rf_reconstruct.c revision 1.42 1 /* $NetBSD: rf_reconstruct.c,v 1.42 2002/09/19 22:41:51 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.42 2002/09/19 22:41:51 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #if RF_DEBUG_RECON
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* RF_DEBUG_RECON */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* RF_DEBUG_RECON */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 int
162 rf_RegisterReconDoneProc(
163 RF_Raid_t * raidPtr,
164 void (*proc) (RF_Raid_t *, void *),
165 void *arg,
166 RF_ReconDoneProc_t ** handlep)
167 {
168 RF_ReconDoneProc_t *p;
169
170 RF_FREELIST_GET(rf_rdp_freelist, p, next, (RF_ReconDoneProc_t *));
171 if (p == NULL)
172 return (ENOMEM);
173 p->proc = proc;
174 p->arg = arg;
175 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
176 p->next = raidPtr->recon_done_procs;
177 raidPtr->recon_done_procs = p;
178 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
179 if (handlep)
180 *handlep = p;
181 return (0);
182 }
183 /**************************************************************************
184 *
185 * sets up the parameters that will be used by the reconstruction process
186 * currently there are none, except for those that the layout-specific
187 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
188 *
189 * in the kernel, we fire off the recon thread.
190 *
191 **************************************************************************/
192 static void
193 rf_ShutdownReconstruction(ignored)
194 void *ignored;
195 {
196 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
197 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
198 }
199
200 int
201 rf_ConfigureReconstruction(listp)
202 RF_ShutdownList_t **listp;
203 {
204 int rc;
205
206 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
207 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
208 if (rf_recond_freelist == NULL)
209 return (ENOMEM);
210 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
211 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
212 if (rf_rdp_freelist == NULL) {
213 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
214 return (ENOMEM);
215 }
216 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
217 if (rc) {
218 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
219 rf_ShutdownReconstruction(NULL);
220 return (rc);
221 }
222 return (0);
223 }
224
225 static RF_RaidReconDesc_t *
226 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
227 RF_Raid_t *raidPtr;
228 RF_RowCol_t row;
229 RF_RowCol_t col;
230 RF_RaidDisk_t *spareDiskPtr;
231 int numDisksDone;
232 RF_RowCol_t srow;
233 RF_RowCol_t scol;
234 {
235
236 RF_RaidReconDesc_t *reconDesc;
237
238 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
239
240 reconDesc->raidPtr = raidPtr;
241 reconDesc->row = row;
242 reconDesc->col = col;
243 reconDesc->spareDiskPtr = spareDiskPtr;
244 reconDesc->numDisksDone = numDisksDone;
245 reconDesc->srow = srow;
246 reconDesc->scol = scol;
247 reconDesc->state = 0;
248 reconDesc->next = NULL;
249
250 return (reconDesc);
251 }
252
253 static void
254 FreeReconDesc(reconDesc)
255 RF_RaidReconDesc_t *reconDesc;
256 {
257 #if RF_RECON_STATS > 0
258 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
259 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
260 #endif /* RF_RECON_STATS > 0 */
261 printf("RAIDframe: %lu max exec ticks\n",
262 (long) reconDesc->maxReconExecTicks);
263 #if (RF_RECON_STATS > 0) || defined(KERNEL)
264 printf("\n");
265 #endif /* (RF_RECON_STATS > 0) || KERNEL */
266 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
267 }
268
269
270 /*****************************************************************************
271 *
272 * primary routine to reconstruct a failed disk. This should be called from
273 * within its own thread. It won't return until reconstruction completes,
274 * fails, or is aborted.
275 *****************************************************************************/
276 int
277 rf_ReconstructFailedDisk(raidPtr, row, col)
278 RF_Raid_t *raidPtr;
279 RF_RowCol_t row;
280 RF_RowCol_t col;
281 {
282 RF_LayoutSW_t *lp;
283 int rc;
284
285 lp = raidPtr->Layout.map;
286 if (lp->SubmitReconBuffer) {
287 /*
288 * The current infrastructure only supports reconstructing one
289 * disk at a time for each array.
290 */
291 RF_LOCK_MUTEX(raidPtr->mutex);
292 while (raidPtr->reconInProgress) {
293 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
294 }
295 raidPtr->reconInProgress++;
296 RF_UNLOCK_MUTEX(raidPtr->mutex);
297 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
298 RF_LOCK_MUTEX(raidPtr->mutex);
299 raidPtr->reconInProgress--;
300 RF_UNLOCK_MUTEX(raidPtr->mutex);
301 } else {
302 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
303 lp->parityConfig);
304 rc = EIO;
305 }
306 RF_SIGNAL_COND(raidPtr->waitForReconCond);
307 return (rc);
308 }
309
310 int
311 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
312 RF_Raid_t *raidPtr;
313 RF_RowCol_t row;
314 RF_RowCol_t col;
315 {
316 RF_ComponentLabel_t c_label;
317 RF_RaidDisk_t *spareDiskPtr = NULL;
318 RF_RaidReconDesc_t *reconDesc;
319 RF_RowCol_t srow, scol;
320 int numDisksDone = 0, rc;
321
322 /* first look for a spare drive onto which to reconstruct the data */
323 /* spare disk descriptors are stored in row 0. This may have to
324 * change eventually */
325
326 RF_LOCK_MUTEX(raidPtr->mutex);
327 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
328
329 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
330 if (raidPtr->status[row] != rf_rs_degraded) {
331 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
332 RF_UNLOCK_MUTEX(raidPtr->mutex);
333 return (EINVAL);
334 }
335 srow = row;
336 scol = (-1);
337 } else {
338 srow = 0;
339 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
340 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
341 spareDiskPtr = &raidPtr->Disks[srow][scol];
342 spareDiskPtr->status = rf_ds_used_spare;
343 break;
344 }
345 }
346 if (!spareDiskPtr) {
347 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
348 RF_UNLOCK_MUTEX(raidPtr->mutex);
349 return (ENOSPC);
350 }
351 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
352 }
353 RF_UNLOCK_MUTEX(raidPtr->mutex);
354
355 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
356 raidPtr->reconDesc = (void *) reconDesc;
357 #if RF_RECON_STATS > 0
358 reconDesc->hsStallCount = 0;
359 reconDesc->numReconExecDelays = 0;
360 reconDesc->numReconEventWaits = 0;
361 #endif /* RF_RECON_STATS > 0 */
362 reconDesc->reconExecTimerRunning = 0;
363 reconDesc->reconExecTicks = 0;
364 reconDesc->maxReconExecTicks = 0;
365 rc = rf_ContinueReconstructFailedDisk(reconDesc);
366
367 if (!rc) {
368 /* fix up the component label */
369 /* Don't actually need the read here.. */
370 raidread_component_label(
371 raidPtr->raid_cinfo[srow][scol].ci_dev,
372 raidPtr->raid_cinfo[srow][scol].ci_vp,
373 &c_label);
374
375 raid_init_component_label( raidPtr, &c_label);
376 c_label.row = row;
377 c_label.column = col;
378 c_label.clean = RF_RAID_DIRTY;
379 c_label.status = rf_ds_optimal;
380 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
381
382 /* We've just done a rebuild based on all the other
383 disks, so at this point the parity is known to be
384 clean, even if it wasn't before. */
385
386 /* XXX doesn't hold for RAID 6!!*/
387
388 raidPtr->parity_good = RF_RAID_CLEAN;
389
390 /* XXXX MORE NEEDED HERE */
391
392 raidwrite_component_label(
393 raidPtr->raid_cinfo[srow][scol].ci_dev,
394 raidPtr->raid_cinfo[srow][scol].ci_vp,
395 &c_label);
396
397 }
398 return (rc);
399 }
400
401 /*
402
403 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
404 and you don't get a spare until the next Monday. With this function
405 (and hot-swappable drives) you can now put your new disk containing
406 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
407 rebuild the data "on the spot".
408
409 */
410
411 int
412 rf_ReconstructInPlace(raidPtr, row, col)
413 RF_Raid_t *raidPtr;
414 RF_RowCol_t row;
415 RF_RowCol_t col;
416 {
417 RF_RaidDisk_t *spareDiskPtr = NULL;
418 RF_RaidReconDesc_t *reconDesc;
419 RF_LayoutSW_t *lp;
420 RF_RaidDisk_t *badDisk;
421 RF_ComponentLabel_t c_label;
422 int numDisksDone = 0, rc;
423 struct partinfo dpart;
424 struct vnode *vp;
425 struct vattr va;
426 struct proc *proc;
427 int retcode;
428 int ac;
429
430 lp = raidPtr->Layout.map;
431 if (lp->SubmitReconBuffer) {
432 /*
433 * The current infrastructure only supports reconstructing one
434 * disk at a time for each array.
435 */
436 RF_LOCK_MUTEX(raidPtr->mutex);
437 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
438 (raidPtr->numFailures > 0)) {
439 /* XXX 0 above shouldn't be constant!!! */
440 /* some component other than this has failed.
441 Let's not make things worse than they already
442 are... */
443 printf("raid%d: Unable to reconstruct to disk at:\n",
444 raidPtr->raidid);
445 printf("raid%d: Row: %d Col: %d Too many failures.\n",
446 raidPtr->raidid, row, col);
447 RF_UNLOCK_MUTEX(raidPtr->mutex);
448 return (EINVAL);
449 }
450 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
451 printf("raid%d: Unable to reconstruct to disk at:\n",
452 raidPtr->raidid);
453 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col);
454
455 RF_UNLOCK_MUTEX(raidPtr->mutex);
456 return (EINVAL);
457 }
458 if (raidPtr->Disks[row][col].status == rf_ds_spared) {
459 return (EINVAL);
460 }
461
462 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
463 /* "It's gone..." */
464 raidPtr->numFailures++;
465 raidPtr->Disks[row][col].status = rf_ds_failed;
466 raidPtr->status[row] = rf_rs_degraded;
467 rf_update_component_labels(raidPtr,
468 RF_NORMAL_COMPONENT_UPDATE);
469 }
470
471 while (raidPtr->reconInProgress) {
472 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
473 }
474
475 raidPtr->reconInProgress++;
476
477
478 /* first look for a spare drive onto which to reconstruct
479 the data. spare disk descriptors are stored in row 0.
480 This may have to change eventually */
481
482 /* Actually, we don't care if it's failed or not...
483 On a RAID set with correct parity, this function
484 should be callable on any component without ill affects. */
485 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
486 */
487
488 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
489 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
490
491 raidPtr->reconInProgress--;
492 RF_UNLOCK_MUTEX(raidPtr->mutex);
493 return (EINVAL);
494 }
495
496 badDisk = &raidPtr->Disks[row][col];
497
498 proc = raidPtr->engine_thread;
499
500 /* This device may have been opened successfully the
501 first time. Close it before trying to open it again.. */
502
503 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
504 #if 0
505 printf("Closed the open device: %s\n",
506 raidPtr->Disks[row][col].devname);
507 #endif
508 vp = raidPtr->raid_cinfo[row][col].ci_vp;
509 ac = raidPtr->Disks[row][col].auto_configured;
510 rf_close_component(raidPtr, vp, ac);
511 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
512 }
513 /* note that this disk was *not* auto_configured (any longer)*/
514 raidPtr->Disks[row][col].auto_configured = 0;
515
516 #if 0
517 printf("About to (re-)open the device for rebuilding: %s\n",
518 raidPtr->Disks[row][col].devname);
519 #endif
520
521 retcode = raidlookup(raidPtr->Disks[row][col].devname,
522 proc, &vp);
523
524 if (retcode) {
525 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
526 raidPtr->Disks[row][col].devname, retcode);
527
528 /* the component isn't responding properly...
529 must be still dead :-( */
530 raidPtr->reconInProgress--;
531 RF_UNLOCK_MUTEX(raidPtr->mutex);
532 return(retcode);
533
534 } else {
535
536 /* Ok, so we can at least do a lookup...
537 How about actually getting a vp for it? */
538
539 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
540 proc)) != 0) {
541 raidPtr->reconInProgress--;
542 RF_UNLOCK_MUTEX(raidPtr->mutex);
543 return(retcode);
544 }
545 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
546 FREAD, proc->p_ucred, proc);
547 if (retcode) {
548 raidPtr->reconInProgress--;
549 RF_UNLOCK_MUTEX(raidPtr->mutex);
550 return(retcode);
551 }
552 raidPtr->Disks[row][col].blockSize =
553 dpart.disklab->d_secsize;
554
555 raidPtr->Disks[row][col].numBlocks =
556 dpart.part->p_size - rf_protectedSectors;
557
558 raidPtr->raid_cinfo[row][col].ci_vp = vp;
559 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
560
561 raidPtr->Disks[row][col].dev = va.va_rdev;
562
563 /* we allow the user to specify that only a
564 fraction of the disks should be used this is
565 just for debug: it speeds up
566 * the parity scan */
567 raidPtr->Disks[row][col].numBlocks =
568 raidPtr->Disks[row][col].numBlocks *
569 rf_sizePercentage / 100;
570 }
571
572
573
574 spareDiskPtr = &raidPtr->Disks[row][col];
575 spareDiskPtr->status = rf_ds_used_spare;
576
577 printf("raid%d: initiating in-place reconstruction on\n",
578 raidPtr->raidid);
579 printf("raid%d: row %d col %d -> spare at row %d col %d\n",
580 raidPtr->raidid, row, col, row, col);
581
582 RF_UNLOCK_MUTEX(raidPtr->mutex);
583
584 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
585 spareDiskPtr, numDisksDone,
586 row, col);
587 raidPtr->reconDesc = (void *) reconDesc;
588 #if RF_RECON_STATS > 0
589 reconDesc->hsStallCount = 0;
590 reconDesc->numReconExecDelays = 0;
591 reconDesc->numReconEventWaits = 0;
592 #endif /* RF_RECON_STATS > 0 */
593 reconDesc->reconExecTimerRunning = 0;
594 reconDesc->reconExecTicks = 0;
595 reconDesc->maxReconExecTicks = 0;
596 rc = rf_ContinueReconstructFailedDisk(reconDesc);
597
598 RF_LOCK_MUTEX(raidPtr->mutex);
599 raidPtr->reconInProgress--;
600 RF_UNLOCK_MUTEX(raidPtr->mutex);
601
602 } else {
603 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
604 lp->parityConfig);
605 rc = EIO;
606 }
607 RF_LOCK_MUTEX(raidPtr->mutex);
608
609 if (!rc) {
610 /* Need to set these here, as at this point it'll be claiming
611 that the disk is in rf_ds_spared! But we know better :-) */
612
613 raidPtr->Disks[row][col].status = rf_ds_optimal;
614 raidPtr->status[row] = rf_rs_optimal;
615
616 /* fix up the component label */
617 /* Don't actually need the read here.. */
618 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
619 raidPtr->raid_cinfo[row][col].ci_vp,
620 &c_label);
621
622 raid_init_component_label(raidPtr, &c_label);
623
624 c_label.row = row;
625 c_label.column = col;
626
627 /* We've just done a rebuild based on all the other
628 disks, so at this point the parity is known to be
629 clean, even if it wasn't before. */
630
631 /* XXX doesn't hold for RAID 6!!*/
632
633 raidPtr->parity_good = RF_RAID_CLEAN;
634
635 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
636 raidPtr->raid_cinfo[row][col].ci_vp,
637 &c_label);
638
639 }
640 RF_UNLOCK_MUTEX(raidPtr->mutex);
641 RF_SIGNAL_COND(raidPtr->waitForReconCond);
642 return (rc);
643 }
644
645
646 int
647 rf_ContinueReconstructFailedDisk(reconDesc)
648 RF_RaidReconDesc_t *reconDesc;
649 {
650 RF_Raid_t *raidPtr = reconDesc->raidPtr;
651 RF_RowCol_t row = reconDesc->row;
652 RF_RowCol_t col = reconDesc->col;
653 RF_RowCol_t srow = reconDesc->srow;
654 RF_RowCol_t scol = reconDesc->scol;
655 RF_ReconMap_t *mapPtr;
656
657 RF_ReconEvent_t *event;
658 struct timeval etime, elpsd;
659 unsigned long xor_s, xor_resid_us;
660 int retcode, i, ds;
661
662 switch (reconDesc->state) {
663
664
665 case 0:
666
667 raidPtr->accumXorTimeUs = 0;
668
669 /* create one trace record per physical disk */
670 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
671
672 /* quiesce the array prior to starting recon. this is needed
673 * to assure no nasty interactions with pending user writes.
674 * We need to do this before we change the disk or row status. */
675 reconDesc->state = 1;
676
677 Dprintf("RECON: begin request suspend\n");
678 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
679 Dprintf("RECON: end request suspend\n");
680 rf_StartUserStats(raidPtr); /* zero out the stats kept on
681 * user accs */
682
683 /* fall through to state 1 */
684
685 case 1:
686
687 RF_LOCK_MUTEX(raidPtr->mutex);
688
689 /* create the reconstruction control pointer and install it in
690 * the right slot */
691 raidPtr->reconControl[row] = rf_MakeReconControl(reconDesc, row, col, srow, scol);
692 mapPtr = raidPtr->reconControl[row]->reconMap;
693 raidPtr->status[row] = rf_rs_reconstructing;
694 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
695 raidPtr->Disks[row][col].spareRow = srow;
696 raidPtr->Disks[row][col].spareCol = scol;
697
698 RF_UNLOCK_MUTEX(raidPtr->mutex);
699
700 RF_GETTIME(raidPtr->reconControl[row]->starttime);
701
702 /* now start up the actual reconstruction: issue a read for
703 * each surviving disk */
704
705 reconDesc->numDisksDone = 0;
706 for (i = 0; i < raidPtr->numCol; i++) {
707 if (i != col) {
708 /* find and issue the next I/O on the
709 * indicated disk */
710 if (IssueNextReadRequest(raidPtr, row, i)) {
711 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
712 reconDesc->numDisksDone++;
713 }
714 }
715 }
716
717 case 2:
718 Dprintf("RECON: resume requests\n");
719 rf_ResumeNewRequests(raidPtr);
720
721
722 reconDesc->state = 3;
723
724 case 3:
725
726 /* process reconstruction events until all disks report that
727 * they've completed all work */
728 mapPtr = raidPtr->reconControl[row]->reconMap;
729
730
731
732 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
733
734 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
735 RF_ASSERT(event);
736
737 if (ProcessReconEvent(raidPtr, row, event))
738 reconDesc->numDisksDone++;
739 raidPtr->reconControl[row]->numRUsTotal =
740 mapPtr->totalRUs;
741 raidPtr->reconControl[row]->numRUsComplete =
742 mapPtr->totalRUs -
743 rf_UnitsLeftToReconstruct(mapPtr);
744
745 raidPtr->reconControl[row]->percentComplete =
746 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
747 #if RF_DEBUG_RECON
748 if (rf_prReconSched) {
749 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
750 }
751 #endif
752 }
753
754
755
756 reconDesc->state = 4;
757
758
759 case 4:
760 mapPtr = raidPtr->reconControl[row]->reconMap;
761 if (rf_reconDebug) {
762 printf("RECON: all reads completed\n");
763 }
764 /* at this point all the reads have completed. We now wait
765 * for any pending writes to complete, and then we're done */
766
767 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
768
769 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
770 RF_ASSERT(event);
771
772 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
773 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
774 #if RF_DEBUG_RECON
775 if (rf_prReconSched) {
776 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
777 }
778 #endif
779 }
780 reconDesc->state = 5;
781
782 case 5:
783 /* Success: mark the dead disk as reconstructed. We quiesce
784 * the array here to assure no nasty interactions with pending
785 * user accesses when we free up the psstatus structure as
786 * part of FreeReconControl() */
787
788 reconDesc->state = 6;
789
790 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
791 rf_StopUserStats(raidPtr);
792 rf_PrintUserStats(raidPtr); /* print out the stats on user
793 * accs accumulated during
794 * recon */
795
796 /* fall through to state 6 */
797 case 6:
798
799
800
801 RF_LOCK_MUTEX(raidPtr->mutex);
802 raidPtr->numFailures--;
803 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
804 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
805 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
806 RF_UNLOCK_MUTEX(raidPtr->mutex);
807 RF_GETTIME(etime);
808 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
809
810 /* XXX -- why is state 7 different from state 6 if there is no
811 * return() here? -- XXX Note that I set elpsd above & use it
812 * below, so if you put a return here you'll have to fix this.
813 * (also, FreeReconControl is called below) */
814
815 case 7:
816
817 rf_ResumeNewRequests(raidPtr);
818
819 printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
820 raidPtr->raidid, row, col);
821 xor_s = raidPtr->accumXorTimeUs / 1000000;
822 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
823 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
824 raidPtr->raidid,
825 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
826 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
827 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
828 raidPtr->raidid,
829 (int) raidPtr->reconControl[row]->starttime.tv_sec,
830 (int) raidPtr->reconControl[row]->starttime.tv_usec,
831 (int) etime.tv_sec, (int) etime.tv_usec);
832
833 #if RF_RECON_STATS > 0
834 printf("raid%d: Total head-sep stall count was %d\n",
835 raidPtr->raidid, (int) reconDesc->hsStallCount);
836 #endif /* RF_RECON_STATS > 0 */
837 rf_FreeReconControl(raidPtr, row);
838 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
839 FreeReconDesc(reconDesc);
840
841 }
842
843 SignalReconDone(raidPtr);
844 return (0);
845 }
846 /*****************************************************************************
847 * do the right thing upon each reconstruction event.
848 * returns nonzero if and only if there is nothing left unread on the
849 * indicated disk
850 *****************************************************************************/
851 static int
852 ProcessReconEvent(raidPtr, frow, event)
853 RF_Raid_t *raidPtr;
854 RF_RowCol_t frow;
855 RF_ReconEvent_t *event;
856 {
857 int retcode = 0, submitblocked;
858 RF_ReconBuffer_t *rbuf;
859 RF_SectorCount_t sectorsPerRU;
860
861 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
862 switch (event->type) {
863
864 /* a read I/O has completed */
865 case RF_REVENT_READDONE:
866 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
867 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
868 frow, event->col, rbuf->parityStripeID);
869 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
870 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
871 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
872 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
873 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
874 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
875 if (!submitblocked)
876 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
877 break;
878
879 /* a write I/O has completed */
880 case RF_REVENT_WRITEDONE:
881 #if RF_DEBUG_RECON
882 if (rf_floatingRbufDebug) {
883 rf_CheckFloatingRbufCount(raidPtr, 1);
884 }
885 #endif
886 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
887 rbuf = (RF_ReconBuffer_t *) event->arg;
888 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
889 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
890 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
891 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
892 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
893 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
894
895 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
896 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
897 raidPtr->numFullReconBuffers--;
898 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
899 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
900 } else
901 if (rbuf->type == RF_RBUF_TYPE_FORCED)
902 rf_FreeReconBuffer(rbuf);
903 else
904 RF_ASSERT(0);
905 break;
906
907 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
908 * cleared */
909 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
910 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
911 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
912 * BUFCLEAR event if we
913 * couldn't submit */
914 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
915 break;
916
917 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
918 * blockage has been cleared */
919 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
920 retcode = TryToRead(raidPtr, frow, event->col);
921 break;
922
923 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
924 * reconstruction blockage has been
925 * cleared */
926 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
927 retcode = TryToRead(raidPtr, frow, event->col);
928 break;
929
930 /* a buffer has become ready to write */
931 case RF_REVENT_BUFREADY:
932 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
933 retcode = IssueNextWriteRequest(raidPtr, frow);
934 #if RF_DEBUG_RECON
935 if (rf_floatingRbufDebug) {
936 rf_CheckFloatingRbufCount(raidPtr, 1);
937 }
938 #endif
939 break;
940
941 /* we need to skip the current RU entirely because it got
942 * recon'd while we were waiting for something else to happen */
943 case RF_REVENT_SKIP:
944 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
945 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
946 break;
947
948 /* a forced-reconstruction read access has completed. Just
949 * submit the buffer */
950 case RF_REVENT_FORCEDREADDONE:
951 rbuf = (RF_ReconBuffer_t *) event->arg;
952 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
953 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
954 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
955 RF_ASSERT(!submitblocked);
956 break;
957
958 default:
959 RF_PANIC();
960 }
961 rf_FreeReconEventDesc(event);
962 return (retcode);
963 }
964 /*****************************************************************************
965 *
966 * find the next thing that's needed on the indicated disk, and issue
967 * a read request for it. We assume that the reconstruction buffer
968 * associated with this process is free to receive the data. If
969 * reconstruction is blocked on the indicated RU, we issue a
970 * blockage-release request instead of a physical disk read request.
971 * If the current disk gets too far ahead of the others, we issue a
972 * head-separation wait request and return.
973 *
974 * ctrl->{ru_count, curPSID, diskOffset} and
975 * rbuf->failedDiskSectorOffset are maintained to point to the unit
976 * we're currently accessing. Note that this deviates from the
977 * standard C idiom of having counters point to the next thing to be
978 * accessed. This allows us to easily retry when we're blocked by
979 * head separation or reconstruction-blockage events.
980 *
981 * returns nonzero if and only if there is nothing left unread on the
982 * indicated disk
983 *
984 *****************************************************************************/
985 static int
986 IssueNextReadRequest(raidPtr, row, col)
987 RF_Raid_t *raidPtr;
988 RF_RowCol_t row;
989 RF_RowCol_t col;
990 {
991 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
992 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
993 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
994 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
995 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
996 int do_new_check = 0, retcode = 0, status;
997
998 /* if we are currently the slowest disk, mark that we have to do a new
999 * check */
1000 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
1001 do_new_check = 1;
1002
1003 while (1) {
1004
1005 ctrl->ru_count++;
1006 if (ctrl->ru_count < RUsPerPU) {
1007 ctrl->diskOffset += sectorsPerRU;
1008 rbuf->failedDiskSectorOffset += sectorsPerRU;
1009 } else {
1010 ctrl->curPSID++;
1011 ctrl->ru_count = 0;
1012 /* code left over from when head-sep was based on
1013 * parity stripe id */
1014 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1015 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1016 return (1); /* finito! */
1017 }
1018 /* find the disk offsets of the start of the parity
1019 * stripe on both the current disk and the failed
1020 * disk. skip this entire parity stripe if either disk
1021 * does not appear in the indicated PS */
1022 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1023 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1024 if (status) {
1025 ctrl->ru_count = RUsPerPU - 1;
1026 continue;
1027 }
1028 }
1029 rbuf->which_ru = ctrl->ru_count;
1030
1031 /* skip this RU if it's already been reconstructed */
1032 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1033 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1034 continue;
1035 }
1036 break;
1037 }
1038 ctrl->headSepCounter++;
1039 if (do_new_check)
1040 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1041
1042
1043 /* at this point, we have definitely decided what to do, and we have
1044 * only to see if we can actually do it now */
1045 rbuf->parityStripeID = ctrl->curPSID;
1046 rbuf->which_ru = ctrl->ru_count;
1047 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1048 sizeof(raidPtr->recon_tracerecs[col]));
1049 raidPtr->recon_tracerecs[col].reconacc = 1;
1050 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1051 retcode = TryToRead(raidPtr, row, col);
1052 return (retcode);
1053 }
1054
1055 /*
1056 * tries to issue the next read on the indicated disk. We may be
1057 * blocked by (a) the heads being too far apart, or (b) recon on the
1058 * indicated RU being blocked due to a write by a user thread. In
1059 * this case, we issue a head-sep or blockage wait request, which will
1060 * cause this same routine to be invoked again later when the blockage
1061 * has cleared.
1062 */
1063
1064 static int
1065 TryToRead(raidPtr, row, col)
1066 RF_Raid_t *raidPtr;
1067 RF_RowCol_t row;
1068 RF_RowCol_t col;
1069 {
1070 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1071 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1072 RF_StripeNum_t psid = ctrl->curPSID;
1073 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1074 RF_DiskQueueData_t *req;
1075 int status, created = 0;
1076 RF_ReconParityStripeStatus_t *pssPtr;
1077
1078 /* if the current disk is too far ahead of the others, issue a
1079 * head-separation wait and return */
1080 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1081 return (0);
1082 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1083 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1084
1085 /* if recon is blocked on the indicated parity stripe, issue a
1086 * block-wait request and return. this also must mark the indicated RU
1087 * in the stripe as under reconstruction if not blocked. */
1088 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1089 if (status == RF_PSS_RECON_BLOCKED) {
1090 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1091 goto out;
1092 } else
1093 if (status == RF_PSS_FORCED_ON_WRITE) {
1094 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1095 goto out;
1096 }
1097 /* make one last check to be sure that the indicated RU didn't get
1098 * reconstructed while we were waiting for something else to happen.
1099 * This is unfortunate in that it causes us to make this check twice
1100 * in the normal case. Might want to make some attempt to re-work
1101 * this so that we only do this check if we've definitely blocked on
1102 * one of the above checks. When this condition is detected, we may
1103 * have just created a bogus status entry, which we need to delete. */
1104 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1105 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1106 if (created)
1107 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1108 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1109 goto out;
1110 }
1111 /* found something to read. issue the I/O */
1112 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1113 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1114 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1115 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1116 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1117 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1118 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1119
1120 /* should be ok to use a NULL proc pointer here, all the bufs we use
1121 * should be in kernel space */
1122 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1123 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1124
1125 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1126
1127 ctrl->rbuf->arg = (void *) req;
1128 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1129 pssPtr->issued[col] = 1;
1130
1131 out:
1132 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1133 return (0);
1134 }
1135
1136
1137 /*
1138 * given a parity stripe ID, we want to find out whether both the
1139 * current disk and the failed disk exist in that parity stripe. If
1140 * not, we want to skip this whole PS. If so, we want to find the
1141 * disk offset of the start of the PS on both the current disk and the
1142 * failed disk.
1143 *
1144 * this works by getting a list of disks comprising the indicated
1145 * parity stripe, and searching the list for the current and failed
1146 * disks. Once we've decided they both exist in the parity stripe, we
1147 * need to decide whether each is data or parity, so that we'll know
1148 * which mapping function to call to get the corresponding disk
1149 * offsets.
1150 *
1151 * this is kind of unpleasant, but doing it this way allows the
1152 * reconstruction code to use parity stripe IDs rather than physical
1153 * disks address to march through the failed disk, which greatly
1154 * simplifies a lot of code, as well as eliminating the need for a
1155 * reverse-mapping function. I also think it will execute faster,
1156 * since the calls to the mapping module are kept to a minimum.
1157 *
1158 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1159 * THE STRIPE IN THE CORRECT ORDER */
1160
1161
1162 static int
1163 ComputePSDiskOffsets(
1164 RF_Raid_t * raidPtr, /* raid descriptor */
1165 RF_StripeNum_t psid, /* parity stripe identifier */
1166 RF_RowCol_t row, /* row and column of disk to find the offsets
1167 * for */
1168 RF_RowCol_t col,
1169 RF_SectorNum_t * outDiskOffset,
1170 RF_SectorNum_t * outFailedDiskSectorOffset,
1171 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1172 RF_RowCol_t * spCol,
1173 RF_SectorNum_t * spOffset)
1174 { /* OUT: offset into disk containing spare unit */
1175 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1176 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1177 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1178 RF_RowCol_t *diskids;
1179 u_int i, j, k, i_offset, j_offset;
1180 RF_RowCol_t prow, pcol;
1181 int testcol, testrow;
1182 RF_RowCol_t stripe;
1183 RF_SectorNum_t poffset;
1184 char i_is_parity = 0, j_is_parity = 0;
1185 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1186
1187 /* get a listing of the disks comprising that stripe */
1188 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1189 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1190 RF_ASSERT(diskids);
1191
1192 /* reject this entire parity stripe if it does not contain the
1193 * indicated disk or it does not contain the failed disk */
1194 if (row != stripe)
1195 goto skipit;
1196 for (i = 0; i < stripeWidth; i++) {
1197 if (col == diskids[i])
1198 break;
1199 }
1200 if (i == stripeWidth)
1201 goto skipit;
1202 for (j = 0; j < stripeWidth; j++) {
1203 if (fcol == diskids[j])
1204 break;
1205 }
1206 if (j == stripeWidth) {
1207 goto skipit;
1208 }
1209 /* find out which disk the parity is on */
1210 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1211
1212 /* find out if either the current RU or the failed RU is parity */
1213 /* also, if the parity occurs in this stripe prior to the data and/or
1214 * failed col, we need to decrement i and/or j */
1215 for (k = 0; k < stripeWidth; k++)
1216 if (diskids[k] == pcol)
1217 break;
1218 RF_ASSERT(k < stripeWidth);
1219 i_offset = i;
1220 j_offset = j;
1221 if (k < i)
1222 i_offset--;
1223 else
1224 if (k == i) {
1225 i_is_parity = 1;
1226 i_offset = 0;
1227 } /* set offsets to zero to disable multiply
1228 * below */
1229 if (k < j)
1230 j_offset--;
1231 else
1232 if (k == j) {
1233 j_is_parity = 1;
1234 j_offset = 0;
1235 }
1236 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1237 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1238 * tells us how far into the stripe the [current,failed] disk is. */
1239
1240 /* call the mapping routine to get the offset into the current disk,
1241 * repeat for failed disk. */
1242 if (i_is_parity)
1243 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1244 else
1245 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1246
1247 RF_ASSERT(row == testrow && col == testcol);
1248
1249 if (j_is_parity)
1250 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1251 else
1252 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1253 RF_ASSERT(row == testrow && fcol == testcol);
1254
1255 /* now locate the spare unit for the failed unit */
1256 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1257 if (j_is_parity)
1258 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1259 else
1260 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1261 } else {
1262 *spRow = raidPtr->reconControl[row]->spareRow;
1263 *spCol = raidPtr->reconControl[row]->spareCol;
1264 *spOffset = *outFailedDiskSectorOffset;
1265 }
1266
1267 return (0);
1268
1269 skipit:
1270 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1271 psid, row, col);
1272 return (1);
1273 }
1274 /* this is called when a buffer has become ready to write to the replacement disk */
1275 static int
1276 IssueNextWriteRequest(raidPtr, row)
1277 RF_Raid_t *raidPtr;
1278 RF_RowCol_t row;
1279 {
1280 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1281 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1282 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1283 RF_ReconBuffer_t *rbuf;
1284 RF_DiskQueueData_t *req;
1285
1286 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1287 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1288 * have gotten the event that sent us here */
1289 RF_ASSERT(rbuf->pssPtr);
1290
1291 rbuf->pssPtr->writeRbuf = rbuf;
1292 rbuf->pssPtr = NULL;
1293
1294 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1295 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1296 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1297 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1298 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1299 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1300
1301 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1302 * kernel space */
1303 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1304 sectorsPerRU, rbuf->buffer,
1305 rbuf->parityStripeID, rbuf->which_ru,
1306 ReconWriteDoneProc, (void *) rbuf, NULL,
1307 &raidPtr->recon_tracerecs[fcol],
1308 (void *) raidPtr, 0, NULL);
1309
1310 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1311
1312 rbuf->arg = (void *) req;
1313 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1314
1315 return (0);
1316 }
1317
1318 /*
1319 * this gets called upon the completion of a reconstruction read
1320 * operation the arg is a pointer to the per-disk reconstruction
1321 * control structure for the process that just finished a read.
1322 *
1323 * called at interrupt context in the kernel, so don't do anything
1324 * illegal here.
1325 */
1326 static int
1327 ReconReadDoneProc(arg, status)
1328 void *arg;
1329 int status;
1330 {
1331 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1332 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1333
1334 if (status) {
1335 /*
1336 * XXX
1337 */
1338 printf("Recon read failed!\n");
1339 RF_PANIC();
1340 }
1341 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1342 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1343 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1344 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1345 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1346
1347 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1348 return (0);
1349 }
1350 /* this gets called upon the completion of a reconstruction write operation.
1351 * the arg is a pointer to the rbuf that was just written
1352 *
1353 * called at interrupt context in the kernel, so don't do anything illegal here.
1354 */
1355 static int
1356 ReconWriteDoneProc(arg, status)
1357 void *arg;
1358 int status;
1359 {
1360 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1361
1362 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1363 if (status) {
1364 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1365 * write failed!\n"); */
1366 RF_PANIC();
1367 }
1368 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1369 return (0);
1370 }
1371
1372
1373 /*
1374 * computes a new minimum head sep, and wakes up anyone who needs to
1375 * be woken as a result
1376 */
1377 static void
1378 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1379 RF_Raid_t *raidPtr;
1380 RF_RowCol_t row;
1381 RF_HeadSepLimit_t hsCtr;
1382 {
1383 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1384 RF_HeadSepLimit_t new_min;
1385 RF_RowCol_t i;
1386 RF_CallbackDesc_t *p;
1387 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1388 * of a minimum */
1389
1390
1391 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1392
1393 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1394 for (i = 0; i < raidPtr->numCol; i++)
1395 if (i != reconCtrlPtr->fcol) {
1396 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1397 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1398 }
1399 /* set the new minimum and wake up anyone who can now run again */
1400 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1401 reconCtrlPtr->minHeadSepCounter = new_min;
1402 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1403 while (reconCtrlPtr->headSepCBList) {
1404 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1405 break;
1406 p = reconCtrlPtr->headSepCBList;
1407 reconCtrlPtr->headSepCBList = p->next;
1408 p->next = NULL;
1409 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1410 rf_FreeCallbackDesc(p);
1411 }
1412
1413 }
1414 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1415 }
1416
1417 /*
1418 * checks to see that the maximum head separation will not be violated
1419 * if we initiate a reconstruction I/O on the indicated disk.
1420 * Limiting the maximum head separation between two disks eliminates
1421 * the nasty buffer-stall conditions that occur when one disk races
1422 * ahead of the others and consumes all of the floating recon buffers.
1423 * This code is complex and unpleasant but it's necessary to avoid
1424 * some very nasty, albeit fairly rare, reconstruction behavior.
1425 *
1426 * returns non-zero if and only if we have to stop working on the
1427 * indicated disk due to a head-separation delay.
1428 */
1429 static int
1430 CheckHeadSeparation(
1431 RF_Raid_t * raidPtr,
1432 RF_PerDiskReconCtrl_t * ctrl,
1433 RF_RowCol_t row,
1434 RF_RowCol_t col,
1435 RF_HeadSepLimit_t hsCtr,
1436 RF_ReconUnitNum_t which_ru)
1437 {
1438 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1439 RF_CallbackDesc_t *cb, *p, *pt;
1440 int retval = 0;
1441
1442 /* if we're too far ahead of the slowest disk, stop working on this
1443 * disk until the slower ones catch up. We do this by scheduling a
1444 * wakeup callback for the time when the slowest disk has caught up.
1445 * We define "caught up" with 20% hysteresis, i.e. the head separation
1446 * must have fallen to at most 80% of the max allowable head
1447 * separation before we'll wake up.
1448 *
1449 */
1450 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1451 if ((raidPtr->headSepLimit >= 0) &&
1452 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1453 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1454 raidPtr->raidid, row, col, ctrl->headSepCounter,
1455 reconCtrlPtr->minHeadSepCounter,
1456 raidPtr->headSepLimit);
1457 cb = rf_AllocCallbackDesc();
1458 /* the minHeadSepCounter value we have to get to before we'll
1459 * wake up. build in 20% hysteresis. */
1460 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1461 cb->row = row;
1462 cb->col = col;
1463 cb->next = NULL;
1464
1465 /* insert this callback descriptor into the sorted list of
1466 * pending head-sep callbacks */
1467 p = reconCtrlPtr->headSepCBList;
1468 if (!p)
1469 reconCtrlPtr->headSepCBList = cb;
1470 else
1471 if (cb->callbackArg.v < p->callbackArg.v) {
1472 cb->next = reconCtrlPtr->headSepCBList;
1473 reconCtrlPtr->headSepCBList = cb;
1474 } else {
1475 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1476 cb->next = p;
1477 pt->next = cb;
1478 }
1479 retval = 1;
1480 #if RF_RECON_STATS > 0
1481 ctrl->reconCtrl->reconDesc->hsStallCount++;
1482 #endif /* RF_RECON_STATS > 0 */
1483 }
1484 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1485
1486 return (retval);
1487 }
1488 /*
1489 * checks to see if reconstruction has been either forced or blocked
1490 * by a user operation. if forced, we skip this RU entirely. else if
1491 * blocked, put ourselves on the wait list. else return 0.
1492 *
1493 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1494 */
1495 static int
1496 CheckForcedOrBlockedReconstruction(
1497 RF_Raid_t * raidPtr,
1498 RF_ReconParityStripeStatus_t * pssPtr,
1499 RF_PerDiskReconCtrl_t * ctrl,
1500 RF_RowCol_t row,
1501 RF_RowCol_t col,
1502 RF_StripeNum_t psid,
1503 RF_ReconUnitNum_t which_ru)
1504 {
1505 RF_CallbackDesc_t *cb;
1506 int retcode = 0;
1507
1508 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1509 retcode = RF_PSS_FORCED_ON_WRITE;
1510 else
1511 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1512 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1513 cb = rf_AllocCallbackDesc(); /* append ourselves to
1514 * the blockage-wait
1515 * list */
1516 cb->row = row;
1517 cb->col = col;
1518 cb->next = pssPtr->blockWaitList;
1519 pssPtr->blockWaitList = cb;
1520 retcode = RF_PSS_RECON_BLOCKED;
1521 }
1522 if (!retcode)
1523 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1524 * reconstruction */
1525
1526 return (retcode);
1527 }
1528 /*
1529 * if reconstruction is currently ongoing for the indicated stripeID,
1530 * reconstruction is forced to completion and we return non-zero to
1531 * indicate that the caller must wait. If not, then reconstruction is
1532 * blocked on the indicated stripe and the routine returns zero. If
1533 * and only if we return non-zero, we'll cause the cbFunc to get
1534 * invoked with the cbArg when the reconstruction has completed.
1535 */
1536 int
1537 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1538 RF_Raid_t *raidPtr;
1539 RF_AccessStripeMap_t *asmap;
1540 void (*cbFunc) (RF_Raid_t *, void *);
1541 void *cbArg;
1542 {
1543 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1544 * we're working on */
1545 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1546 * forcing recon on */
1547 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1548 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1549 * stripe status structure */
1550 RF_StripeNum_t psid; /* parity stripe id */
1551 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1552 * offset */
1553 RF_RowCol_t *diskids;
1554 RF_RowCol_t stripe;
1555 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1556 RF_RowCol_t fcol, diskno, i;
1557 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1558 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1559 RF_CallbackDesc_t *cb;
1560 int created = 0, nPromoted;
1561
1562 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1563
1564 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1565
1566 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1567
1568 /* if recon is not ongoing on this PS, just return */
1569 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1570 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1571 return (0);
1572 }
1573 /* otherwise, we have to wait for reconstruction to complete on this
1574 * RU. */
1575 /* In order to avoid waiting for a potentially large number of
1576 * low-priority accesses to complete, we force a normal-priority (i.e.
1577 * not low-priority) reconstruction on this RU. */
1578 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1579 DDprintf1("Forcing recon on psid %ld\n", psid);
1580 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1581 * forced recon */
1582 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1583 * that we just set */
1584 fcol = raidPtr->reconControl[row]->fcol;
1585
1586 /* get a listing of the disks comprising the indicated stripe */
1587 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1588 RF_ASSERT(row == stripe);
1589
1590 /* For previously issued reads, elevate them to normal
1591 * priority. If the I/O has already completed, it won't be
1592 * found in the queue, and hence this will be a no-op. For
1593 * unissued reads, allocate buffers and issue new reads. The
1594 * fact that we've set the FORCED bit means that the regular
1595 * recon procs will not re-issue these reqs */
1596 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1597 if ((diskno = diskids[i]) != fcol) {
1598 if (pssPtr->issued[diskno]) {
1599 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1600 if (rf_reconDebug && nPromoted)
1601 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1602 } else {
1603 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1604 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1605 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1606 * location */
1607 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1608 new_rbuf->which_ru = which_ru;
1609 new_rbuf->failedDiskSectorOffset = fd_offset;
1610 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1611
1612 /* use NULL b_proc b/c all addrs
1613 * should be in kernel space */
1614 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1615 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1616 NULL, (void *) raidPtr, 0, NULL);
1617
1618 RF_ASSERT(req); /* XXX -- fix this --
1619 * XXX */
1620
1621 new_rbuf->arg = req;
1622 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1623 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1624 }
1625 }
1626 /* if the write is sitting in the disk queue, elevate its
1627 * priority */
1628 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1629 printf("raid%d: promoted write to row %d col %d\n",
1630 raidPtr->raidid, row, fcol);
1631 }
1632 /* install a callback descriptor to be invoked when recon completes on
1633 * this parity stripe. */
1634 cb = rf_AllocCallbackDesc();
1635 /* XXX the following is bogus.. These functions don't really match!!
1636 * GO */
1637 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1638 cb->callbackArg.p = (void *) cbArg;
1639 cb->next = pssPtr->procWaitList;
1640 pssPtr->procWaitList = cb;
1641 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1642 raidPtr->raidid, psid);
1643
1644 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1645 return (1);
1646 }
1647 /* called upon the completion of a forced reconstruction read.
1648 * all we do is schedule the FORCEDREADONE event.
1649 * called at interrupt context in the kernel, so don't do anything illegal here.
1650 */
1651 static void
1652 ForceReconReadDoneProc(arg, status)
1653 void *arg;
1654 int status;
1655 {
1656 RF_ReconBuffer_t *rbuf = arg;
1657
1658 if (status) {
1659 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1660 * recon read
1661 * failed!\n"); */
1662 RF_PANIC();
1663 }
1664 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1665 }
1666 /* releases a block on the reconstruction of the indicated stripe */
1667 int
1668 rf_UnblockRecon(raidPtr, asmap)
1669 RF_Raid_t *raidPtr;
1670 RF_AccessStripeMap_t *asmap;
1671 {
1672 RF_RowCol_t row = asmap->origRow;
1673 RF_StripeNum_t stripeID = asmap->stripeID;
1674 RF_ReconParityStripeStatus_t *pssPtr;
1675 RF_ReconUnitNum_t which_ru;
1676 RF_StripeNum_t psid;
1677 int created = 0;
1678 RF_CallbackDesc_t *cb;
1679
1680 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1681 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1682 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1683
1684 /* When recon is forced, the pss desc can get deleted before we get
1685 * back to unblock recon. But, this can _only_ happen when recon is
1686 * forced. It would be good to put some kind of sanity check here, but
1687 * how to decide if recon was just forced or not? */
1688 if (!pssPtr) {
1689 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1690 * RU %d\n",psid,which_ru); */
1691 if (rf_reconDebug || rf_pssDebug)
1692 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1693 goto out;
1694 }
1695 pssPtr->blockCount--;
1696 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1697 raidPtr->raidid, psid, pssPtr->blockCount);
1698 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1699
1700 /* unblock recon before calling CauseReconEvent in case
1701 * CauseReconEvent causes us to try to issue a new read before
1702 * returning here. */
1703 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1704
1705
1706 while (pssPtr->blockWaitList) {
1707 /* spin through the block-wait list and
1708 release all the waiters */
1709 cb = pssPtr->blockWaitList;
1710 pssPtr->blockWaitList = cb->next;
1711 cb->next = NULL;
1712 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1713 rf_FreeCallbackDesc(cb);
1714 }
1715 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1716 /* if no recon was requested while recon was blocked */
1717 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1718 }
1719 }
1720 out:
1721 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1722 return (0);
1723 }
1724