case, we issue a head-sep or blockage wait request, which will
1057 * cause this same routine to be invoked again later when the blockage
1058 * has cleared.
1059 */
1060
1061 static int
1062 TryToRead(raidPtr, row, col)
1063 RF_Raid_t *raidPtr;
1064 RF_RowCol_t row;
1065 RF_RowCol_t col;
1066 {
1067 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1068 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1069 RF_StripeNum_t psid = ctrl->curPSID;
1070 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1071 RF_DiskQueueData_t *req;
1072 int status, created = 0;
1073 RF_ReconParityStripeStatus_t *pssPtr;
1074
1075 /* if the current disk is too far ahead of the others, issue a
1076 * head-separation wait and return */
1077 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1078 return (0);
1079 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1080 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1081
1082 /* if recon is blocked on the indicated parity stripe, issue a
1083 * block-wait request and return. this also must mark the indicated RU
1084 * in the stripe as under reconstruction if not blocked. */
1085 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1086 if (status == RF_PSS_RECON_BLOCKED) {
1087 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1088 goto out;
1089 } else
1090 if (status == RF_PSS_FORCED_ON_WRITE) {
1091 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1092 goto out;
1093 }
1094 /* make one last check to be sure that the indicated RU didn't get
1095 * reconstructed while we were waiting for something else to happen.
1096 * This is unfortunate in that it causes us to make this check twice
1097 * in the normal case. Might want to make some attempt to re-work
1098 * this so that we only do this check if we've definitely blocked on
1099 * one of the above checks. When this condition is detected, we may
1100 * have just created a bogus status entry, which we need to delete. */
1101 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1102 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1103 if (created)
1104 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1105 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1106 goto out;
1107 }
1108 /* found something to read. issue the I/O */
1109 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1110 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1111 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1112 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1113 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1114 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1115 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1116
1117 /* should be ok to use a NULL proc pointer here, all the bufs we use
1118 * should be in kernel space */
1119 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1120 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1121
1122 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1123
1124 ctrl->rbuf->arg = (void *) req;
1125 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1126 pssPtr->issued[col] = 1;
1127
1128 out:
1129 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1130 return (0);
1131 }
1132
1133
1134 /*
1135 * given a parity stripe ID, we want to find out whether both the
1136 * current disk and the failed disk exist in that parity stripe. If
1137 * not, we want to skip this whole PS. If so, we want to find the
1138 * disk offset of the start of the PS on both the current disk and the
1139 * failed disk.
1140 *
1141 * this works by getting a list of disks comprising the indicated
1142 * parity stripe, and searching the list for the current and failed
1143 * disks. Once we've decided they both exist in the parity stripe, we
1144 * need to decide whether each is data or parity, so that we'll know
1145 * which mapping function to call to get the corresponding disk
1146 * offsets.
1147 *
1148 * this is kind of unpleasant, but doing it this way allows the
1149 * reconstruction code to use parity stripe IDs rather than physical
1150 * disks address to march through the failed disk, which greatly
1151 * simplifies a lot of code, as well as eliminating the need for a
1152 * reverse-mapping function. I also think it will execute faster,
1153 * since the calls to the mapping module are kept to a minimum.
1154 *
1155 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1156 * THE STRIPE IN THE CORRECT ORDER */
1157
1158
1159 static int
1160 ComputePSDiskOffsets(
1161 RF_Raid_t * raidPtr, /* raid descriptor */
1162 RF_StripeNum_t psid, /* parity stripe identifier */
1163 RF_RowCol_t row, /* row and column of disk to find the offsets
1164 * for */
1165 RF_RowCol_t col,
1166 RF_SectorNum_t * outDiskOffset,
1167 RF_SectorNum_t * outFailedDiskSectorOffset,
1168 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1169 RF_RowCol_t * spCol,
1170 RF_SectorNum_t * spOffset)
1171 { /* OUT: offset into disk containing spare unit */
1172 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1173 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1174 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1175 RF_RowCol_t *diskids;
1176 u_int i, j, k, i_offset, j_offset;
1177 RF_RowCol_t prow, pcol;
1178 int testcol, testrow;
1179 RF_RowCol_t stripe;
1180 RF_SectorNum_t poffset;
1181 char i_is_parity = 0, j_is_parity = 0;
1182 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1183
1184 /* get a listing of the disks comprising that stripe */
1185 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1186 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1187 RF_ASSERT(diskids);
1188
1189 /* reject this entire parity stripe if it does not contain the
1190 * indicated disk or it does not contain the failed disk */
1191 if (row != stripe)
1192 goto skipit;
1193 for (i = 0; i < stripeWidth; i++) {
1194 if (col == diskids[i])
1195 break;
1196 }
1197 if (i == stripeWidth)
1198 goto skipit;
1199 for (j = 0; j < stripeWidth; j++) {
1200 if (fcol == diskids[j])
1201 break;
1202 }
1203 if (j == stripeWidth) {
1204 goto skipit;
1205 }
1206 /* find out which disk the parity is on */
1207 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1208
1209 /* find out if either the current RU or the failed RU is parity */
1210 /* also, if the parity occurs in this stripe prior to the data and/or
1211 * failed col, we need to decrement i and/or j */
1212 for (k = 0; k < stripeWidth; k++)
1213 if (diskids[k] == pcol)
1214 break;
1215 RF_ASSERT(k < stripeWidth);
1216 i_offset = i;
1217 j_offset = j;
1218 if (k < i)
1219 i_offset--;
1220 else
1221 if (k == i) {
1222 i_is_parity = 1;
1223 i_offset = 0;
1224 } /* set offsets to zero to disable multiply
1225 * below */
1226 if (k < j)
1227 j_offset--;
1228 else
1229 if (k == j) {
1230 j_is_parity = 1;
1231 j_offset = 0;
1232 }
1233 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1234 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1235 * tells us how far into the stripe the [current,failed] disk is. */
1236
1237 /* call the mapping routine to get the offset into the current disk,
1238 * repeat for failed disk. */
1239 if (i_is_parity)
1240 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1241 else
1242 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1243
1244 RF_ASSERT(row == testrow && col == testcol);
1245
1246 if (j_is_parity)
1247 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1248 else
1249 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1250 RF_ASSERT(row == testrow && fcol == testcol);
1251
1252 /* now locate the spare unit for the failed unit */
1253 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1254 if (j_is_parity)
1255 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1256 else
1257 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1258 } else {
1259 *spRow = raidPtr->reconControl[row]->spareRow;
1260 *spCol = raidPtr->reconControl[row]->spareCol;
1261 *spOffset = *outFailedDiskSectorOffset;
1262 }
1263
1264 return (0);
1265
1266 skipit:
1267 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1268 psid, row, col);
1269 return (1);
1270 }
1271 /* this is called when a buffer has become ready to write to the replacement disk */
1272 static int
1273 IssueNextWriteRequest(raidPtr, row)
1274 RF_Raid_t *raidPtr;
1275 RF_RowCol_t row;
1276 {
1277 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1278 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1279 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1280 RF_ReconBuffer_t *rbuf;
1281 RF_DiskQueueData_t *req;
1282
1283 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1284 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1285 * have gotten the event that sent us here */
1286 RF_ASSERT(rbuf->pssPtr);
1287
1288 rbuf->pssPtr->writeRbuf = rbuf;
1289 rbuf->pssPtr = NULL;
1290
1291 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1292 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1293 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1294 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1295 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1296 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1297
1298 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1299 * kernel space */
1300 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1301 sectorsPerRU, rbuf->buffer,
1302 rbuf->parityStripeID, rbuf->which_ru,
1303 ReconWriteDoneProc, (void *) rbuf, NULL,
1304 &raidPtr->recon_tracerecs[fcol],
1305 (void *) raidPtr, 0, NULL);
1306
1307 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1308
1309 rbuf->arg = (void *) req;
1310 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1311
1312 return (0);
1313 }
1314
1315 /*
1316 * this gets called upon the completion of a reconstruction read
1317 * operation the arg is a pointer to the per-disk reconstruction
1318 * control structure for the process that just finished a read.
1319 *
1320 * called at interrupt context in the kernel, so don't do anything
1321 * illegal here.
1322 */
1323 static int
1324 ReconReadDoneProc(arg, status)
1325 void *arg;
1326 int status;
1327 {
1328 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1329 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1330
1331 if (status) {
1332 /*
1333 * XXX
1334 */
1335 printf("Recon read failed!\n");
1336 RF_PANIC();
1337 }
1338 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1339 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1340 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1341 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1342 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1343
1344 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1345 return (0);
1346 }
1347 /* this gets called upon the completion of a reconstruction write operation.
1348 * the arg is a pointer to the rbuf that was just written
1349 *
1350 * called at interrupt context in the kernel, so don't do anything illegal here.
1351 */
1352 static int
1353 ReconWriteDoneProc(arg, status)
1354 void *arg;
1355 int status;
1356 {
1357 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1358
1359 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1360 if (status) {
1361 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1362 * write failed!\n"); */
1363 RF_PANIC();
1364 }
1365 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1366 return (0);
1367 }
1368
1369
1370 /*
1371 * computes a new minimum head sep, and wakes up anyone who needs to
1372 * be woken as a result
1373 */
1374 static void
1375 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1376 RF_Raid_t *raidPtr;
1377 RF_RowCol_t row;
1378 RF_HeadSepLimit_t hsCtr;
1379 {
1380 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1381 RF_HeadSepLimit_t new_min;
1382 RF_RowCol_t i;
1383 RF_CallbackDesc_t *p;
1384 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1385 * of a minimum */
1386
1387
1388 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1389
1390 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1391 for (i = 0; i < raidPtr->numCol; i++)
1392 if (i != reconCtrlPtr->fcol) {
1393 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1394 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1395 }
1396 /* set the new minimum and wake up anyone who can now run again */
1397 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1398 reconCtrlPtr->minHeadSepCounter = new_min;
1399 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1400 while (reconCtrlPtr->headSepCBList) {
1401 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1402 break;
1403 p = reconCtrlPtr->headSepCBList;
1404 reconCtrlPtr->headSepCBList = p->next;
1405 p->next = NULL;
1406 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1407 rf_FreeCallbackDesc(p);
1408 }
1409
1410 }
1411 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1412 }
1413
1414 /*
1415 * checks to see that the maximum head separation will not be violated
1416 * if we initiate a reconstruction I/O on the indicated disk.
1417 * Limiting the maximum head separation between two disks eliminates
1418 * the nasty buffer-stall conditions that occur when one disk races
1419 * ahead of the others and consumes all of the floating recon buffers.
1420 * This code is complex and unpleasant but it's necessary to avoid
1421 * some very nasty, albeit fairly rare, reconstruction behavior.
1422 *
1423 * returns non-zero if and only if we have to stop working on the
1424 * indicated disk due to a head-separation delay.
1425 */
1426 static int
1427 CheckHeadSeparation(
1428 RF_Raid_t * raidPtr,
1429 RF_PerDiskReconCtrl_t * ctrl,
1430 RF_RowCol_t row,
1431 RF_RowCol_t col,
1432 RF_HeadSepLimit_t hsCtr,
1433 RF_ReconUnitNum_t which_ru)
1434 {
1435 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1436 RF_CallbackDesc_t *cb, *p, *pt;
1437 int retval = 0;
1438
1439 /* if we're too far ahead of the slowest disk, stop working on this
1440 * disk until the slower ones catch up. We do this by scheduling a
1441 * wakeup callback for the time when the slowest disk has caught up.
1442 * We define "caught up" with 20% hysteresis, i.e. the head separation
1443 * must have fallen to at most 80% of the max allowable head
1444 * separation before we'll wake up.
1445 *
1446 */
1447 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1448 if ((raidPtr->headSepLimit >= 0) &&
1449 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1450 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1451 raidPtr->raidid, row, col, ctrl->headSepCounter,
1452 reconCtrlPtr->minHeadSepCounter,
1453 raidPtr->headSepLimit);
1454 cb = rf_AllocCallbackDesc();
1455 /* the minHeadSepCounter value we have to get to before we'll
1456 * wake up. build in 20% hysteresis. */
1457 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1458 cb->row = row;
1459 cb->col = col;
1460 cb->next = NULL;
1461
1462 /* insert this callback descriptor into the sorted list of
1463 * pending head-sep callbacks */
1464 p = reconCtrlPtr->headSepCBList;
1465 if (!p)
1466 reconCtrlPtr->headSepCBList = cb;
1467 else
1468 if (cb->callbackArg.v < p->callbackArg.v) {
1469 cb->next = reconCtrlPtr->headSepCBList;
1470 reconCtrlPtr->headSepCBList = cb;
1471 } else {
1472 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1473 cb->next = p;
1474 pt->next = cb;
1475 }
1476 retval = 1;
1477 #if RF_RECON_STATS > 0
1478 ctrl->reconCtrl->reconDesc->hsStallCount++;
1479 #endif /* RF_RECON_STATS > 0 */
1480 }
1481 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1482
1483 return (retval);
1484 }
1485 /*
1486 * checks to see if reconstruction has been either forced or blocked
1487 * by a user operation. if forced, we skip this RU entirely. else if
1488 * blocked, put ourselves on the wait list. else return 0.
1489 *
1490 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1491 */
1492 static int
1493 CheckForcedOrBlockedReconstruction(
1494 RF_Raid_t * raidPtr,
1495 RF_ReconParityStripeStatus_t * pssPtr,
1496 RF_PerDiskReconCtrl_t * ctrl,
1497 RF_RowCol_t row,
1498 RF_RowCol_t col,
1499 RF_StripeNum_t psid,
1500 RF_ReconUnitNum_t which_ru)
1501 {
1502 RF_CallbackDesc_t *cb;
1503 int retcode = 0;
1504
1505 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1506 retcode = RF_PSS_FORCED_ON_WRITE;
1507 else
1508 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1509 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1510 cb = rf_AllocCallbackDesc(); /* append ourselves to
1511 * the blockage-wait
1512 * list */
1513 cb->row = row;
1514 cb->col = col;
1515 cb->next = pssPtr->blockWaitList;
1516 pssPtr->blockWaitList = cb;
1517 retcode = RF_PSS_RECON_BLOCKED;
1518 }
1519 if (!retcode)
1520 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1521 * reconstruction */
1522
1523 return (retcode);
1524 }
1525 /*
1526 * if reconstruction is currently ongoing for the indicated stripeID,
1527 * reconstruction is forced to completion and we return non-zero to
1528 * indicate that the caller must wait. If not, then reconstruction is
1529 * blocked on the indicated stripe and the routine returns zero. If
1530 * and only if we return non-zero, we'll cause the cbFunc to get
1531 * invoked with the cbArg when the reconstruction has completed.
1532 */
1533 int
1534 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1535 RF_Raid_t *raidPtr;
1536 RF_AccessStripeMap_t *asmap;
1537 void (*cbFunc) (RF_Raid_t *, void *);
1538 void *cbArg;
1539 {
1540 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1541 * we're working on */
1542 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1543 * forcing recon on */
1544 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1545 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1546 * stripe status structure */
1547 RF_StripeNum_t psid; /* parity stripe id */
1548 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1549 * offset */
1550 RF_RowCol_t *diskids;
1551 RF_RowCol_t stripe;
1552 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1553 RF_RowCol_t fcol, diskno, i;
1554 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1555 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1556 RF_CallbackDesc_t *cb;
1557 int created = 0, nPromoted;
1558
1559 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1560
1561 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1562
1563 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1564
1565 /* if recon is not ongoing on this PS, just return */
1566 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1567 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1568 return (0);
1569 }
1570 /* otherwise, we have to wait for reconstruction to complete on this
1571 * RU. */
1572 /* In order to avoid waiting for a potentially large number of
1573 * low-priority accesses to complete, we force a normal-priority (i.e.
1574 * not low-priority) reconstruction on this RU. */
1575 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1576 DDprintf1("Forcing recon on psid %ld\n", psid);
1577 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1578 * forced recon */
1579 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1580 * that we just set */
1581 fcol = raidPtr->reconControl[row]->fcol;
1582
1583 /* get a listing of the disks comprising the indicated stripe */
1584 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1585 RF_ASSERT(row == stripe);
1586
1587 /* For previously issued reads, elevate them to normal
1588 * priority. If the I/O has already completed, it won't be
1589 * found in the queue, and hence this will be a no-op. For
1590 * unissued reads, allocate buffers and issue new reads. The
1591 * fact that we've set the FORCED bit means that the regular
1592 * recon procs will not re-issue these reqs */
1593 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1594 if ((diskno = diskids[i]) != fcol) {
1595 if (pssPtr->issued[diskno]) {
1596 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1597 if (rf_reconDebug && nPromoted)
1598 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1599 } else {
1600 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1601 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1602 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1603 * location */
1604 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1605 new_rbuf->which_ru = which_ru;
1606 new_rbuf->failedDiskSectorOffset = fd_offset;
1607 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1608
1609 /* use NULL b_proc b/c all addrs
1610 * should be in kernel space */
1611 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1612 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1613 NULL, (void *) raidPtr, 0, NULL);
1614
1615 RF_ASSERT(req); /* XXX -- fix this --
1616 * XXX */
1617
1618 new_rbuf->arg = req;
1619 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1620 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1621 }
1622 }
1623 /* if the write is sitting in the disk queue, elevate its
1624 * priority */
1625 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1626 printf("raid%d: promoted write to row %d col %d\n",
1627 raidPtr->raidid, row, fcol);
1628 }
1629 /* install a callback descriptor to be invoked when recon completes on
1630 * this parity stripe. */
1631 cb = rf_AllocCallbackDesc();
1632 /* XXX the following is bogus.. These functions don't really match!!
1633 * GO */
1634 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1635 cb->callbackArg.p = (void *) cbArg;
1636 cb->next = pssPtr->procWaitList;
1637 pssPtr->procWaitList = cb;
1638 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1639 raidPtr->raidid, psid);
1640
1641 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1642 return (1);
1643 }
1644 /* called upon the completion of a forced reconstruction read.
1645 * all we do is schedule the FORCEDREADONE event.
1646 * called at interrupt context in the kernel, so don't do anything illegal here.
1647 */
1648 static void
1649 ForceReconReadDoneProc(arg, status)
1650 void *arg;
1651 int status;
1652 {
1653 RF_ReconBuffer_t *rbuf = arg;
1654
1655 if (status) {
1656 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1657 * recon read
1658 * failed!\n"); */
1659 RF_PANIC();
1660 }
1661 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1662 }
1663 /* releases a block on the reconstruction of the indicated stripe */
1664 int
1665 rf_UnblockRecon(raidPtr, asmap)
1666 RF_Raid_t *raidPtr;
1667 RF_AccessStripeMap_t *asmap;
1668 {
1669 RF_RowCol_t row = asmap->origRow;
1670 RF_StripeNum_t stripeID = asmap->stripeID;
1671 RF_ReconParityStripeStatus_t *pssPtr;
1672 RF_ReconUnitNum_t which_ru;
1673 RF_StripeNum_t psid;
1674 int created = 0;
1675 RF_CallbackDesc_t *cb;
1676
1677 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1678 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1679 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1680
1681 /* When recon is forced, the pss desc can get deleted before we get
1682 * back to unblock recon. But, this can _only_ happen when recon is
1683 * forced. It would be good to put some kind of sanity check here, but
1684 * how to decide if recon was just forced or not? */
1685 if (!pssPtr) {
1686 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1687 * RU %d\n",psid,which_ru); */
1688 if (rf_reconDebug || rf_pssDebug)
1689 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1690 goto out;
1691 }
1692 pssPtr->blockCount--;
1693 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1694 raidPtr->raidid, psid, pssPtr->blockCount);
1695 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1696
1697 /* unblock recon before calling CauseReconEvent in case
1698 * CauseReconEvent causes us to try to issue a new read before
1699 * returning here. */
1700 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1701
1702
1703 while (pssPtr->blockWaitList) {
1704 /* spin through the block-wait list and
1705 release all the waiters */
1706 cb = pssPtr->blockWaitList;
1707 pssPtr->blockWaitList = cb->next;
1708 cb->next = NULL;
1709 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1710 rf_FreeCallbackDesc(cb);
1711 }
1712 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1713 /* if no recon was requested while recon was blocked */
1714 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1715 }
1716 }
1717 out:
1718 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1719 return (0);
1720 }
1721