rf_reconstruct.c revision 1.46 1 /* $NetBSD: rf_reconstruct.c,v 1.46 2002/10/06 05:23:55 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.46 2002/10/06 05:23:55 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #if RF_DEBUG_RECON
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* RF_DEBUG_RECON */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* RF_DEBUG_RECON */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 /**************************************************************************
162 *
163 * sets up the parameters that will be used by the reconstruction process
164 * currently there are none, except for those that the layout-specific
165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
166 *
167 * in the kernel, we fire off the recon thread.
168 *
169 **************************************************************************/
170 static void
171 rf_ShutdownReconstruction(ignored)
172 void *ignored;
173 {
174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
176 }
177
178 int
179 rf_ConfigureReconstruction(listp)
180 RF_ShutdownList_t **listp;
181 {
182 int rc;
183
184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
186 if (rf_recond_freelist == NULL)
187 return (ENOMEM);
188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
190 if (rf_rdp_freelist == NULL) {
191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
192 return (ENOMEM);
193 }
194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
195 if (rc) {
196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
197 rf_ShutdownReconstruction(NULL);
198 return (rc);
199 }
200 return (0);
201 }
202
203 static RF_RaidReconDesc_t *
204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
205 RF_Raid_t *raidPtr;
206 RF_RowCol_t row;
207 RF_RowCol_t col;
208 RF_RaidDisk_t *spareDiskPtr;
209 int numDisksDone;
210 RF_RowCol_t srow;
211 RF_RowCol_t scol;
212 {
213
214 RF_RaidReconDesc_t *reconDesc;
215
216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
217
218 reconDesc->raidPtr = raidPtr;
219 reconDesc->row = row;
220 reconDesc->col = col;
221 reconDesc->spareDiskPtr = spareDiskPtr;
222 reconDesc->numDisksDone = numDisksDone;
223 reconDesc->srow = srow;
224 reconDesc->scol = scol;
225 reconDesc->state = 0;
226 reconDesc->next = NULL;
227
228 return (reconDesc);
229 }
230
231 static void
232 FreeReconDesc(reconDesc)
233 RF_RaidReconDesc_t *reconDesc;
234 {
235 #if RF_RECON_STATS > 0
236 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
237 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
238 #endif /* RF_RECON_STATS > 0 */
239 printf("RAIDframe: %lu max exec ticks\n",
240 (long) reconDesc->maxReconExecTicks);
241 #if (RF_RECON_STATS > 0) || defined(KERNEL)
242 printf("\n");
243 #endif /* (RF_RECON_STATS > 0) || KERNEL */
244 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
245 }
246
247
248 /*****************************************************************************
249 *
250 * primary routine to reconstruct a failed disk. This should be called from
251 * within its own thread. It won't return until reconstruction completes,
252 * fails, or is aborted.
253 *****************************************************************************/
254 int
255 rf_ReconstructFailedDisk(raidPtr, row, col)
256 RF_Raid_t *raidPtr;
257 RF_RowCol_t row;
258 RF_RowCol_t col;
259 {
260 RF_LayoutSW_t *lp;
261 int rc;
262
263 lp = raidPtr->Layout.map;
264 if (lp->SubmitReconBuffer) {
265 /*
266 * The current infrastructure only supports reconstructing one
267 * disk at a time for each array.
268 */
269 RF_LOCK_MUTEX(raidPtr->mutex);
270 while (raidPtr->reconInProgress) {
271 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
272 }
273 raidPtr->reconInProgress++;
274 RF_UNLOCK_MUTEX(raidPtr->mutex);
275 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
276 RF_LOCK_MUTEX(raidPtr->mutex);
277 raidPtr->reconInProgress--;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 } else {
280 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
281 lp->parityConfig);
282 rc = EIO;
283 }
284 RF_SIGNAL_COND(raidPtr->waitForReconCond);
285 return (rc);
286 }
287
288 int
289 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
290 RF_Raid_t *raidPtr;
291 RF_RowCol_t row;
292 RF_RowCol_t col;
293 {
294 RF_ComponentLabel_t c_label;
295 RF_RaidDisk_t *spareDiskPtr = NULL;
296 RF_RaidReconDesc_t *reconDesc;
297 RF_RowCol_t srow, scol;
298 int numDisksDone = 0, rc;
299
300 /* first look for a spare drive onto which to reconstruct the data */
301 /* spare disk descriptors are stored in row 0. This may have to
302 * change eventually */
303
304 RF_LOCK_MUTEX(raidPtr->mutex);
305 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
306
307 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
308 if (raidPtr->status[row] != rf_rs_degraded) {
309 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
310 RF_UNLOCK_MUTEX(raidPtr->mutex);
311 return (EINVAL);
312 }
313 srow = row;
314 scol = (-1);
315 } else {
316 srow = 0;
317 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
318 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
319 spareDiskPtr = &raidPtr->Disks[srow][scol];
320 spareDiskPtr->status = rf_ds_used_spare;
321 break;
322 }
323 }
324 if (!spareDiskPtr) {
325 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
326 RF_UNLOCK_MUTEX(raidPtr->mutex);
327 return (ENOSPC);
328 }
329 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
330 }
331 RF_UNLOCK_MUTEX(raidPtr->mutex);
332
333 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
334 raidPtr->reconDesc = (void *) reconDesc;
335 #if RF_RECON_STATS > 0
336 reconDesc->hsStallCount = 0;
337 reconDesc->numReconExecDelays = 0;
338 reconDesc->numReconEventWaits = 0;
339 #endif /* RF_RECON_STATS > 0 */
340 reconDesc->reconExecTimerRunning = 0;
341 reconDesc->reconExecTicks = 0;
342 reconDesc->maxReconExecTicks = 0;
343 rc = rf_ContinueReconstructFailedDisk(reconDesc);
344
345 if (!rc) {
346 /* fix up the component label */
347 /* Don't actually need the read here.. */
348 raidread_component_label(
349 raidPtr->raid_cinfo[srow][scol].ci_dev,
350 raidPtr->raid_cinfo[srow][scol].ci_vp,
351 &c_label);
352
353 raid_init_component_label( raidPtr, &c_label);
354 c_label.row = row;
355 c_label.column = col;
356 c_label.clean = RF_RAID_DIRTY;
357 c_label.status = rf_ds_optimal;
358 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
359
360 /* We've just done a rebuild based on all the other
361 disks, so at this point the parity is known to be
362 clean, even if it wasn't before. */
363
364 /* XXX doesn't hold for RAID 6!!*/
365
366 raidPtr->parity_good = RF_RAID_CLEAN;
367
368 /* XXXX MORE NEEDED HERE */
369
370 raidwrite_component_label(
371 raidPtr->raid_cinfo[srow][scol].ci_dev,
372 raidPtr->raid_cinfo[srow][scol].ci_vp,
373 &c_label);
374
375 }
376 return (rc);
377 }
378
379 /*
380
381 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
382 and you don't get a spare until the next Monday. With this function
383 (and hot-swappable drives) you can now put your new disk containing
384 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
385 rebuild the data "on the spot".
386
387 */
388
389 int
390 rf_ReconstructInPlace(raidPtr, row, col)
391 RF_Raid_t *raidPtr;
392 RF_RowCol_t row;
393 RF_RowCol_t col;
394 {
395 RF_RaidDisk_t *spareDiskPtr = NULL;
396 RF_RaidReconDesc_t *reconDesc;
397 RF_LayoutSW_t *lp;
398 RF_ComponentLabel_t c_label;
399 int numDisksDone = 0, rc;
400 struct partinfo dpart;
401 struct vnode *vp;
402 struct vattr va;
403 struct proc *proc;
404 int retcode;
405 int ac;
406
407 lp = raidPtr->Layout.map;
408 if (lp->SubmitReconBuffer) {
409 /*
410 * The current infrastructure only supports reconstructing one
411 * disk at a time for each array.
412 */
413 RF_LOCK_MUTEX(raidPtr->mutex);
414 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
415 (raidPtr->numFailures > 0)) {
416 /* XXX 0 above shouldn't be constant!!! */
417 /* some component other than this has failed.
418 Let's not make things worse than they already
419 are... */
420 printf("raid%d: Unable to reconstruct to disk at:\n",
421 raidPtr->raidid);
422 printf("raid%d: Row: %d Col: %d Too many failures.\n",
423 raidPtr->raidid, row, col);
424 RF_UNLOCK_MUTEX(raidPtr->mutex);
425 return (EINVAL);
426 }
427 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
428 printf("raid%d: Unable to reconstruct to disk at:\n",
429 raidPtr->raidid);
430 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col);
431
432 RF_UNLOCK_MUTEX(raidPtr->mutex);
433 return (EINVAL);
434 }
435 if (raidPtr->Disks[row][col].status == rf_ds_spared) {
436 return (EINVAL);
437 }
438
439 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
440 /* "It's gone..." */
441 raidPtr->numFailures++;
442 raidPtr->Disks[row][col].status = rf_ds_failed;
443 raidPtr->status[row] = rf_rs_degraded;
444 rf_update_component_labels(raidPtr,
445 RF_NORMAL_COMPONENT_UPDATE);
446 }
447
448 while (raidPtr->reconInProgress) {
449 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
450 }
451
452 raidPtr->reconInProgress++;
453
454
455 /* first look for a spare drive onto which to reconstruct
456 the data. spare disk descriptors are stored in row 0.
457 This may have to change eventually */
458
459 /* Actually, we don't care if it's failed or not...
460 On a RAID set with correct parity, this function
461 should be callable on any component without ill affects. */
462 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
463 */
464
465 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
466 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
467
468 raidPtr->reconInProgress--;
469 RF_UNLOCK_MUTEX(raidPtr->mutex);
470 return (EINVAL);
471 }
472
473 proc = raidPtr->engine_thread;
474
475 /* This device may have been opened successfully the
476 first time. Close it before trying to open it again.. */
477
478 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
479 #if 0
480 printf("Closed the open device: %s\n",
481 raidPtr->Disks[row][col].devname);
482 #endif
483 vp = raidPtr->raid_cinfo[row][col].ci_vp;
484 ac = raidPtr->Disks[row][col].auto_configured;
485 rf_close_component(raidPtr, vp, ac);
486 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
487 }
488 /* note that this disk was *not* auto_configured (any longer)*/
489 raidPtr->Disks[row][col].auto_configured = 0;
490
491 #if 0
492 printf("About to (re-)open the device for rebuilding: %s\n",
493 raidPtr->Disks[row][col].devname);
494 #endif
495
496 retcode = raidlookup(raidPtr->Disks[row][col].devname,
497 proc, &vp);
498
499 if (retcode) {
500 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
501 raidPtr->Disks[row][col].devname, retcode);
502
503 /* the component isn't responding properly...
504 must be still dead :-( */
505 raidPtr->reconInProgress--;
506 RF_UNLOCK_MUTEX(raidPtr->mutex);
507 return(retcode);
508
509 } else {
510
511 /* Ok, so we can at least do a lookup...
512 How about actually getting a vp for it? */
513
514 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
515 proc)) != 0) {
516 raidPtr->reconInProgress--;
517 RF_UNLOCK_MUTEX(raidPtr->mutex);
518 return(retcode);
519 }
520 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
521 FREAD, proc->p_ucred, proc);
522 if (retcode) {
523 raidPtr->reconInProgress--;
524 RF_UNLOCK_MUTEX(raidPtr->mutex);
525 return(retcode);
526 }
527 raidPtr->Disks[row][col].blockSize =
528 dpart.disklab->d_secsize;
529
530 raidPtr->Disks[row][col].numBlocks =
531 dpart.part->p_size - rf_protectedSectors;
532
533 raidPtr->raid_cinfo[row][col].ci_vp = vp;
534 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
535
536 raidPtr->Disks[row][col].dev = va.va_rdev;
537
538 /* we allow the user to specify that only a
539 fraction of the disks should be used this is
540 just for debug: it speeds up
541 * the parity scan */
542 raidPtr->Disks[row][col].numBlocks =
543 raidPtr->Disks[row][col].numBlocks *
544 rf_sizePercentage / 100;
545 }
546
547
548
549 spareDiskPtr = &raidPtr->Disks[row][col];
550 spareDiskPtr->status = rf_ds_used_spare;
551
552 printf("raid%d: initiating in-place reconstruction on\n",
553 raidPtr->raidid);
554 printf("raid%d: row %d col %d -> spare at row %d col %d\n",
555 raidPtr->raidid, row, col, row, col);
556
557 RF_UNLOCK_MUTEX(raidPtr->mutex);
558
559 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
560 spareDiskPtr, numDisksDone,
561 row, col);
562 raidPtr->reconDesc = (void *) reconDesc;
563 #if RF_RECON_STATS > 0
564 reconDesc->hsStallCount = 0;
565 reconDesc->numReconExecDelays = 0;
566 reconDesc->numReconEventWaits = 0;
567 #endif /* RF_RECON_STATS > 0 */
568 reconDesc->reconExecTimerRunning = 0;
569 reconDesc->reconExecTicks = 0;
570 reconDesc->maxReconExecTicks = 0;
571 rc = rf_ContinueReconstructFailedDisk(reconDesc);
572
573 RF_LOCK_MUTEX(raidPtr->mutex);
574 raidPtr->reconInProgress--;
575 RF_UNLOCK_MUTEX(raidPtr->mutex);
576
577 } else {
578 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
579 lp->parityConfig);
580 rc = EIO;
581 }
582 RF_LOCK_MUTEX(raidPtr->mutex);
583
584 if (!rc) {
585 /* Need to set these here, as at this point it'll be claiming
586 that the disk is in rf_ds_spared! But we know better :-) */
587
588 raidPtr->Disks[row][col].status = rf_ds_optimal;
589 raidPtr->status[row] = rf_rs_optimal;
590
591 /* fix up the component label */
592 /* Don't actually need the read here.. */
593 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
594 raidPtr->raid_cinfo[row][col].ci_vp,
595 &c_label);
596
597 raid_init_component_label(raidPtr, &c_label);
598
599 c_label.row = row;
600 c_label.column = col;
601
602 /* We've just done a rebuild based on all the other
603 disks, so at this point the parity is known to be
604 clean, even if it wasn't before. */
605
606 /* XXX doesn't hold for RAID 6!!*/
607
608 raidPtr->parity_good = RF_RAID_CLEAN;
609
610 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
611 raidPtr->raid_cinfo[row][col].ci_vp,
612 &c_label);
613
614 }
615 RF_UNLOCK_MUTEX(raidPtr->mutex);
616 RF_SIGNAL_COND(raidPtr->waitForReconCond);
617 return (rc);
618 }
619
620
621 int
622 rf_ContinueReconstructFailedDisk(reconDesc)
623 RF_RaidReconDesc_t *reconDesc;
624 {
625 RF_Raid_t *raidPtr = reconDesc->raidPtr;
626 RF_RowCol_t row = reconDesc->row;
627 RF_RowCol_t col = reconDesc->col;
628 RF_RowCol_t srow = reconDesc->srow;
629 RF_RowCol_t scol = reconDesc->scol;
630 RF_ReconMap_t *mapPtr;
631 RF_ReconCtrl_t *tmp_reconctrl;
632 RF_ReconEvent_t *event;
633 struct timeval etime, elpsd;
634 unsigned long xor_s, xor_resid_us;
635 int retcode, i, ds;
636
637 switch (reconDesc->state) {
638
639
640 case 0:
641
642 raidPtr->accumXorTimeUs = 0;
643
644 /* create one trace record per physical disk */
645 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
646
647 /* quiesce the array prior to starting recon. this is needed
648 * to assure no nasty interactions with pending user writes.
649 * We need to do this before we change the disk or row status. */
650 reconDesc->state = 1;
651
652 Dprintf("RECON: begin request suspend\n");
653 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
654 Dprintf("RECON: end request suspend\n");
655 rf_StartUserStats(raidPtr); /* zero out the stats kept on
656 * user accs */
657
658 /* fall through to state 1 */
659
660 case 1:
661
662 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
663 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol);
664
665 RF_LOCK_MUTEX(raidPtr->mutex);
666
667 /* create the reconstruction control pointer and install it in
668 * the right slot */
669 raidPtr->reconControl[row] = tmp_reconctrl;
670 mapPtr = raidPtr->reconControl[row]->reconMap;
671 raidPtr->status[row] = rf_rs_reconstructing;
672 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
673 raidPtr->Disks[row][col].spareRow = srow;
674 raidPtr->Disks[row][col].spareCol = scol;
675
676 RF_UNLOCK_MUTEX(raidPtr->mutex);
677
678 RF_GETTIME(raidPtr->reconControl[row]->starttime);
679
680 /* now start up the actual reconstruction: issue a read for
681 * each surviving disk */
682
683 reconDesc->numDisksDone = 0;
684 for (i = 0; i < raidPtr->numCol; i++) {
685 if (i != col) {
686 /* find and issue the next I/O on the
687 * indicated disk */
688 if (IssueNextReadRequest(raidPtr, row, i)) {
689 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
690 reconDesc->numDisksDone++;
691 }
692 }
693 }
694
695 case 2:
696 Dprintf("RECON: resume requests\n");
697 rf_ResumeNewRequests(raidPtr);
698
699
700 reconDesc->state = 3;
701
702 case 3:
703
704 /* process reconstruction events until all disks report that
705 * they've completed all work */
706 mapPtr = raidPtr->reconControl[row]->reconMap;
707
708
709
710 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
711
712 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
713 RF_ASSERT(event);
714
715 if (ProcessReconEvent(raidPtr, row, event))
716 reconDesc->numDisksDone++;
717 raidPtr->reconControl[row]->numRUsTotal =
718 mapPtr->totalRUs;
719 raidPtr->reconControl[row]->numRUsComplete =
720 mapPtr->totalRUs -
721 rf_UnitsLeftToReconstruct(mapPtr);
722
723 raidPtr->reconControl[row]->percentComplete =
724 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
725 #if RF_DEBUG_RECON
726 if (rf_prReconSched) {
727 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
728 }
729 #endif
730 }
731
732
733
734 reconDesc->state = 4;
735
736
737 case 4:
738 mapPtr = raidPtr->reconControl[row]->reconMap;
739 if (rf_reconDebug) {
740 printf("RECON: all reads completed\n");
741 }
742 /* at this point all the reads have completed. We now wait
743 * for any pending writes to complete, and then we're done */
744
745 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
746
747 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
748 RF_ASSERT(event);
749
750 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
751 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
752 #if RF_DEBUG_RECON
753 if (rf_prReconSched) {
754 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
755 }
756 #endif
757 }
758 reconDesc->state = 5;
759
760 case 5:
761 /* Success: mark the dead disk as reconstructed. We quiesce
762 * the array here to assure no nasty interactions with pending
763 * user accesses when we free up the psstatus structure as
764 * part of FreeReconControl() */
765
766 reconDesc->state = 6;
767
768 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
769 rf_StopUserStats(raidPtr);
770 rf_PrintUserStats(raidPtr); /* print out the stats on user
771 * accs accumulated during
772 * recon */
773
774 /* fall through to state 6 */
775 case 6:
776
777
778
779 RF_LOCK_MUTEX(raidPtr->mutex);
780 raidPtr->numFailures--;
781 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
782 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
783 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
784 RF_UNLOCK_MUTEX(raidPtr->mutex);
785 RF_GETTIME(etime);
786 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
787
788 /* XXX -- why is state 7 different from state 6 if there is no
789 * return() here? -- XXX Note that I set elpsd above & use it
790 * below, so if you put a return here you'll have to fix this.
791 * (also, FreeReconControl is called below) */
792
793 case 7:
794
795 rf_ResumeNewRequests(raidPtr);
796
797 printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
798 raidPtr->raidid, row, col);
799 xor_s = raidPtr->accumXorTimeUs / 1000000;
800 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
801 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
802 raidPtr->raidid,
803 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
804 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
805 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
806 raidPtr->raidid,
807 (int) raidPtr->reconControl[row]->starttime.tv_sec,
808 (int) raidPtr->reconControl[row]->starttime.tv_usec,
809 (int) etime.tv_sec, (int) etime.tv_usec);
810
811 #if RF_RECON_STATS > 0
812 printf("raid%d: Total head-sep stall count was %d\n",
813 raidPtr->raidid, (int) reconDesc->hsStallCount);
814 #endif /* RF_RECON_STATS > 0 */
815 rf_FreeReconControl(raidPtr, row);
816 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
817 FreeReconDesc(reconDesc);
818
819 }
820
821 SignalReconDone(raidPtr);
822 return (0);
823 }
824 /*****************************************************************************
825 * do the right thing upon each reconstruction event.
826 * returns nonzero if and only if there is nothing left unread on the
827 * indicated disk
828 *****************************************************************************/
829 static int
830 ProcessReconEvent(raidPtr, frow, event)
831 RF_Raid_t *raidPtr;
832 RF_RowCol_t frow;
833 RF_ReconEvent_t *event;
834 {
835 int retcode = 0, submitblocked;
836 RF_ReconBuffer_t *rbuf;
837 RF_SectorCount_t sectorsPerRU;
838
839 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
840 switch (event->type) {
841
842 /* a read I/O has completed */
843 case RF_REVENT_READDONE:
844 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
845 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
846 frow, event->col, rbuf->parityStripeID);
847 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
848 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
849 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
850 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
851 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
852 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
853 if (!submitblocked)
854 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
855 break;
856
857 /* a write I/O has completed */
858 case RF_REVENT_WRITEDONE:
859 #if RF_DEBUG_RECON
860 if (rf_floatingRbufDebug) {
861 rf_CheckFloatingRbufCount(raidPtr, 1);
862 }
863 #endif
864 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
865 rbuf = (RF_ReconBuffer_t *) event->arg;
866 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
867 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
868 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
869 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
870 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
871 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
872
873 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
874 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
875 raidPtr->numFullReconBuffers--;
876 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
877 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
878 } else
879 if (rbuf->type == RF_RBUF_TYPE_FORCED)
880 rf_FreeReconBuffer(rbuf);
881 else
882 RF_ASSERT(0);
883 break;
884
885 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
886 * cleared */
887 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
888 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
889 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
890 * BUFCLEAR event if we
891 * couldn't submit */
892 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
893 break;
894
895 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
896 * blockage has been cleared */
897 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
898 retcode = TryToRead(raidPtr, frow, event->col);
899 break;
900
901 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
902 * reconstruction blockage has been
903 * cleared */
904 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
905 retcode = TryToRead(raidPtr, frow, event->col);
906 break;
907
908 /* a buffer has become ready to write */
909 case RF_REVENT_BUFREADY:
910 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
911 retcode = IssueNextWriteRequest(raidPtr, frow);
912 #if RF_DEBUG_RECON
913 if (rf_floatingRbufDebug) {
914 rf_CheckFloatingRbufCount(raidPtr, 1);
915 }
916 #endif
917 break;
918
919 /* we need to skip the current RU entirely because it got
920 * recon'd while we were waiting for something else to happen */
921 case RF_REVENT_SKIP:
922 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
923 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
924 break;
925
926 /* a forced-reconstruction read access has completed. Just
927 * submit the buffer */
928 case RF_REVENT_FORCEDREADDONE:
929 rbuf = (RF_ReconBuffer_t *) event->arg;
930 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
931 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
932 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
933 RF_ASSERT(!submitblocked);
934 break;
935
936 default:
937 RF_PANIC();
938 }
939 rf_FreeReconEventDesc(event);
940 return (retcode);
941 }
942 /*****************************************************************************
943 *
944 * find the next thing that's needed on the indicated disk, and issue
945 * a read request for it. We assume that the reconstruction buffer
946 * associated with this process is free to receive the data. If
947 * reconstruction is blocked on the indicated RU, we issue a
948 * blockage-release request instead of a physical disk read request.
949 * If the current disk gets too far ahead of the others, we issue a
950 * head-separation wait request and return.
951 *
952 * ctrl->{ru_count, curPSID, diskOffset} and
953 * rbuf->failedDiskSectorOffset are maintained to point to the unit
954 * we're currently accessing. Note that this deviates from the
955 * standard C idiom of having counters point to the next thing to be
956 * accessed. This allows us to easily retry when we're blocked by
957 * head separation or reconstruction-blockage events.
958 *
959 * returns nonzero if and only if there is nothing left unread on the
960 * indicated disk
961 *
962 *****************************************************************************/
963 static int
964 IssueNextReadRequest(raidPtr, row, col)
965 RF_Raid_t *raidPtr;
966 RF_RowCol_t row;
967 RF_RowCol_t col;
968 {
969 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
970 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
971 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
972 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
973 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
974 int do_new_check = 0, retcode = 0, status;
975
976 /* if we are currently the slowest disk, mark that we have to do a new
977 * check */
978 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
979 do_new_check = 1;
980
981 while (1) {
982
983 ctrl->ru_count++;
984 if (ctrl->ru_count < RUsPerPU) {
985 ctrl->diskOffset += sectorsPerRU;
986 rbuf->failedDiskSectorOffset += sectorsPerRU;
987 } else {
988 ctrl->curPSID++;
989 ctrl->ru_count = 0;
990 /* code left over from when head-sep was based on
991 * parity stripe id */
992 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
993 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
994 return (1); /* finito! */
995 }
996 /* find the disk offsets of the start of the parity
997 * stripe on both the current disk and the failed
998 * disk. skip this entire parity stripe if either disk
999 * does not appear in the indicated PS */
1000 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1001 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1002 if (status) {
1003 ctrl->ru_count = RUsPerPU - 1;
1004 continue;
1005 }
1006 }
1007 rbuf->which_ru = ctrl->ru_count;
1008
1009 /* skip this RU if it's already been reconstructed */
1010 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1011 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1012 continue;
1013 }
1014 break;
1015 }
1016 ctrl->headSepCounter++;
1017 if (do_new_check)
1018 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1019
1020
1021 /* at this point, we have definitely decided what to do, and we have
1022 * only to see if we can actually do it now */
1023 rbuf->parityStripeID = ctrl->curPSID;
1024 rbuf->which_ru = ctrl->ru_count;
1025 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1026 sizeof(raidPtr->recon_tracerecs[col]));
1027 raidPtr->recon_tracerecs[col].reconacc = 1;
1028 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1029 retcode = TryToRead(raidPtr, row, col);
1030 return (retcode);
1031 }
1032
1033 /*
1034 * tries to issue the next read on the indicated disk. We may be
1035 * blocked by (a) the heads being too far apart, or (b) recon on the
1036 * indicated RU being blocked due to a write by a user thread. In
1037 * this case, we issue a head-sep or blockage wait request, which will
1038 * cause this same routine to be invoked again later when the blockage
1039 * has cleared.
1040 */
1041
1042 static int
1043 TryToRead(raidPtr, row, col)
1044 RF_Raid_t *raidPtr;
1045 RF_RowCol_t row;
1046 RF_RowCol_t col;
1047 {
1048 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1049 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1050 RF_StripeNum_t psid = ctrl->curPSID;
1051 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1052 RF_DiskQueueData_t *req;
1053 int status, created = 0;
1054 RF_ReconParityStripeStatus_t *pssPtr;
1055
1056 /* if the current disk is too far ahead of the others, issue a
1057 * head-separation wait and return */
1058 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1059 return (0);
1060 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1061 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1062
1063 /* if recon is blocked on the indicated parity stripe, issue a
1064 * block-wait request and return. this also must mark the indicated RU
1065 * in the stripe as under reconstruction if not blocked. */
1066 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1067 if (status == RF_PSS_RECON_BLOCKED) {
1068 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1069 goto out;
1070 } else
1071 if (status == RF_PSS_FORCED_ON_WRITE) {
1072 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1073 goto out;
1074 }
1075 /* make one last check to be sure that the indicated RU didn't get
1076 * reconstructed while we were waiting for something else to happen.
1077 * This is unfortunate in that it causes us to make this check twice
1078 * in the normal case. Might want to make some attempt to re-work
1079 * this so that we only do this check if we've definitely blocked on
1080 * one of the above checks. When this condition is detected, we may
1081 * have just created a bogus status entry, which we need to delete. */
1082 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1083 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1084 if (created)
1085 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1086 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1087 goto out;
1088 }
1089 /* found something to read. issue the I/O */
1090 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1091 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1092 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1093 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1094 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1095 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1096 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1097
1098 /* should be ok to use a NULL proc pointer here, all the bufs we use
1099 * should be in kernel space */
1100 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1101 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1102
1103 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1104
1105 ctrl->rbuf->arg = (void *) req;
1106 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1107 pssPtr->issued[col] = 1;
1108
1109 out:
1110 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1111 return (0);
1112 }
1113
1114
1115 /*
1116 * given a parity stripe ID, we want to find out whether both the
1117 * current disk and the failed disk exist in that parity stripe. If
1118 * not, we want to skip this whole PS. If so, we want to find the
1119 * disk offset of the start of the PS on both the current disk and the
1120 * failed disk.
1121 *
1122 * this works by getting a list of disks comprising the indicated
1123 * parity stripe, and searching the list for the current and failed
1124 * disks. Once we've decided they both exist in the parity stripe, we
1125 * need to decide whether each is data or parity, so that we'll know
1126 * which mapping function to call to get the corresponding disk
1127 * offsets.
1128 *
1129 * this is kind of unpleasant, but doing it this way allows the
1130 * reconstruction code to use parity stripe IDs rather than physical
1131 * disks address to march through the failed disk, which greatly
1132 * simplifies a lot of code, as well as eliminating the need for a
1133 * reverse-mapping function. I also think it will execute faster,
1134 * since the calls to the mapping module are kept to a minimum.
1135 *
1136 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1137 * THE STRIPE IN THE CORRECT ORDER */
1138
1139
1140 static int
1141 ComputePSDiskOffsets(
1142 RF_Raid_t * raidPtr, /* raid descriptor */
1143 RF_StripeNum_t psid, /* parity stripe identifier */
1144 RF_RowCol_t row, /* row and column of disk to find the offsets
1145 * for */
1146 RF_RowCol_t col,
1147 RF_SectorNum_t * outDiskOffset,
1148 RF_SectorNum_t * outFailedDiskSectorOffset,
1149 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1150 RF_RowCol_t * spCol,
1151 RF_SectorNum_t * spOffset)
1152 { /* OUT: offset into disk containing spare unit */
1153 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1154 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1155 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1156 RF_RowCol_t *diskids;
1157 u_int i, j, k, i_offset, j_offset;
1158 RF_RowCol_t prow, pcol;
1159 int testcol, testrow;
1160 RF_RowCol_t stripe;
1161 RF_SectorNum_t poffset;
1162 char i_is_parity = 0, j_is_parity = 0;
1163 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1164
1165 /* get a listing of the disks comprising that stripe */
1166 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1167 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1168 RF_ASSERT(diskids);
1169
1170 /* reject this entire parity stripe if it does not contain the
1171 * indicated disk or it does not contain the failed disk */
1172 if (row != stripe)
1173 goto skipit;
1174 for (i = 0; i < stripeWidth; i++) {
1175 if (col == diskids[i])
1176 break;
1177 }
1178 if (i == stripeWidth)
1179 goto skipit;
1180 for (j = 0; j < stripeWidth; j++) {
1181 if (fcol == diskids[j])
1182 break;
1183 }
1184 if (j == stripeWidth) {
1185 goto skipit;
1186 }
1187 /* find out which disk the parity is on */
1188 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1189
1190 /* find out if either the current RU or the failed RU is parity */
1191 /* also, if the parity occurs in this stripe prior to the data and/or
1192 * failed col, we need to decrement i and/or j */
1193 for (k = 0; k < stripeWidth; k++)
1194 if (diskids[k] == pcol)
1195 break;
1196 RF_ASSERT(k < stripeWidth);
1197 i_offset = i;
1198 j_offset = j;
1199 if (k < i)
1200 i_offset--;
1201 else
1202 if (k == i) {
1203 i_is_parity = 1;
1204 i_offset = 0;
1205 } /* set offsets to zero to disable multiply
1206 * below */
1207 if (k < j)
1208 j_offset--;
1209 else
1210 if (k == j) {
1211 j_is_parity = 1;
1212 j_offset = 0;
1213 }
1214 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1215 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1216 * tells us how far into the stripe the [current,failed] disk is. */
1217
1218 /* call the mapping routine to get the offset into the current disk,
1219 * repeat for failed disk. */
1220 if (i_is_parity)
1221 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1222 else
1223 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1224
1225 RF_ASSERT(row == testrow && col == testcol);
1226
1227 if (j_is_parity)
1228 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1229 else
1230 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1231 RF_ASSERT(row == testrow && fcol == testcol);
1232
1233 /* now locate the spare unit for the failed unit */
1234 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1235 if (j_is_parity)
1236 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1237 else
1238 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1239 } else {
1240 *spRow = raidPtr->reconControl[row]->spareRow;
1241 *spCol = raidPtr->reconControl[row]->spareCol;
1242 *spOffset = *outFailedDiskSectorOffset;
1243 }
1244
1245 return (0);
1246
1247 skipit:
1248 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1249 psid, row, col);
1250 return (1);
1251 }
1252 /* this is called when a buffer has become ready to write to the replacement disk */
1253 static int
1254 IssueNextWriteRequest(raidPtr, row)
1255 RF_Raid_t *raidPtr;
1256 RF_RowCol_t row;
1257 {
1258 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1259 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1260 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1261 RF_ReconBuffer_t *rbuf;
1262 RF_DiskQueueData_t *req;
1263
1264 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1265 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1266 * have gotten the event that sent us here */
1267 RF_ASSERT(rbuf->pssPtr);
1268
1269 rbuf->pssPtr->writeRbuf = rbuf;
1270 rbuf->pssPtr = NULL;
1271
1272 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1273 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1274 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1275 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1276 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1277 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1278
1279 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1280 * kernel space */
1281 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1282 sectorsPerRU, rbuf->buffer,
1283 rbuf->parityStripeID, rbuf->which_ru,
1284 ReconWriteDoneProc, (void *) rbuf, NULL,
1285 &raidPtr->recon_tracerecs[fcol],
1286 (void *) raidPtr, 0, NULL);
1287
1288 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1289
1290 rbuf->arg = (void *) req;
1291 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1292
1293 return (0);
1294 }
1295
1296 /*
1297 * this gets called upon the completion of a reconstruction read
1298 * operation the arg is a pointer to the per-disk reconstruction
1299 * control structure for the process that just finished a read.
1300 *
1301 * called at interrupt context in the kernel, so don't do anything
1302 * illegal here.
1303 */
1304 static int
1305 ReconReadDoneProc(arg, status)
1306 void *arg;
1307 int status;
1308 {
1309 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1310 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1311
1312 if (status) {
1313 /*
1314 * XXX
1315 */
1316 printf("Recon read failed!\n");
1317 RF_PANIC();
1318 }
1319 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1320 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1321 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1322 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1323 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1324
1325 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1326 return (0);
1327 }
1328 /* this gets called upon the completion of a reconstruction write operation.
1329 * the arg is a pointer to the rbuf that was just written
1330 *
1331 * called at interrupt context in the kernel, so don't do anything illegal here.
1332 */
1333 static int
1334 ReconWriteDoneProc(arg, status)
1335 void *arg;
1336 int status;
1337 {
1338 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1339
1340 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1341 if (status) {
1342 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1343 * write failed!\n"); */
1344 RF_PANIC();
1345 }
1346 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1347 return (0);
1348 }
1349
1350
1351 /*
1352 * computes a new minimum head sep, and wakes up anyone who needs to
1353 * be woken as a result
1354 */
1355 static void
1356 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1357 RF_Raid_t *raidPtr;
1358 RF_RowCol_t row;
1359 RF_HeadSepLimit_t hsCtr;
1360 {
1361 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1362 RF_HeadSepLimit_t new_min;
1363 RF_RowCol_t i;
1364 RF_CallbackDesc_t *p;
1365 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1366 * of a minimum */
1367
1368
1369 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1370
1371 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1372 for (i = 0; i < raidPtr->numCol; i++)
1373 if (i != reconCtrlPtr->fcol) {
1374 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1375 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1376 }
1377 /* set the new minimum and wake up anyone who can now run again */
1378 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1379 reconCtrlPtr->minHeadSepCounter = new_min;
1380 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1381 while (reconCtrlPtr->headSepCBList) {
1382 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1383 break;
1384 p = reconCtrlPtr->headSepCBList;
1385 reconCtrlPtr->headSepCBList = p->next;
1386 p->next = NULL;
1387 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1388 rf_FreeCallbackDesc(p);
1389 }
1390
1391 }
1392 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1393 }
1394
1395 /*
1396 * checks to see that the maximum head separation will not be violated
1397 * if we initiate a reconstruction I/O on the indicated disk.
1398 * Limiting the maximum head separation between two disks eliminates
1399 * the nasty buffer-stall conditions that occur when one disk races
1400 * ahead of the others and consumes all of the floating recon buffers.
1401 * This code is complex and unpleasant but it's necessary to avoid
1402 * some very nasty, albeit fairly rare, reconstruction behavior.
1403 *
1404 * returns non-zero if and only if we have to stop working on the
1405 * indicated disk due to a head-separation delay.
1406 */
1407 static int
1408 CheckHeadSeparation(
1409 RF_Raid_t * raidPtr,
1410 RF_PerDiskReconCtrl_t * ctrl,
1411 RF_RowCol_t row,
1412 RF_RowCol_t col,
1413 RF_HeadSepLimit_t hsCtr,
1414 RF_ReconUnitNum_t which_ru)
1415 {
1416 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1417 RF_CallbackDesc_t *cb, *p, *pt;
1418 int retval = 0;
1419
1420 /* if we're too far ahead of the slowest disk, stop working on this
1421 * disk until the slower ones catch up. We do this by scheduling a
1422 * wakeup callback for the time when the slowest disk has caught up.
1423 * We define "caught up" with 20% hysteresis, i.e. the head separation
1424 * must have fallen to at most 80% of the max allowable head
1425 * separation before we'll wake up.
1426 *
1427 */
1428 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1429 if ((raidPtr->headSepLimit >= 0) &&
1430 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1431 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1432 raidPtr->raidid, row, col, ctrl->headSepCounter,
1433 reconCtrlPtr->minHeadSepCounter,
1434 raidPtr->headSepLimit);
1435 cb = rf_AllocCallbackDesc();
1436 /* the minHeadSepCounter value we have to get to before we'll
1437 * wake up. build in 20% hysteresis. */
1438 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1439 cb->row = row;
1440 cb->col = col;
1441 cb->next = NULL;
1442
1443 /* insert this callback descriptor into the sorted list of
1444 * pending head-sep callbacks */
1445 p = reconCtrlPtr->headSepCBList;
1446 if (!p)
1447 reconCtrlPtr->headSepCBList = cb;
1448 else
1449 if (cb->callbackArg.v < p->callbackArg.v) {
1450 cb->next = reconCtrlPtr->headSepCBList;
1451 reconCtrlPtr->headSepCBList = cb;
1452 } else {
1453 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1454 cb->next = p;
1455 pt->next = cb;
1456 }
1457 retval = 1;
1458 #if RF_RECON_STATS > 0
1459 ctrl->reconCtrl->reconDesc->hsStallCount++;
1460 #endif /* RF_RECON_STATS > 0 */
1461 }
1462 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1463
1464 return (retval);
1465 }
1466 /*
1467 * checks to see if reconstruction has been either forced or blocked
1468 * by a user operation. if forced, we skip this RU entirely. else if
1469 * blocked, put ourselves on the wait list. else return 0.
1470 *
1471 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1472 */
1473 static int
1474 CheckForcedOrBlockedReconstruction(
1475 RF_Raid_t * raidPtr,
1476 RF_ReconParityStripeStatus_t * pssPtr,
1477 RF_PerDiskReconCtrl_t * ctrl,
1478 RF_RowCol_t row,
1479 RF_RowCol_t col,
1480 RF_StripeNum_t psid,
1481 RF_ReconUnitNum_t which_ru)
1482 {
1483 RF_CallbackDesc_t *cb;
1484 int retcode = 0;
1485
1486 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1487 retcode = RF_PSS_FORCED_ON_WRITE;
1488 else
1489 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1490 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1491 cb = rf_AllocCallbackDesc(); /* append ourselves to
1492 * the blockage-wait
1493 * list */
1494 cb->row = row;
1495 cb->col = col;
1496 cb->next = pssPtr->blockWaitList;
1497 pssPtr->blockWaitList = cb;
1498 retcode = RF_PSS_RECON_BLOCKED;
1499 }
1500 if (!retcode)
1501 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1502 * reconstruction */
1503
1504 return (retcode);
1505 }
1506 /*
1507 * if reconstruction is currently ongoing for the indicated stripeID,
1508 * reconstruction is forced to completion and we return non-zero to
1509 * indicate that the caller must wait. If not, then reconstruction is
1510 * blocked on the indicated stripe and the routine returns zero. If
1511 * and only if we return non-zero, we'll cause the cbFunc to get
1512 * invoked with the cbArg when the reconstruction has completed.
1513 */
1514 int
1515 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1516 RF_Raid_t *raidPtr;
1517 RF_AccessStripeMap_t *asmap;
1518 void (*cbFunc) (RF_Raid_t *, void *);
1519 void *cbArg;
1520 {
1521 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1522 * we're working on */
1523 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1524 * forcing recon on */
1525 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1526 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1527 * stripe status structure */
1528 RF_StripeNum_t psid; /* parity stripe id */
1529 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1530 * offset */
1531 RF_RowCol_t *diskids;
1532 RF_RowCol_t stripe;
1533 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1534 RF_RowCol_t fcol, diskno, i;
1535 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1536 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1537 RF_CallbackDesc_t *cb;
1538 int created = 0, nPromoted;
1539
1540 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1541
1542 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1543
1544 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1545
1546 /* if recon is not ongoing on this PS, just return */
1547 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1548 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1549 return (0);
1550 }
1551 /* otherwise, we have to wait for reconstruction to complete on this
1552 * RU. */
1553 /* In order to avoid waiting for a potentially large number of
1554 * low-priority accesses to complete, we force a normal-priority (i.e.
1555 * not low-priority) reconstruction on this RU. */
1556 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1557 DDprintf1("Forcing recon on psid %ld\n", psid);
1558 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1559 * forced recon */
1560 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1561 * that we just set */
1562 fcol = raidPtr->reconControl[row]->fcol;
1563
1564 /* get a listing of the disks comprising the indicated stripe */
1565 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1566 RF_ASSERT(row == stripe);
1567
1568 /* For previously issued reads, elevate them to normal
1569 * priority. If the I/O has already completed, it won't be
1570 * found in the queue, and hence this will be a no-op. For
1571 * unissued reads, allocate buffers and issue new reads. The
1572 * fact that we've set the FORCED bit means that the regular
1573 * recon procs will not re-issue these reqs */
1574 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1575 if ((diskno = diskids[i]) != fcol) {
1576 if (pssPtr->issued[diskno]) {
1577 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1578 if (rf_reconDebug && nPromoted)
1579 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1580 } else {
1581 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1582 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1583 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1584 * location */
1585 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1586 new_rbuf->which_ru = which_ru;
1587 new_rbuf->failedDiskSectorOffset = fd_offset;
1588 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1589
1590 /* use NULL b_proc b/c all addrs
1591 * should be in kernel space */
1592 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1593 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1594 NULL, (void *) raidPtr, 0, NULL);
1595
1596 RF_ASSERT(req); /* XXX -- fix this --
1597 * XXX */
1598
1599 new_rbuf->arg = req;
1600 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1601 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1602 }
1603 }
1604 /* if the write is sitting in the disk queue, elevate its
1605 * priority */
1606 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1607 printf("raid%d: promoted write to row %d col %d\n",
1608 raidPtr->raidid, row, fcol);
1609 }
1610 /* install a callback descriptor to be invoked when recon completes on
1611 * this parity stripe. */
1612 cb = rf_AllocCallbackDesc();
1613 /* XXX the following is bogus.. These functions don't really match!!
1614 * GO */
1615 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1616 cb->callbackArg.p = (void *) cbArg;
1617 cb->next = pssPtr->procWaitList;
1618 pssPtr->procWaitList = cb;
1619 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1620 raidPtr->raidid, psid);
1621
1622 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1623 return (1);
1624 }
1625 /* called upon the completion of a forced reconstruction read.
1626 * all we do is schedule the FORCEDREADONE event.
1627 * called at interrupt context in the kernel, so don't do anything illegal here.
1628 */
1629 static void
1630 ForceReconReadDoneProc(arg, status)
1631 void *arg;
1632 int status;
1633 {
1634 RF_ReconBuffer_t *rbuf = arg;
1635
1636 if (status) {
1637 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1638 * recon read
1639 * failed!\n"); */
1640 RF_PANIC();
1641 }
1642 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1643 }
1644 /* releases a block on the reconstruction of the indicated stripe */
1645 int
1646 rf_UnblockRecon(raidPtr, asmap)
1647 RF_Raid_t *raidPtr;
1648 RF_AccessStripeMap_t *asmap;
1649 {
1650 RF_RowCol_t row = asmap->origRow;
1651 RF_StripeNum_t stripeID = asmap->stripeID;
1652 RF_ReconParityStripeStatus_t *pssPtr;
1653 RF_ReconUnitNum_t which_ru;
1654 RF_StripeNum_t psid;
1655 int created = 0;
1656 RF_CallbackDesc_t *cb;
1657
1658 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1659 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1660 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1661
1662 /* When recon is forced, the pss desc can get deleted before we get
1663 * back to unblock recon. But, this can _only_ happen when recon is
1664 * forced. It would be good to put some kind of sanity check here, but
1665 * how to decide if recon was just forced or not? */
1666 if (!pssPtr) {
1667 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1668 * RU %d\n",psid,which_ru); */
1669 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1670 if (rf_reconDebug || rf_pssDebug)
1671 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1672 #endif
1673 goto out;
1674 }
1675 pssPtr->blockCount--;
1676 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1677 raidPtr->raidid, psid, pssPtr->blockCount);
1678 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1679
1680 /* unblock recon before calling CauseReconEvent in case
1681 * CauseReconEvent causes us to try to issue a new read before
1682 * returning here. */
1683 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1684
1685
1686 while (pssPtr->blockWaitList) {
1687 /* spin through the block-wait list and
1688 release all the waiters */
1689 cb = pssPtr->blockWaitList;
1690 pssPtr->blockWaitList = cb->next;
1691 cb->next = NULL;
1692 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1693 rf_FreeCallbackDesc(cb);
1694 }
1695 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1696 /* if no recon was requested while recon was blocked */
1697 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1698 }
1699 }
1700 out:
1701 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1702 return (0);
1703 }
1704