rf_reconstruct.c revision 1.48 1 /* $NetBSD: rf_reconstruct.c,v 1.48 2002/10/18 02:46:37 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.48 2002/10/18 02:46:37 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #if RF_DEBUG_RECON
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* RF_DEBUG_RECON */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* RF_DEBUG_RECON */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 /**************************************************************************
162 *
163 * sets up the parameters that will be used by the reconstruction process
164 * currently there are none, except for those that the layout-specific
165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
166 *
167 * in the kernel, we fire off the recon thread.
168 *
169 **************************************************************************/
170 static void
171 rf_ShutdownReconstruction(ignored)
172 void *ignored;
173 {
174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
176 }
177
178 int
179 rf_ConfigureReconstruction(listp)
180 RF_ShutdownList_t **listp;
181 {
182 int rc;
183
184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
186 if (rf_recond_freelist == NULL)
187 return (ENOMEM);
188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
190 if (rf_rdp_freelist == NULL) {
191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
192 return (ENOMEM);
193 }
194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
195 if (rc) {
196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
197 rf_ShutdownReconstruction(NULL);
198 return (rc);
199 }
200 return (0);
201 }
202
203 static RF_RaidReconDesc_t *
204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
205 RF_Raid_t *raidPtr;
206 RF_RowCol_t row;
207 RF_RowCol_t col;
208 RF_RaidDisk_t *spareDiskPtr;
209 int numDisksDone;
210 RF_RowCol_t srow;
211 RF_RowCol_t scol;
212 {
213
214 RF_RaidReconDesc_t *reconDesc;
215
216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
217
218 reconDesc->raidPtr = raidPtr;
219 reconDesc->row = row;
220 reconDesc->col = col;
221 reconDesc->spareDiskPtr = spareDiskPtr;
222 reconDesc->numDisksDone = numDisksDone;
223 reconDesc->srow = srow;
224 reconDesc->scol = scol;
225 reconDesc->state = 0;
226 reconDesc->next = NULL;
227
228 return (reconDesc);
229 }
230
231 static void
232 FreeReconDesc(reconDesc)
233 RF_RaidReconDesc_t *reconDesc;
234 {
235 #if RF_RECON_STATS > 0
236 printf("RAIDframe: %lu recon event waits, %lu recon delays\n",
237 (long) reconDesc->numReconEventWaits, (long) reconDesc->numReconExecDelays);
238 #endif /* RF_RECON_STATS > 0 */
239 printf("RAIDframe: %lu max exec ticks\n",
240 (long) reconDesc->maxReconExecTicks);
241 #if (RF_RECON_STATS > 0) || defined(KERNEL)
242 printf("\n");
243 #endif /* (RF_RECON_STATS > 0) || KERNEL */
244 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
245 }
246
247
248 /*****************************************************************************
249 *
250 * primary routine to reconstruct a failed disk. This should be called from
251 * within its own thread. It won't return until reconstruction completes,
252 * fails, or is aborted.
253 *****************************************************************************/
254 int
255 rf_ReconstructFailedDisk(raidPtr, row, col)
256 RF_Raid_t *raidPtr;
257 RF_RowCol_t row;
258 RF_RowCol_t col;
259 {
260 RF_LayoutSW_t *lp;
261 int rc;
262
263 lp = raidPtr->Layout.map;
264 if (lp->SubmitReconBuffer) {
265 /*
266 * The current infrastructure only supports reconstructing one
267 * disk at a time for each array.
268 */
269 RF_LOCK_MUTEX(raidPtr->mutex);
270 while (raidPtr->reconInProgress) {
271 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
272 }
273 raidPtr->reconInProgress++;
274 RF_UNLOCK_MUTEX(raidPtr->mutex);
275 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
276 RF_LOCK_MUTEX(raidPtr->mutex);
277 raidPtr->reconInProgress--;
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 } else {
280 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
281 lp->parityConfig);
282 rc = EIO;
283 }
284 RF_SIGNAL_COND(raidPtr->waitForReconCond);
285 return (rc);
286 }
287
288 int
289 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
290 RF_Raid_t *raidPtr;
291 RF_RowCol_t row;
292 RF_RowCol_t col;
293 {
294 RF_ComponentLabel_t c_label;
295 RF_RaidDisk_t *spareDiskPtr = NULL;
296 RF_RaidReconDesc_t *reconDesc;
297 RF_RowCol_t srow, scol;
298 int numDisksDone = 0, rc;
299
300 /* first look for a spare drive onto which to reconstruct the data */
301 /* spare disk descriptors are stored in row 0. This may have to
302 * change eventually */
303
304 RF_LOCK_MUTEX(raidPtr->mutex);
305 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
306
307 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
308 if (raidPtr->status[row] != rf_rs_degraded) {
309 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
310 RF_UNLOCK_MUTEX(raidPtr->mutex);
311 return (EINVAL);
312 }
313 srow = row;
314 scol = (-1);
315 } else {
316 srow = 0;
317 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
318 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
319 spareDiskPtr = &raidPtr->Disks[srow][scol];
320 spareDiskPtr->status = rf_ds_used_spare;
321 break;
322 }
323 }
324 if (!spareDiskPtr) {
325 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
326 RF_UNLOCK_MUTEX(raidPtr->mutex);
327 return (ENOSPC);
328 }
329 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
330 }
331 RF_UNLOCK_MUTEX(raidPtr->mutex);
332
333 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
334 raidPtr->reconDesc = (void *) reconDesc;
335 #if RF_RECON_STATS > 0
336 reconDesc->hsStallCount = 0;
337 reconDesc->numReconExecDelays = 0;
338 reconDesc->numReconEventWaits = 0;
339 #endif /* RF_RECON_STATS > 0 */
340 reconDesc->reconExecTimerRunning = 0;
341 reconDesc->reconExecTicks = 0;
342 reconDesc->maxReconExecTicks = 0;
343 rc = rf_ContinueReconstructFailedDisk(reconDesc);
344
345 if (!rc) {
346 /* fix up the component label */
347 /* Don't actually need the read here.. */
348 raidread_component_label(
349 raidPtr->raid_cinfo[srow][scol].ci_dev,
350 raidPtr->raid_cinfo[srow][scol].ci_vp,
351 &c_label);
352
353 raid_init_component_label( raidPtr, &c_label);
354 c_label.row = row;
355 c_label.column = col;
356 c_label.clean = RF_RAID_DIRTY;
357 c_label.status = rf_ds_optimal;
358 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
359
360 /* We've just done a rebuild based on all the other
361 disks, so at this point the parity is known to be
362 clean, even if it wasn't before. */
363
364 /* XXX doesn't hold for RAID 6!!*/
365
366 RF_LOCK_MUTEX(raidPtr->mutex);
367 raidPtr->parity_good = RF_RAID_CLEAN;
368 RF_UNLOCK_MUTEX(raidPtr->mutex);
369
370 /* XXXX MORE NEEDED HERE */
371
372 raidwrite_component_label(
373 raidPtr->raid_cinfo[srow][scol].ci_dev,
374 raidPtr->raid_cinfo[srow][scol].ci_vp,
375 &c_label);
376
377 }
378 return (rc);
379 }
380
381 /*
382
383 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
384 and you don't get a spare until the next Monday. With this function
385 (and hot-swappable drives) you can now put your new disk containing
386 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
387 rebuild the data "on the spot".
388
389 */
390
391 int
392 rf_ReconstructInPlace(raidPtr, row, col)
393 RF_Raid_t *raidPtr;
394 RF_RowCol_t row;
395 RF_RowCol_t col;
396 {
397 RF_RaidDisk_t *spareDiskPtr = NULL;
398 RF_RaidReconDesc_t *reconDesc;
399 RF_LayoutSW_t *lp;
400 RF_ComponentLabel_t c_label;
401 int numDisksDone = 0, rc;
402 struct partinfo dpart;
403 struct vnode *vp;
404 struct vattr va;
405 struct proc *proc;
406 int retcode;
407 int ac;
408
409 lp = raidPtr->Layout.map;
410 if (lp->SubmitReconBuffer) {
411 /*
412 * The current infrastructure only supports reconstructing one
413 * disk at a time for each array.
414 */
415 RF_LOCK_MUTEX(raidPtr->mutex);
416 if ((raidPtr->Disks[row][col].status == rf_ds_optimal) &&
417 (raidPtr->numFailures > 0)) {
418 /* XXX 0 above shouldn't be constant!!! */
419 /* some component other than this has failed.
420 Let's not make things worse than they already
421 are... */
422 printf("raid%d: Unable to reconstruct to disk at:\n",
423 raidPtr->raidid);
424 printf("raid%d: Row: %d Col: %d Too many failures.\n",
425 raidPtr->raidid, row, col);
426 RF_UNLOCK_MUTEX(raidPtr->mutex);
427 return (EINVAL);
428 }
429 if (raidPtr->Disks[row][col].status == rf_ds_reconstructing) {
430 printf("raid%d: Unable to reconstruct to disk at:\n",
431 raidPtr->raidid);
432 printf("raid%d: Row: %d Col: %d Reconstruction already occuring!\n", raidPtr->raidid, row, col);
433
434 RF_UNLOCK_MUTEX(raidPtr->mutex);
435 return (EINVAL);
436 }
437 if (raidPtr->Disks[row][col].status == rf_ds_spared) {
438 RF_UNLOCK_MUTEX(raidPtr->mutex);
439 return (EINVAL);
440 }
441
442 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
443 /* "It's gone..." */
444 raidPtr->numFailures++;
445 raidPtr->Disks[row][col].status = rf_ds_failed;
446 raidPtr->status[row] = rf_rs_degraded;
447 RF_UNLOCK_MUTEX(raidPtr->mutex);
448 rf_update_component_labels(raidPtr,
449 RF_NORMAL_COMPONENT_UPDATE);
450 RF_LOCK_MUTEX(raidPtr->mutex);
451 }
452
453 while (raidPtr->reconInProgress) {
454 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
455 }
456
457 raidPtr->reconInProgress++;
458
459
460 /* first look for a spare drive onto which to reconstruct
461 the data. spare disk descriptors are stored in row 0.
462 This may have to change eventually */
463
464 /* Actually, we don't care if it's failed or not...
465 On a RAID set with correct parity, this function
466 should be callable on any component without ill affects. */
467 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
468 */
469
470 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
471 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
472
473 raidPtr->reconInProgress--;
474 RF_UNLOCK_MUTEX(raidPtr->mutex);
475 return (EINVAL);
476 }
477
478 proc = raidPtr->engine_thread;
479
480 /* This device may have been opened successfully the
481 first time. Close it before trying to open it again.. */
482
483 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
484 #if 0
485 printf("Closed the open device: %s\n",
486 raidPtr->Disks[row][col].devname);
487 #endif
488 vp = raidPtr->raid_cinfo[row][col].ci_vp;
489 ac = raidPtr->Disks[row][col].auto_configured;
490 RF_UNLOCK_MUTEX(raidPtr->mutex);
491 rf_close_component(raidPtr, vp, ac);
492 RF_LOCK_MUTEX(raidPtr->mutex);
493 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
494 }
495 /* note that this disk was *not* auto_configured (any longer)*/
496 raidPtr->Disks[row][col].auto_configured = 0;
497
498 #if 0
499 printf("About to (re-)open the device for rebuilding: %s\n",
500 raidPtr->Disks[row][col].devname);
501 #endif
502 RF_UNLOCK_MUTEX(raidPtr->mutex);
503 retcode = raidlookup(raidPtr->Disks[row][col].devname,
504 proc, &vp);
505
506 if (retcode) {
507 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
508 raidPtr->Disks[row][col].devname, retcode);
509
510 /* the component isn't responding properly...
511 must be still dead :-( */
512 RF_LOCK_MUTEX(raidPtr->mutex);
513 raidPtr->reconInProgress--;
514 RF_UNLOCK_MUTEX(raidPtr->mutex);
515 return(retcode);
516
517 } else {
518
519 /* Ok, so we can at least do a lookup...
520 How about actually getting a vp for it? */
521
522 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
523 proc)) != 0) {
524 RF_LOCK_MUTEX(raidPtr->mutex);
525 raidPtr->reconInProgress--;
526 RF_UNLOCK_MUTEX(raidPtr->mutex);
527 return(retcode);
528 }
529 retcode = VOP_IOCTL(vp, DIOCGPART, (caddr_t) & dpart,
530 FREAD, proc->p_ucred, proc);
531 if (retcode) {
532 RF_LOCK_MUTEX(raidPtr->mutex);
533 raidPtr->reconInProgress--;
534 RF_UNLOCK_MUTEX(raidPtr->mutex);
535 return(retcode);
536 }
537 RF_LOCK_MUTEX(raidPtr->mutex);
538 raidPtr->Disks[row][col].blockSize =
539 dpart.disklab->d_secsize;
540
541 raidPtr->Disks[row][col].numBlocks =
542 dpart.part->p_size - rf_protectedSectors;
543
544 raidPtr->raid_cinfo[row][col].ci_vp = vp;
545 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
546
547 raidPtr->Disks[row][col].dev = va.va_rdev;
548
549 /* we allow the user to specify that only a
550 fraction of the disks should be used this is
551 just for debug: it speeds up
552 * the parity scan */
553 raidPtr->Disks[row][col].numBlocks =
554 raidPtr->Disks[row][col].numBlocks *
555 rf_sizePercentage / 100;
556 RF_UNLOCK_MUTEX(raidPtr->mutex);
557 }
558
559
560
561 spareDiskPtr = &raidPtr->Disks[row][col];
562 spareDiskPtr->status = rf_ds_used_spare;
563
564 printf("raid%d: initiating in-place reconstruction on\n",
565 raidPtr->raidid);
566 printf("raid%d: row %d col %d -> spare at row %d col %d\n",
567 raidPtr->raidid, row, col, row, col);
568
569 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
570 spareDiskPtr, numDisksDone,
571 row, col);
572 raidPtr->reconDesc = (void *) reconDesc;
573 #if RF_RECON_STATS > 0
574 reconDesc->hsStallCount = 0;
575 reconDesc->numReconExecDelays = 0;
576 reconDesc->numReconEventWaits = 0;
577 #endif /* RF_RECON_STATS > 0 */
578 reconDesc->reconExecTimerRunning = 0;
579 reconDesc->reconExecTicks = 0;
580 reconDesc->maxReconExecTicks = 0;
581 rc = rf_ContinueReconstructFailedDisk(reconDesc);
582
583 RF_LOCK_MUTEX(raidPtr->mutex);
584 raidPtr->reconInProgress--;
585 RF_UNLOCK_MUTEX(raidPtr->mutex);
586
587 } else {
588 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
589 lp->parityConfig);
590 rc = EIO;
591 }
592
593 if (!rc) {
594 RF_LOCK_MUTEX(raidPtr->mutex);
595 /* Need to set these here, as at this point it'll be claiming
596 that the disk is in rf_ds_spared! But we know better :-) */
597
598 raidPtr->Disks[row][col].status = rf_ds_optimal;
599 raidPtr->status[row] = rf_rs_optimal;
600 RF_UNLOCK_MUTEX(raidPtr->mutex);
601
602 /* fix up the component label */
603 /* Don't actually need the read here.. */
604 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
605 raidPtr->raid_cinfo[row][col].ci_vp,
606 &c_label);
607
608 RF_LOCK_MUTEX(raidPtr->mutex);
609 raid_init_component_label(raidPtr, &c_label);
610
611 c_label.row = row;
612 c_label.column = col;
613
614 /* We've just done a rebuild based on all the other
615 disks, so at this point the parity is known to be
616 clean, even if it wasn't before. */
617
618 /* XXX doesn't hold for RAID 6!!*/
619
620 raidPtr->parity_good = RF_RAID_CLEAN;
621 RF_UNLOCK_MUTEX(raidPtr->mutex);
622
623 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
624 raidPtr->raid_cinfo[row][col].ci_vp,
625 &c_label);
626
627 }
628 RF_SIGNAL_COND(raidPtr->waitForReconCond);
629 return (rc);
630 }
631
632
633 int
634 rf_ContinueReconstructFailedDisk(reconDesc)
635 RF_RaidReconDesc_t *reconDesc;
636 {
637 RF_Raid_t *raidPtr = reconDesc->raidPtr;
638 RF_RowCol_t row = reconDesc->row;
639 RF_RowCol_t col = reconDesc->col;
640 RF_RowCol_t srow = reconDesc->srow;
641 RF_RowCol_t scol = reconDesc->scol;
642 RF_ReconMap_t *mapPtr;
643 RF_ReconCtrl_t *tmp_reconctrl;
644 RF_ReconEvent_t *event;
645 struct timeval etime, elpsd;
646 unsigned long xor_s, xor_resid_us;
647 int retcode, i, ds;
648
649 switch (reconDesc->state) {
650
651
652 case 0:
653
654 raidPtr->accumXorTimeUs = 0;
655
656 /* create one trace record per physical disk */
657 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
658
659 /* quiesce the array prior to starting recon. this is needed
660 * to assure no nasty interactions with pending user writes.
661 * We need to do this before we change the disk or row status. */
662 reconDesc->state = 1;
663
664 Dprintf("RECON: begin request suspend\n");
665 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
666 Dprintf("RECON: end request suspend\n");
667 rf_StartUserStats(raidPtr); /* zero out the stats kept on
668 * user accs */
669
670 /* fall through to state 1 */
671
672 case 1:
673
674 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
675 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol);
676
677 RF_LOCK_MUTEX(raidPtr->mutex);
678
679 /* create the reconstruction control pointer and install it in
680 * the right slot */
681 raidPtr->reconControl[row] = tmp_reconctrl;
682 mapPtr = raidPtr->reconControl[row]->reconMap;
683 raidPtr->status[row] = rf_rs_reconstructing;
684 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
685 raidPtr->Disks[row][col].spareRow = srow;
686 raidPtr->Disks[row][col].spareCol = scol;
687
688 RF_UNLOCK_MUTEX(raidPtr->mutex);
689
690 RF_GETTIME(raidPtr->reconControl[row]->starttime);
691
692 /* now start up the actual reconstruction: issue a read for
693 * each surviving disk */
694
695 reconDesc->numDisksDone = 0;
696 for (i = 0; i < raidPtr->numCol; i++) {
697 if (i != col) {
698 /* find and issue the next I/O on the
699 * indicated disk */
700 if (IssueNextReadRequest(raidPtr, row, i)) {
701 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
702 reconDesc->numDisksDone++;
703 }
704 }
705 }
706
707 case 2:
708 Dprintf("RECON: resume requests\n");
709 rf_ResumeNewRequests(raidPtr);
710
711
712 reconDesc->state = 3;
713
714 case 3:
715
716 /* process reconstruction events until all disks report that
717 * they've completed all work */
718 mapPtr = raidPtr->reconControl[row]->reconMap;
719
720
721
722 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
723
724 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
725 RF_ASSERT(event);
726
727 if (ProcessReconEvent(raidPtr, row, event))
728 reconDesc->numDisksDone++;
729 raidPtr->reconControl[row]->numRUsTotal =
730 mapPtr->totalRUs;
731 raidPtr->reconControl[row]->numRUsComplete =
732 mapPtr->totalRUs -
733 rf_UnitsLeftToReconstruct(mapPtr);
734
735 raidPtr->reconControl[row]->percentComplete =
736 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
737 #if RF_DEBUG_RECON
738 if (rf_prReconSched) {
739 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
740 }
741 #endif
742 }
743
744
745
746 reconDesc->state = 4;
747
748
749 case 4:
750 mapPtr = raidPtr->reconControl[row]->reconMap;
751 if (rf_reconDebug) {
752 printf("RECON: all reads completed\n");
753 }
754 /* at this point all the reads have completed. We now wait
755 * for any pending writes to complete, and then we're done */
756
757 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
758
759 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
760 RF_ASSERT(event);
761
762 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
763 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
764 #if RF_DEBUG_RECON
765 if (rf_prReconSched) {
766 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
767 }
768 #endif
769 }
770 reconDesc->state = 5;
771
772 case 5:
773 /* Success: mark the dead disk as reconstructed. We quiesce
774 * the array here to assure no nasty interactions with pending
775 * user accesses when we free up the psstatus structure as
776 * part of FreeReconControl() */
777
778 reconDesc->state = 6;
779
780 retcode = rf_SuspendNewRequestsAndWait(raidPtr);
781 rf_StopUserStats(raidPtr);
782 rf_PrintUserStats(raidPtr); /* print out the stats on user
783 * accs accumulated during
784 * recon */
785
786 /* fall through to state 6 */
787 case 6:
788
789
790
791 RF_LOCK_MUTEX(raidPtr->mutex);
792 raidPtr->numFailures--;
793 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
794 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
795 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
796 RF_UNLOCK_MUTEX(raidPtr->mutex);
797 RF_GETTIME(etime);
798 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
799
800 /* XXX -- why is state 7 different from state 6 if there is no
801 * return() here? -- XXX Note that I set elpsd above & use it
802 * below, so if you put a return here you'll have to fix this.
803 * (also, FreeReconControl is called below) */
804
805 case 7:
806
807 rf_ResumeNewRequests(raidPtr);
808
809 printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
810 raidPtr->raidid, row, col);
811 xor_s = raidPtr->accumXorTimeUs / 1000000;
812 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
813 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
814 raidPtr->raidid,
815 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
816 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
817 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
818 raidPtr->raidid,
819 (int) raidPtr->reconControl[row]->starttime.tv_sec,
820 (int) raidPtr->reconControl[row]->starttime.tv_usec,
821 (int) etime.tv_sec, (int) etime.tv_usec);
822
823 #if RF_RECON_STATS > 0
824 printf("raid%d: Total head-sep stall count was %d\n",
825 raidPtr->raidid, (int) reconDesc->hsStallCount);
826 #endif /* RF_RECON_STATS > 0 */
827 rf_FreeReconControl(raidPtr, row);
828 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
829 FreeReconDesc(reconDesc);
830
831 }
832
833 SignalReconDone(raidPtr);
834 return (0);
835 }
836 /*****************************************************************************
837 * do the right thing upon each reconstruction event.
838 * returns nonzero if and only if there is nothing left unread on the
839 * indicated disk
840 *****************************************************************************/
841 static int
842 ProcessReconEvent(raidPtr, frow, event)
843 RF_Raid_t *raidPtr;
844 RF_RowCol_t frow;
845 RF_ReconEvent_t *event;
846 {
847 int retcode = 0, submitblocked;
848 RF_ReconBuffer_t *rbuf;
849 RF_SectorCount_t sectorsPerRU;
850
851 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
852 switch (event->type) {
853
854 /* a read I/O has completed */
855 case RF_REVENT_READDONE:
856 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
857 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
858 frow, event->col, rbuf->parityStripeID);
859 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
860 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
861 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
862 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
863 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
864 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
865 if (!submitblocked)
866 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
867 break;
868
869 /* a write I/O has completed */
870 case RF_REVENT_WRITEDONE:
871 #if RF_DEBUG_RECON
872 if (rf_floatingRbufDebug) {
873 rf_CheckFloatingRbufCount(raidPtr, 1);
874 }
875 #endif
876 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
877 rbuf = (RF_ReconBuffer_t *) event->arg;
878 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
879 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
880 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
881 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
882 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
883 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
884
885 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
886 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
887 raidPtr->numFullReconBuffers--;
888 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
889 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
890 } else
891 if (rbuf->type == RF_RBUF_TYPE_FORCED)
892 rf_FreeReconBuffer(rbuf);
893 else
894 RF_ASSERT(0);
895 break;
896
897 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
898 * cleared */
899 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
900 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
901 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
902 * BUFCLEAR event if we
903 * couldn't submit */
904 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
905 break;
906
907 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
908 * blockage has been cleared */
909 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
910 retcode = TryToRead(raidPtr, frow, event->col);
911 break;
912
913 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
914 * reconstruction blockage has been
915 * cleared */
916 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
917 retcode = TryToRead(raidPtr, frow, event->col);
918 break;
919
920 /* a buffer has become ready to write */
921 case RF_REVENT_BUFREADY:
922 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
923 retcode = IssueNextWriteRequest(raidPtr, frow);
924 #if RF_DEBUG_RECON
925 if (rf_floatingRbufDebug) {
926 rf_CheckFloatingRbufCount(raidPtr, 1);
927 }
928 #endif
929 break;
930
931 /* we need to skip the current RU entirely because it got
932 * recon'd while we were waiting for something else to happen */
933 case RF_REVENT_SKIP:
934 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
935 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
936 break;
937
938 /* a forced-reconstruction read access has completed. Just
939 * submit the buffer */
940 case RF_REVENT_FORCEDREADDONE:
941 rbuf = (RF_ReconBuffer_t *) event->arg;
942 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
943 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
944 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
945 RF_ASSERT(!submitblocked);
946 break;
947
948 default:
949 RF_PANIC();
950 }
951 rf_FreeReconEventDesc(event);
952 return (retcode);
953 }
954 /*****************************************************************************
955 *
956 * find the next thing that's needed on the indicated disk, and issue
957 * a read request for it. We assume that the reconstruction buffer
958 * associated with this process is free to receive the data. If
959 * reconstruction is blocked on the indicated RU, we issue a
960 * blockage-release request instead of a physical disk read request.
961 * If the current disk gets too far ahead of the others, we issue a
962 * head-separation wait request and return.
963 *
964 * ctrl->{ru_count, curPSID, diskOffset} and
965 * rbuf->failedDiskSectorOffset are maintained to point to the unit
966 * we're currently accessing. Note that this deviates from the
967 * standard C idiom of having counters point to the next thing to be
968 * accessed. This allows us to easily retry when we're blocked by
969 * head separation or reconstruction-blockage events.
970 *
971 * returns nonzero if and only if there is nothing left unread on the
972 * indicated disk
973 *
974 *****************************************************************************/
975 static int
976 IssueNextReadRequest(raidPtr, row, col)
977 RF_Raid_t *raidPtr;
978 RF_RowCol_t row;
979 RF_RowCol_t col;
980 {
981 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
982 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
983 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
984 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
985 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
986 int do_new_check = 0, retcode = 0, status;
987
988 /* if we are currently the slowest disk, mark that we have to do a new
989 * check */
990 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
991 do_new_check = 1;
992
993 while (1) {
994
995 ctrl->ru_count++;
996 if (ctrl->ru_count < RUsPerPU) {
997 ctrl->diskOffset += sectorsPerRU;
998 rbuf->failedDiskSectorOffset += sectorsPerRU;
999 } else {
1000 ctrl->curPSID++;
1001 ctrl->ru_count = 0;
1002 /* code left over from when head-sep was based on
1003 * parity stripe id */
1004 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
1005 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
1006 return (1); /* finito! */
1007 }
1008 /* find the disk offsets of the start of the parity
1009 * stripe on both the current disk and the failed
1010 * disk. skip this entire parity stripe if either disk
1011 * does not appear in the indicated PS */
1012 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1013 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
1014 if (status) {
1015 ctrl->ru_count = RUsPerPU - 1;
1016 continue;
1017 }
1018 }
1019 rbuf->which_ru = ctrl->ru_count;
1020
1021 /* skip this RU if it's already been reconstructed */
1022 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1023 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1024 continue;
1025 }
1026 break;
1027 }
1028 ctrl->headSepCounter++;
1029 if (do_new_check)
1030 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1031
1032
1033 /* at this point, we have definitely decided what to do, and we have
1034 * only to see if we can actually do it now */
1035 rbuf->parityStripeID = ctrl->curPSID;
1036 rbuf->which_ru = ctrl->ru_count;
1037 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1038 sizeof(raidPtr->recon_tracerecs[col]));
1039 raidPtr->recon_tracerecs[col].reconacc = 1;
1040 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1041 retcode = TryToRead(raidPtr, row, col);
1042 return (retcode);
1043 }
1044
1045 /*
1046 * tries to issue the next read on the indicated disk. We may be
1047 * blocked by (a) the heads being too far apart, or (b) recon on the
1048 * indicated RU being blocked due to a write by a user thread. In
1049 * this case, we issue a head-sep or blockage wait request, which will
1050 * cause this same routine to be invoked again later when the blockage
1051 * has cleared.
1052 */
1053
1054 static int
1055 TryToRead(raidPtr, row, col)
1056 RF_Raid_t *raidPtr;
1057 RF_RowCol_t row;
1058 RF_RowCol_t col;
1059 {
1060 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1061 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1062 RF_StripeNum_t psid = ctrl->curPSID;
1063 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1064 RF_DiskQueueData_t *req;
1065 int status, created = 0;
1066 RF_ReconParityStripeStatus_t *pssPtr;
1067
1068 /* if the current disk is too far ahead of the others, issue a
1069 * head-separation wait and return */
1070 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1071 return (0);
1072 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1073 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1074
1075 /* if recon is blocked on the indicated parity stripe, issue a
1076 * block-wait request and return. this also must mark the indicated RU
1077 * in the stripe as under reconstruction if not blocked. */
1078 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1079 if (status == RF_PSS_RECON_BLOCKED) {
1080 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1081 goto out;
1082 } else
1083 if (status == RF_PSS_FORCED_ON_WRITE) {
1084 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1085 goto out;
1086 }
1087 /* make one last check to be sure that the indicated RU didn't get
1088 * reconstructed while we were waiting for something else to happen.
1089 * This is unfortunate in that it causes us to make this check twice
1090 * in the normal case. Might want to make some attempt to re-work
1091 * this so that we only do this check if we've definitely blocked on
1092 * one of the above checks. When this condition is detected, we may
1093 * have just created a bogus status entry, which we need to delete. */
1094 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1095 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1096 if (created)
1097 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1098 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1099 goto out;
1100 }
1101 /* found something to read. issue the I/O */
1102 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1103 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1104 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1105 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1106 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1107 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1108 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1109
1110 /* should be ok to use a NULL proc pointer here, all the bufs we use
1111 * should be in kernel space */
1112 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1113 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1114
1115 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1116
1117 ctrl->rbuf->arg = (void *) req;
1118 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1119 pssPtr->issued[col] = 1;
1120
1121 out:
1122 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1123 return (0);
1124 }
1125
1126
1127 /*
1128 * given a parity stripe ID, we want to find out whether both the
1129 * current disk and the failed disk exist in that parity stripe. If
1130 * not, we want to skip this whole PS. If so, we want to find the
1131 * disk offset of the start of the PS on both the current disk and the
1132 * failed disk.
1133 *
1134 * this works by getting a list of disks comprising the indicated
1135 * parity stripe, and searching the list for the current and failed
1136 * disks. Once we've decided they both exist in the parity stripe, we
1137 * need to decide whether each is data or parity, so that we'll know
1138 * which mapping function to call to get the corresponding disk
1139 * offsets.
1140 *
1141 * this is kind of unpleasant, but doing it this way allows the
1142 * reconstruction code to use parity stripe IDs rather than physical
1143 * disks address to march through the failed disk, which greatly
1144 * simplifies a lot of code, as well as eliminating the need for a
1145 * reverse-mapping function. I also think it will execute faster,
1146 * since the calls to the mapping module are kept to a minimum.
1147 *
1148 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1149 * THE STRIPE IN THE CORRECT ORDER */
1150
1151
1152 static int
1153 ComputePSDiskOffsets(
1154 RF_Raid_t * raidPtr, /* raid descriptor */
1155 RF_StripeNum_t psid, /* parity stripe identifier */
1156 RF_RowCol_t row, /* row and column of disk to find the offsets
1157 * for */
1158 RF_RowCol_t col,
1159 RF_SectorNum_t * outDiskOffset,
1160 RF_SectorNum_t * outFailedDiskSectorOffset,
1161 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1162 RF_RowCol_t * spCol,
1163 RF_SectorNum_t * spOffset)
1164 { /* OUT: offset into disk containing spare unit */
1165 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1166 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1167 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1168 RF_RowCol_t *diskids;
1169 u_int i, j, k, i_offset, j_offset;
1170 RF_RowCol_t prow, pcol;
1171 int testcol, testrow;
1172 RF_RowCol_t stripe;
1173 RF_SectorNum_t poffset;
1174 char i_is_parity = 0, j_is_parity = 0;
1175 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1176
1177 /* get a listing of the disks comprising that stripe */
1178 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1179 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1180 RF_ASSERT(diskids);
1181
1182 /* reject this entire parity stripe if it does not contain the
1183 * indicated disk or it does not contain the failed disk */
1184 if (row != stripe)
1185 goto skipit;
1186 for (i = 0; i < stripeWidth; i++) {
1187 if (col == diskids[i])
1188 break;
1189 }
1190 if (i == stripeWidth)
1191 goto skipit;
1192 for (j = 0; j < stripeWidth; j++) {
1193 if (fcol == diskids[j])
1194 break;
1195 }
1196 if (j == stripeWidth) {
1197 goto skipit;
1198 }
1199 /* find out which disk the parity is on */
1200 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1201
1202 /* find out if either the current RU or the failed RU is parity */
1203 /* also, if the parity occurs in this stripe prior to the data and/or
1204 * failed col, we need to decrement i and/or j */
1205 for (k = 0; k < stripeWidth; k++)
1206 if (diskids[k] == pcol)
1207 break;
1208 RF_ASSERT(k < stripeWidth);
1209 i_offset = i;
1210 j_offset = j;
1211 if (k < i)
1212 i_offset--;
1213 else
1214 if (k == i) {
1215 i_is_parity = 1;
1216 i_offset = 0;
1217 } /* set offsets to zero to disable multiply
1218 * below */
1219 if (k < j)
1220 j_offset--;
1221 else
1222 if (k == j) {
1223 j_is_parity = 1;
1224 j_offset = 0;
1225 }
1226 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1227 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1228 * tells us how far into the stripe the [current,failed] disk is. */
1229
1230 /* call the mapping routine to get the offset into the current disk,
1231 * repeat for failed disk. */
1232 if (i_is_parity)
1233 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1234 else
1235 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1236
1237 RF_ASSERT(row == testrow && col == testcol);
1238
1239 if (j_is_parity)
1240 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1241 else
1242 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1243 RF_ASSERT(row == testrow && fcol == testcol);
1244
1245 /* now locate the spare unit for the failed unit */
1246 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1247 if (j_is_parity)
1248 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1249 else
1250 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1251 } else {
1252 *spRow = raidPtr->reconControl[row]->spareRow;
1253 *spCol = raidPtr->reconControl[row]->spareCol;
1254 *spOffset = *outFailedDiskSectorOffset;
1255 }
1256
1257 return (0);
1258
1259 skipit:
1260 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1261 psid, row, col);
1262 return (1);
1263 }
1264 /* this is called when a buffer has become ready to write to the replacement disk */
1265 static int
1266 IssueNextWriteRequest(raidPtr, row)
1267 RF_Raid_t *raidPtr;
1268 RF_RowCol_t row;
1269 {
1270 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1271 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1272 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1273 RF_ReconBuffer_t *rbuf;
1274 RF_DiskQueueData_t *req;
1275
1276 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1277 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1278 * have gotten the event that sent us here */
1279 RF_ASSERT(rbuf->pssPtr);
1280
1281 rbuf->pssPtr->writeRbuf = rbuf;
1282 rbuf->pssPtr = NULL;
1283
1284 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1285 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1286 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1287 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1288 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1289 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1290
1291 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1292 * kernel space */
1293 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1294 sectorsPerRU, rbuf->buffer,
1295 rbuf->parityStripeID, rbuf->which_ru,
1296 ReconWriteDoneProc, (void *) rbuf, NULL,
1297 &raidPtr->recon_tracerecs[fcol],
1298 (void *) raidPtr, 0, NULL);
1299
1300 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1301
1302 rbuf->arg = (void *) req;
1303 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1304
1305 return (0);
1306 }
1307
1308 /*
1309 * this gets called upon the completion of a reconstruction read
1310 * operation the arg is a pointer to the per-disk reconstruction
1311 * control structure for the process that just finished a read.
1312 *
1313 * called at interrupt context in the kernel, so don't do anything
1314 * illegal here.
1315 */
1316 static int
1317 ReconReadDoneProc(arg, status)
1318 void *arg;
1319 int status;
1320 {
1321 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1322 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1323
1324 if (status) {
1325 /*
1326 * XXX
1327 */
1328 printf("Recon read failed!\n");
1329 RF_PANIC();
1330 }
1331 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1332 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1333 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1334 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1335 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1336
1337 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1338 return (0);
1339 }
1340 /* this gets called upon the completion of a reconstruction write operation.
1341 * the arg is a pointer to the rbuf that was just written
1342 *
1343 * called at interrupt context in the kernel, so don't do anything illegal here.
1344 */
1345 static int
1346 ReconWriteDoneProc(arg, status)
1347 void *arg;
1348 int status;
1349 {
1350 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1351
1352 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1353 if (status) {
1354 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1355 * write failed!\n"); */
1356 RF_PANIC();
1357 }
1358 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1359 return (0);
1360 }
1361
1362
1363 /*
1364 * computes a new minimum head sep, and wakes up anyone who needs to
1365 * be woken as a result
1366 */
1367 static void
1368 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1369 RF_Raid_t *raidPtr;
1370 RF_RowCol_t row;
1371 RF_HeadSepLimit_t hsCtr;
1372 {
1373 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1374 RF_HeadSepLimit_t new_min;
1375 RF_RowCol_t i;
1376 RF_CallbackDesc_t *p;
1377 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1378 * of a minimum */
1379
1380
1381 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1382
1383 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1384 for (i = 0; i < raidPtr->numCol; i++)
1385 if (i != reconCtrlPtr->fcol) {
1386 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1387 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1388 }
1389 /* set the new minimum and wake up anyone who can now run again */
1390 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1391 reconCtrlPtr->minHeadSepCounter = new_min;
1392 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1393 while (reconCtrlPtr->headSepCBList) {
1394 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1395 break;
1396 p = reconCtrlPtr->headSepCBList;
1397 reconCtrlPtr->headSepCBList = p->next;
1398 p->next = NULL;
1399 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1400 rf_FreeCallbackDesc(p);
1401 }
1402
1403 }
1404 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1405 }
1406
1407 /*
1408 * checks to see that the maximum head separation will not be violated
1409 * if we initiate a reconstruction I/O on the indicated disk.
1410 * Limiting the maximum head separation between two disks eliminates
1411 * the nasty buffer-stall conditions that occur when one disk races
1412 * ahead of the others and consumes all of the floating recon buffers.
1413 * This code is complex and unpleasant but it's necessary to avoid
1414 * some very nasty, albeit fairly rare, reconstruction behavior.
1415 *
1416 * returns non-zero if and only if we have to stop working on the
1417 * indicated disk due to a head-separation delay.
1418 */
1419 static int
1420 CheckHeadSeparation(
1421 RF_Raid_t * raidPtr,
1422 RF_PerDiskReconCtrl_t * ctrl,
1423 RF_RowCol_t row,
1424 RF_RowCol_t col,
1425 RF_HeadSepLimit_t hsCtr,
1426 RF_ReconUnitNum_t which_ru)
1427 {
1428 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1429 RF_CallbackDesc_t *cb, *p, *pt;
1430 int retval = 0;
1431
1432 /* if we're too far ahead of the slowest disk, stop working on this
1433 * disk until the slower ones catch up. We do this by scheduling a
1434 * wakeup callback for the time when the slowest disk has caught up.
1435 * We define "caught up" with 20% hysteresis, i.e. the head separation
1436 * must have fallen to at most 80% of the max allowable head
1437 * separation before we'll wake up.
1438 *
1439 */
1440 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1441 if ((raidPtr->headSepLimit >= 0) &&
1442 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1443 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1444 raidPtr->raidid, row, col, ctrl->headSepCounter,
1445 reconCtrlPtr->minHeadSepCounter,
1446 raidPtr->headSepLimit);
1447 cb = rf_AllocCallbackDesc();
1448 /* the minHeadSepCounter value we have to get to before we'll
1449 * wake up. build in 20% hysteresis. */
1450 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1451 cb->row = row;
1452 cb->col = col;
1453 cb->next = NULL;
1454
1455 /* insert this callback descriptor into the sorted list of
1456 * pending head-sep callbacks */
1457 p = reconCtrlPtr->headSepCBList;
1458 if (!p)
1459 reconCtrlPtr->headSepCBList = cb;
1460 else
1461 if (cb->callbackArg.v < p->callbackArg.v) {
1462 cb->next = reconCtrlPtr->headSepCBList;
1463 reconCtrlPtr->headSepCBList = cb;
1464 } else {
1465 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1466 cb->next = p;
1467 pt->next = cb;
1468 }
1469 retval = 1;
1470 #if RF_RECON_STATS > 0
1471 ctrl->reconCtrl->reconDesc->hsStallCount++;
1472 #endif /* RF_RECON_STATS > 0 */
1473 }
1474 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1475
1476 return (retval);
1477 }
1478 /*
1479 * checks to see if reconstruction has been either forced or blocked
1480 * by a user operation. if forced, we skip this RU entirely. else if
1481 * blocked, put ourselves on the wait list. else return 0.
1482 *
1483 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1484 */
1485 static int
1486 CheckForcedOrBlockedReconstruction(
1487 RF_Raid_t * raidPtr,
1488 RF_ReconParityStripeStatus_t * pssPtr,
1489 RF_PerDiskReconCtrl_t * ctrl,
1490 RF_RowCol_t row,
1491 RF_RowCol_t col,
1492 RF_StripeNum_t psid,
1493 RF_ReconUnitNum_t which_ru)
1494 {
1495 RF_CallbackDesc_t *cb;
1496 int retcode = 0;
1497
1498 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1499 retcode = RF_PSS_FORCED_ON_WRITE;
1500 else
1501 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1502 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1503 cb = rf_AllocCallbackDesc(); /* append ourselves to
1504 * the blockage-wait
1505 * list */
1506 cb->row = row;
1507 cb->col = col;
1508 cb->next = pssPtr->blockWaitList;
1509 pssPtr->blockWaitList = cb;
1510 retcode = RF_PSS_RECON_BLOCKED;
1511 }
1512 if (!retcode)
1513 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1514 * reconstruction */
1515
1516 return (retcode);
1517 }
1518 /*
1519 * if reconstruction is currently ongoing for the indicated stripeID,
1520 * reconstruction is forced to completion and we return non-zero to
1521 * indicate that the caller must wait. If not, then reconstruction is
1522 * blocked on the indicated stripe and the routine returns zero. If
1523 * and only if we return non-zero, we'll cause the cbFunc to get
1524 * invoked with the cbArg when the reconstruction has completed.
1525 */
1526 int
1527 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1528 RF_Raid_t *raidPtr;
1529 RF_AccessStripeMap_t *asmap;
1530 void (*cbFunc) (RF_Raid_t *, void *);
1531 void *cbArg;
1532 {
1533 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1534 * we're working on */
1535 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1536 * forcing recon on */
1537 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1538 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1539 * stripe status structure */
1540 RF_StripeNum_t psid; /* parity stripe id */
1541 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1542 * offset */
1543 RF_RowCol_t *diskids;
1544 RF_RowCol_t stripe;
1545 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1546 RF_RowCol_t fcol, diskno, i;
1547 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1548 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1549 RF_CallbackDesc_t *cb;
1550 int created = 0, nPromoted;
1551
1552 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1553
1554 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1555
1556 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1557
1558 /* if recon is not ongoing on this PS, just return */
1559 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1560 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1561 return (0);
1562 }
1563 /* otherwise, we have to wait for reconstruction to complete on this
1564 * RU. */
1565 /* In order to avoid waiting for a potentially large number of
1566 * low-priority accesses to complete, we force a normal-priority (i.e.
1567 * not low-priority) reconstruction on this RU. */
1568 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1569 DDprintf1("Forcing recon on psid %ld\n", psid);
1570 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1571 * forced recon */
1572 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1573 * that we just set */
1574 fcol = raidPtr->reconControl[row]->fcol;
1575
1576 /* get a listing of the disks comprising the indicated stripe */
1577 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1578 RF_ASSERT(row == stripe);
1579
1580 /* For previously issued reads, elevate them to normal
1581 * priority. If the I/O has already completed, it won't be
1582 * found in the queue, and hence this will be a no-op. For
1583 * unissued reads, allocate buffers and issue new reads. The
1584 * fact that we've set the FORCED bit means that the regular
1585 * recon procs will not re-issue these reqs */
1586 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1587 if ((diskno = diskids[i]) != fcol) {
1588 if (pssPtr->issued[diskno]) {
1589 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1590 if (rf_reconDebug && nPromoted)
1591 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1592 } else {
1593 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1594 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1595 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1596 * location */
1597 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1598 new_rbuf->which_ru = which_ru;
1599 new_rbuf->failedDiskSectorOffset = fd_offset;
1600 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1601
1602 /* use NULL b_proc b/c all addrs
1603 * should be in kernel space */
1604 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1605 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1606 NULL, (void *) raidPtr, 0, NULL);
1607
1608 RF_ASSERT(req); /* XXX -- fix this --
1609 * XXX */
1610
1611 new_rbuf->arg = req;
1612 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1613 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1614 }
1615 }
1616 /* if the write is sitting in the disk queue, elevate its
1617 * priority */
1618 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1619 printf("raid%d: promoted write to row %d col %d\n",
1620 raidPtr->raidid, row, fcol);
1621 }
1622 /* install a callback descriptor to be invoked when recon completes on
1623 * this parity stripe. */
1624 cb = rf_AllocCallbackDesc();
1625 /* XXX the following is bogus.. These functions don't really match!!
1626 * GO */
1627 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1628 cb->callbackArg.p = (void *) cbArg;
1629 cb->next = pssPtr->procWaitList;
1630 pssPtr->procWaitList = cb;
1631 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1632 raidPtr->raidid, psid);
1633
1634 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1635 return (1);
1636 }
1637 /* called upon the completion of a forced reconstruction read.
1638 * all we do is schedule the FORCEDREADONE event.
1639 * called at interrupt context in the kernel, so don't do anything illegal here.
1640 */
1641 static void
1642 ForceReconReadDoneProc(arg, status)
1643 void *arg;
1644 int status;
1645 {
1646 RF_ReconBuffer_t *rbuf = arg;
1647
1648 if (status) {
1649 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1650 * recon read
1651 * failed!\n"); */
1652 RF_PANIC();
1653 }
1654 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1655 }
1656 /* releases a block on the reconstruction of the indicated stripe */
1657 int
1658 rf_UnblockRecon(raidPtr, asmap)
1659 RF_Raid_t *raidPtr;
1660 RF_AccessStripeMap_t *asmap;
1661 {
1662 RF_RowCol_t row = asmap->origRow;
1663 RF_StripeNum_t stripeID = asmap->stripeID;
1664 RF_ReconParityStripeStatus_t *pssPtr;
1665 RF_ReconUnitNum_t which_ru;
1666 RF_StripeNum_t psid;
1667 int created = 0;
1668 RF_CallbackDesc_t *cb;
1669
1670 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1671 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1672 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1673
1674 /* When recon is forced, the pss desc can get deleted before we get
1675 * back to unblock recon. But, this can _only_ happen when recon is
1676 * forced. It would be good to put some kind of sanity check here, but
1677 * how to decide if recon was just forced or not? */
1678 if (!pssPtr) {
1679 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1680 * RU %d\n",psid,which_ru); */
1681 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1682 if (rf_reconDebug || rf_pssDebug)
1683 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1684 #endif
1685 goto out;
1686 }
1687 pssPtr->blockCount--;
1688 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1689 raidPtr->raidid, psid, pssPtr->blockCount);
1690 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1691
1692 /* unblock recon before calling CauseReconEvent in case
1693 * CauseReconEvent causes us to try to issue a new read before
1694 * returning here. */
1695 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1696
1697
1698 while (pssPtr->blockWaitList) {
1699 /* spin through the block-wait list and
1700 release all the waiters */
1701 cb = pssPtr->blockWaitList;
1702 pssPtr->blockWaitList = cb->next;
1703 cb->next = NULL;
1704 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1705 rf_FreeCallbackDesc(cb);
1706 }
1707 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1708 /* if no recon was requested while recon was blocked */
1709 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1710 }
1711 }
1712 out:
1713 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1714 return (0);
1715 }
1716