rf_reconstruct.c revision 1.54 1 /* $NetBSD: rf_reconstruct.c,v 1.54 2003/04/10 04:11:50 simonb Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.54 2003/04/10 04:11:50 simonb Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #if RF_DEBUG_RECON
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* RF_DEBUG_RECON */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* RF_DEBUG_RECON */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t row, RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t srow, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_RowCol_t frow,
110 RF_ReconEvent_t * event);
111 static int
112 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t row,
113 RF_RowCol_t col);
114 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t row, RF_RowCol_t col);
115 static int
116 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
117 RF_RowCol_t row, RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
118 RF_SectorNum_t * outFailedDiskSectorOffset, RF_RowCol_t * spRow,
119 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
120 static int IssueNextWriteRequest(RF_Raid_t * raidPtr, RF_RowCol_t row);
121 static int ReconReadDoneProc(void *arg, int status);
122 static int ReconWriteDoneProc(void *arg, int status);
123 static void
124 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_RowCol_t row,
125 RF_HeadSepLimit_t hsCtr);
126 static int
127 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
128 RF_RowCol_t row, RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
129 RF_ReconUnitNum_t which_ru);
130 static int
131 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
132 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
133 RF_RowCol_t row, RF_RowCol_t col, RF_StripeNum_t psid,
134 RF_ReconUnitNum_t which_ru);
135 static void ForceReconReadDoneProc(void *arg, int status);
136
137 static void rf_ShutdownReconstruction(void *);
138
139 struct RF_ReconDoneProc_s {
140 void (*proc) (RF_Raid_t *, void *);
141 void *arg;
142 RF_ReconDoneProc_t *next;
143 };
144
145 static RF_FreeList_t *rf_rdp_freelist;
146 #define RF_MAX_FREE_RDP 4
147 #define RF_RDP_INC 1
148
149 static void
150 SignalReconDone(RF_Raid_t * raidPtr)
151 {
152 RF_ReconDoneProc_t *p;
153
154 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
155 for (p = raidPtr->recon_done_procs; p; p = p->next) {
156 p->proc(raidPtr, p->arg);
157 }
158 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
159 }
160
161 /**************************************************************************
162 *
163 * sets up the parameters that will be used by the reconstruction process
164 * currently there are none, except for those that the layout-specific
165 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
166 *
167 * in the kernel, we fire off the recon thread.
168 *
169 **************************************************************************/
170 static void
171 rf_ShutdownReconstruction(ignored)
172 void *ignored;
173 {
174 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
175 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
176 }
177
178 int
179 rf_ConfigureReconstruction(listp)
180 RF_ShutdownList_t **listp;
181 {
182 int rc;
183
184 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
185 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
186 if (rf_recond_freelist == NULL)
187 return (ENOMEM);
188 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
189 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
190 if (rf_rdp_freelist == NULL) {
191 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
192 return (ENOMEM);
193 }
194 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
195 if (rc) {
196 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
197 rf_ShutdownReconstruction(NULL);
198 return (rc);
199 }
200 return (0);
201 }
202
203 static RF_RaidReconDesc_t *
204 AllocRaidReconDesc(raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol)
205 RF_Raid_t *raidPtr;
206 RF_RowCol_t row;
207 RF_RowCol_t col;
208 RF_RaidDisk_t *spareDiskPtr;
209 int numDisksDone;
210 RF_RowCol_t srow;
211 RF_RowCol_t scol;
212 {
213
214 RF_RaidReconDesc_t *reconDesc;
215
216 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
217
218 reconDesc->raidPtr = raidPtr;
219 reconDesc->row = row;
220 reconDesc->col = col;
221 reconDesc->spareDiskPtr = spareDiskPtr;
222 reconDesc->numDisksDone = numDisksDone;
223 reconDesc->srow = srow;
224 reconDesc->scol = scol;
225 reconDesc->state = 0;
226 reconDesc->next = NULL;
227
228 return (reconDesc);
229 }
230
231 static void
232 FreeReconDesc(reconDesc)
233 RF_RaidReconDesc_t *reconDesc;
234 {
235 #if RF_RECON_STATS > 0
236 printf("raid%d: %lu recon event waits, %lu recon delays\n",
237 reconDesc->raidPtr->raidid,
238 (long) reconDesc->numReconEventWaits,
239 (long) reconDesc->numReconExecDelays);
240 #endif /* RF_RECON_STATS > 0 */
241 printf("raid%d: %lu max exec ticks\n",
242 reconDesc->raidPtr->raidid,
243 (long) reconDesc->maxReconExecTicks);
244 #if (RF_RECON_STATS > 0) || defined(KERNEL)
245 printf("\n");
246 #endif /* (RF_RECON_STATS > 0) || KERNEL */
247 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
248 }
249
250
251 /*****************************************************************************
252 *
253 * primary routine to reconstruct a failed disk. This should be called from
254 * within its own thread. It won't return until reconstruction completes,
255 * fails, or is aborted.
256 *****************************************************************************/
257 int
258 rf_ReconstructFailedDisk(raidPtr, row, col)
259 RF_Raid_t *raidPtr;
260 RF_RowCol_t row;
261 RF_RowCol_t col;
262 {
263 const RF_LayoutSW_t *lp;
264 int rc;
265
266 lp = raidPtr->Layout.map;
267 if (lp->SubmitReconBuffer) {
268 /*
269 * The current infrastructure only supports reconstructing one
270 * disk at a time for each array.
271 */
272 RF_LOCK_MUTEX(raidPtr->mutex);
273 while (raidPtr->reconInProgress) {
274 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
275 }
276 raidPtr->reconInProgress++;
277 RF_UNLOCK_MUTEX(raidPtr->mutex);
278 rc = rf_ReconstructFailedDiskBasic(raidPtr, row, col);
279 RF_LOCK_MUTEX(raidPtr->mutex);
280 raidPtr->reconInProgress--;
281 RF_UNLOCK_MUTEX(raidPtr->mutex);
282 } else {
283 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
284 lp->parityConfig);
285 rc = EIO;
286 }
287 RF_SIGNAL_COND(raidPtr->waitForReconCond);
288 return (rc);
289 }
290
291 int
292 rf_ReconstructFailedDiskBasic(raidPtr, row, col)
293 RF_Raid_t *raidPtr;
294 RF_RowCol_t row;
295 RF_RowCol_t col;
296 {
297 RF_ComponentLabel_t c_label;
298 RF_RaidDisk_t *spareDiskPtr = NULL;
299 RF_RaidReconDesc_t *reconDesc;
300 RF_RowCol_t srow, scol;
301 int numDisksDone = 0, rc;
302
303 /* first look for a spare drive onto which to reconstruct the data */
304 /* spare disk descriptors are stored in row 0. This may have to
305 * change eventually */
306
307 RF_LOCK_MUTEX(raidPtr->mutex);
308 RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
309
310 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
311 if (raidPtr->status[row] != rf_rs_degraded) {
312 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because status not degraded\n", row, col);
313 RF_UNLOCK_MUTEX(raidPtr->mutex);
314 return (EINVAL);
315 }
316 srow = row;
317 scol = (-1);
318 } else {
319 srow = 0;
320 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
321 if (raidPtr->Disks[srow][scol].status == rf_ds_spare) {
322 spareDiskPtr = &raidPtr->Disks[srow][scol];
323 spareDiskPtr->status = rf_ds_used_spare;
324 break;
325 }
326 }
327 if (!spareDiskPtr) {
328 RF_ERRORMSG2("Unable to reconstruct disk at row %d col %d because no spares are available\n", row, col);
329 RF_UNLOCK_MUTEX(raidPtr->mutex);
330 return (ENOSPC);
331 }
332 printf("RECON: initiating reconstruction on row %d col %d -> spare at row %d col %d\n", row, col, srow, scol);
333 }
334 RF_UNLOCK_MUTEX(raidPtr->mutex);
335
336 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col, spareDiskPtr, numDisksDone, srow, scol);
337 raidPtr->reconDesc = (void *) reconDesc;
338 #if RF_RECON_STATS > 0
339 reconDesc->hsStallCount = 0;
340 reconDesc->numReconExecDelays = 0;
341 reconDesc->numReconEventWaits = 0;
342 #endif /* RF_RECON_STATS > 0 */
343 reconDesc->reconExecTimerRunning = 0;
344 reconDesc->reconExecTicks = 0;
345 reconDesc->maxReconExecTicks = 0;
346 rc = rf_ContinueReconstructFailedDisk(reconDesc);
347
348 if (!rc) {
349 /* fix up the component label */
350 /* Don't actually need the read here.. */
351 raidread_component_label(
352 raidPtr->raid_cinfo[srow][scol].ci_dev,
353 raidPtr->raid_cinfo[srow][scol].ci_vp,
354 &c_label);
355
356 raid_init_component_label( raidPtr, &c_label);
357 c_label.row = row;
358 c_label.column = col;
359 c_label.clean = RF_RAID_DIRTY;
360 c_label.status = rf_ds_optimal;
361 c_label.partitionSize = raidPtr->Disks[srow][scol].partitionSize;
362
363 /* We've just done a rebuild based on all the other
364 disks, so at this point the parity is known to be
365 clean, even if it wasn't before. */
366
367 /* XXX doesn't hold for RAID 6!!*/
368
369 RF_LOCK_MUTEX(raidPtr->mutex);
370 raidPtr->parity_good = RF_RAID_CLEAN;
371 RF_UNLOCK_MUTEX(raidPtr->mutex);
372
373 /* XXXX MORE NEEDED HERE */
374
375 raidwrite_component_label(
376 raidPtr->raid_cinfo[srow][scol].ci_dev,
377 raidPtr->raid_cinfo[srow][scol].ci_vp,
378 &c_label);
379
380
381 rf_update_component_labels(raidPtr,
382 RF_NORMAL_COMPONENT_UPDATE);
383
384 }
385 return (rc);
386 }
387
388 /*
389
390 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
391 and you don't get a spare until the next Monday. With this function
392 (and hot-swappable drives) you can now put your new disk containing
393 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
394 rebuild the data "on the spot".
395
396 */
397
398 int
399 rf_ReconstructInPlace(raidPtr, row, col)
400 RF_Raid_t *raidPtr;
401 RF_RowCol_t row;
402 RF_RowCol_t col;
403 {
404 RF_RaidDisk_t *spareDiskPtr = NULL;
405 RF_RaidReconDesc_t *reconDesc;
406 const RF_LayoutSW_t *lp;
407 RF_ComponentLabel_t c_label;
408 int numDisksDone = 0, rc;
409 struct partinfo dpart;
410 struct vnode *vp;
411 struct vattr va;
412 struct proc *proc;
413 int retcode;
414 int ac;
415
416 lp = raidPtr->Layout.map;
417 if (lp->SubmitReconBuffer) {
418 /*
419 * The current infrastructure only supports reconstructing one
420 * disk at a time for each array.
421 */
422 RF_LOCK_MUTEX(raidPtr->mutex);
423
424 if (raidPtr->Disks[row][col].status != rf_ds_failed) {
425 /* "It's gone..." */
426 raidPtr->numFailures++;
427 raidPtr->Disks[row][col].status = rf_ds_failed;
428 raidPtr->status[row] = rf_rs_degraded;
429 RF_UNLOCK_MUTEX(raidPtr->mutex);
430 rf_update_component_labels(raidPtr,
431 RF_NORMAL_COMPONENT_UPDATE);
432 RF_LOCK_MUTEX(raidPtr->mutex);
433 }
434
435 while (raidPtr->reconInProgress) {
436 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
437 }
438
439 raidPtr->reconInProgress++;
440
441
442 /* first look for a spare drive onto which to reconstruct
443 the data. spare disk descriptors are stored in row 0.
444 This may have to change eventually */
445
446 /* Actually, we don't care if it's failed or not...
447 On a RAID set with correct parity, this function
448 should be callable on any component without ill affects. */
449 /* RF_ASSERT(raidPtr->Disks[row][col].status == rf_ds_failed);
450 */
451
452 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
453 RF_ERRORMSG2("Unable to reconstruct to disk at row %d col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", row, col);
454
455 raidPtr->reconInProgress--;
456 RF_UNLOCK_MUTEX(raidPtr->mutex);
457 return (EINVAL);
458 }
459
460 proc = raidPtr->engine_thread;
461
462 /* This device may have been opened successfully the
463 first time. Close it before trying to open it again.. */
464
465 if (raidPtr->raid_cinfo[row][col].ci_vp != NULL) {
466 #if 0
467 printf("Closed the open device: %s\n",
468 raidPtr->Disks[row][col].devname);
469 #endif
470 vp = raidPtr->raid_cinfo[row][col].ci_vp;
471 ac = raidPtr->Disks[row][col].auto_configured;
472 RF_UNLOCK_MUTEX(raidPtr->mutex);
473 rf_close_component(raidPtr, vp, ac);
474 RF_LOCK_MUTEX(raidPtr->mutex);
475 raidPtr->raid_cinfo[row][col].ci_vp = NULL;
476 }
477 /* note that this disk was *not* auto_configured (any longer)*/
478 raidPtr->Disks[row][col].auto_configured = 0;
479
480 #if 0
481 printf("About to (re-)open the device for rebuilding: %s\n",
482 raidPtr->Disks[row][col].devname);
483 #endif
484 RF_UNLOCK_MUTEX(raidPtr->mutex);
485 retcode = raidlookup(raidPtr->Disks[row][col].devname,
486 proc, &vp);
487
488 if (retcode) {
489 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
490 raidPtr->Disks[row][col].devname, retcode);
491
492 /* the component isn't responding properly...
493 must be still dead :-( */
494 RF_LOCK_MUTEX(raidPtr->mutex);
495 raidPtr->reconInProgress--;
496 RF_UNLOCK_MUTEX(raidPtr->mutex);
497 return(retcode);
498
499 } else {
500
501 /* Ok, so we can at least do a lookup...
502 How about actually getting a vp for it? */
503
504 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
505 proc)) != 0) {
506 RF_LOCK_MUTEX(raidPtr->mutex);
507 raidPtr->reconInProgress--;
508 RF_UNLOCK_MUTEX(raidPtr->mutex);
509 return(retcode);
510 }
511 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart,
512 FREAD, proc->p_ucred, proc);
513 if (retcode) {
514 RF_LOCK_MUTEX(raidPtr->mutex);
515 raidPtr->reconInProgress--;
516 RF_UNLOCK_MUTEX(raidPtr->mutex);
517 return(retcode);
518 }
519 RF_LOCK_MUTEX(raidPtr->mutex);
520 raidPtr->Disks[row][col].blockSize =
521 dpart.disklab->d_secsize;
522
523 raidPtr->Disks[row][col].numBlocks =
524 dpart.part->p_size - rf_protectedSectors;
525
526 raidPtr->raid_cinfo[row][col].ci_vp = vp;
527 raidPtr->raid_cinfo[row][col].ci_dev = va.va_rdev;
528
529 raidPtr->Disks[row][col].dev = va.va_rdev;
530
531 /* we allow the user to specify that only a
532 fraction of the disks should be used this is
533 just for debug: it speeds up
534 * the parity scan */
535 raidPtr->Disks[row][col].numBlocks =
536 raidPtr->Disks[row][col].numBlocks *
537 rf_sizePercentage / 100;
538 RF_UNLOCK_MUTEX(raidPtr->mutex);
539 }
540
541
542
543 spareDiskPtr = &raidPtr->Disks[row][col];
544 spareDiskPtr->status = rf_ds_used_spare;
545
546 printf("raid%d: initiating in-place reconstruction on\n",
547 raidPtr->raidid);
548 printf("raid%d: row %d col %d -> spare at row %d col %d\n",
549 raidPtr->raidid, row, col, row, col);
550
551 reconDesc = AllocRaidReconDesc((void *) raidPtr, row, col,
552 spareDiskPtr, numDisksDone,
553 row, col);
554 raidPtr->reconDesc = (void *) reconDesc;
555 #if RF_RECON_STATS > 0
556 reconDesc->hsStallCount = 0;
557 reconDesc->numReconExecDelays = 0;
558 reconDesc->numReconEventWaits = 0;
559 #endif /* RF_RECON_STATS > 0 */
560 reconDesc->reconExecTimerRunning = 0;
561 reconDesc->reconExecTicks = 0;
562 reconDesc->maxReconExecTicks = 0;
563 rc = rf_ContinueReconstructFailedDisk(reconDesc);
564
565 RF_LOCK_MUTEX(raidPtr->mutex);
566 raidPtr->reconInProgress--;
567 RF_UNLOCK_MUTEX(raidPtr->mutex);
568
569 } else {
570 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
571 lp->parityConfig);
572 rc = EIO;
573 }
574
575 if (!rc) {
576 RF_LOCK_MUTEX(raidPtr->mutex);
577 /* Need to set these here, as at this point it'll be claiming
578 that the disk is in rf_ds_spared! But we know better :-) */
579
580 raidPtr->Disks[row][col].status = rf_ds_optimal;
581 raidPtr->status[row] = rf_rs_optimal;
582 RF_UNLOCK_MUTEX(raidPtr->mutex);
583
584 /* fix up the component label */
585 /* Don't actually need the read here.. */
586 raidread_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
587 raidPtr->raid_cinfo[row][col].ci_vp,
588 &c_label);
589
590 RF_LOCK_MUTEX(raidPtr->mutex);
591 raid_init_component_label(raidPtr, &c_label);
592
593 c_label.row = row;
594 c_label.column = col;
595
596 /* We've just done a rebuild based on all the other
597 disks, so at this point the parity is known to be
598 clean, even if it wasn't before. */
599
600 /* XXX doesn't hold for RAID 6!!*/
601
602 raidPtr->parity_good = RF_RAID_CLEAN;
603 RF_UNLOCK_MUTEX(raidPtr->mutex);
604
605 raidwrite_component_label(raidPtr->raid_cinfo[row][col].ci_dev,
606 raidPtr->raid_cinfo[row][col].ci_vp,
607 &c_label);
608
609 rf_update_component_labels(raidPtr,
610 RF_NORMAL_COMPONENT_UPDATE);
611
612 }
613 RF_SIGNAL_COND(raidPtr->waitForReconCond);
614 return (rc);
615 }
616
617
618 int
619 rf_ContinueReconstructFailedDisk(reconDesc)
620 RF_RaidReconDesc_t *reconDesc;
621 {
622 RF_Raid_t *raidPtr = reconDesc->raidPtr;
623 RF_RowCol_t row = reconDesc->row;
624 RF_RowCol_t col = reconDesc->col;
625 RF_RowCol_t srow = reconDesc->srow;
626 RF_RowCol_t scol = reconDesc->scol;
627 RF_ReconMap_t *mapPtr;
628 RF_ReconCtrl_t *tmp_reconctrl;
629 RF_ReconEvent_t *event;
630 struct timeval etime, elpsd;
631 unsigned long xor_s, xor_resid_us;
632 int i, ds;
633
634 switch (reconDesc->state) {
635
636
637 case 0:
638
639 raidPtr->accumXorTimeUs = 0;
640
641 /* create one trace record per physical disk */
642 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
643
644 /* quiesce the array prior to starting recon. this is needed
645 * to assure no nasty interactions with pending user writes.
646 * We need to do this before we change the disk or row status. */
647 reconDesc->state = 1;
648
649 Dprintf("RECON: begin request suspend\n");
650 rf_SuspendNewRequestsAndWait(raidPtr);
651 Dprintf("RECON: end request suspend\n");
652 rf_StartUserStats(raidPtr); /* zero out the stats kept on
653 * user accs */
654
655 /* fall through to state 1 */
656
657 case 1:
658
659 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
660 tmp_reconctrl = rf_MakeReconControl(reconDesc, row, col, srow, scol);
661
662 RF_LOCK_MUTEX(raidPtr->mutex);
663
664 /* create the reconstruction control pointer and install it in
665 * the right slot */
666 raidPtr->reconControl[row] = tmp_reconctrl;
667 mapPtr = raidPtr->reconControl[row]->reconMap;
668 raidPtr->status[row] = rf_rs_reconstructing;
669 raidPtr->Disks[row][col].status = rf_ds_reconstructing;
670 raidPtr->Disks[row][col].spareRow = srow;
671 raidPtr->Disks[row][col].spareCol = scol;
672
673 RF_UNLOCK_MUTEX(raidPtr->mutex);
674
675 RF_GETTIME(raidPtr->reconControl[row]->starttime);
676
677 /* now start up the actual reconstruction: issue a read for
678 * each surviving disk */
679
680 reconDesc->numDisksDone = 0;
681 for (i = 0; i < raidPtr->numCol; i++) {
682 if (i != col) {
683 /* find and issue the next I/O on the
684 * indicated disk */
685 if (IssueNextReadRequest(raidPtr, row, i)) {
686 Dprintf2("RECON: done issuing for r%d c%d\n", row, i);
687 reconDesc->numDisksDone++;
688 }
689 }
690 }
691
692 case 2:
693 Dprintf("RECON: resume requests\n");
694 rf_ResumeNewRequests(raidPtr);
695
696
697 reconDesc->state = 3;
698
699 case 3:
700
701 /* process reconstruction events until all disks report that
702 * they've completed all work */
703 mapPtr = raidPtr->reconControl[row]->reconMap;
704
705
706
707 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
708
709 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
710 RF_ASSERT(event);
711
712 if (ProcessReconEvent(raidPtr, row, event))
713 reconDesc->numDisksDone++;
714 raidPtr->reconControl[row]->numRUsTotal =
715 mapPtr->totalRUs;
716 raidPtr->reconControl[row]->numRUsComplete =
717 mapPtr->totalRUs -
718 rf_UnitsLeftToReconstruct(mapPtr);
719
720 raidPtr->reconControl[row]->percentComplete =
721 (raidPtr->reconControl[row]->numRUsComplete * 100 / raidPtr->reconControl[row]->numRUsTotal);
722 #if RF_DEBUG_RECON
723 if (rf_prReconSched) {
724 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
725 }
726 #endif
727 }
728
729
730
731 reconDesc->state = 4;
732
733
734 case 4:
735 mapPtr = raidPtr->reconControl[row]->reconMap;
736 if (rf_reconDebug) {
737 printf("RECON: all reads completed\n");
738 }
739 /* at this point all the reads have completed. We now wait
740 * for any pending writes to complete, and then we're done */
741
742 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl[row]->reconMap) > 0) {
743
744 event = rf_GetNextReconEvent(reconDesc, row, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
745 RF_ASSERT(event);
746
747 (void) ProcessReconEvent(raidPtr, row, event); /* ignore return code */
748 raidPtr->reconControl[row]->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
749 #if RF_DEBUG_RECON
750 if (rf_prReconSched) {
751 rf_PrintReconSchedule(raidPtr->reconControl[row]->reconMap, &(raidPtr->reconControl[row]->starttime));
752 }
753 #endif
754 }
755 reconDesc->state = 5;
756
757 case 5:
758 /* Success: mark the dead disk as reconstructed. We quiesce
759 * the array here to assure no nasty interactions with pending
760 * user accesses when we free up the psstatus structure as
761 * part of FreeReconControl() */
762
763 reconDesc->state = 6;
764
765 rf_SuspendNewRequestsAndWait(raidPtr);
766 rf_StopUserStats(raidPtr);
767 rf_PrintUserStats(raidPtr); /* print out the stats on user
768 * accs accumulated during
769 * recon */
770
771 /* fall through to state 6 */
772 case 6:
773
774
775
776 RF_LOCK_MUTEX(raidPtr->mutex);
777 raidPtr->numFailures--;
778 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
779 raidPtr->Disks[row][col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
780 raidPtr->status[row] = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
781 RF_UNLOCK_MUTEX(raidPtr->mutex);
782 RF_GETTIME(etime);
783 RF_TIMEVAL_DIFF(&(raidPtr->reconControl[row]->starttime), &etime, &elpsd);
784
785 /* XXX -- why is state 7 different from state 6 if there is no
786 * return() here? -- XXX Note that I set elpsd above & use it
787 * below, so if you put a return here you'll have to fix this.
788 * (also, FreeReconControl is called below) */
789
790 case 7:
791
792 rf_ResumeNewRequests(raidPtr);
793
794 printf("raid%d: Reconstruction of disk at row %d col %d completed\n",
795 raidPtr->raidid, row, col);
796 xor_s = raidPtr->accumXorTimeUs / 1000000;
797 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
798 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
799 raidPtr->raidid,
800 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
801 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
802 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
803 raidPtr->raidid,
804 (int) raidPtr->reconControl[row]->starttime.tv_sec,
805 (int) raidPtr->reconControl[row]->starttime.tv_usec,
806 (int) etime.tv_sec, (int) etime.tv_usec);
807
808 #if RF_RECON_STATS > 0
809 printf("raid%d: Total head-sep stall count was %d\n",
810 raidPtr->raidid, (int) reconDesc->hsStallCount);
811 #endif /* RF_RECON_STATS > 0 */
812 rf_FreeReconControl(raidPtr, row);
813 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
814 FreeReconDesc(reconDesc);
815
816 }
817
818 SignalReconDone(raidPtr);
819 return (0);
820 }
821 /*****************************************************************************
822 * do the right thing upon each reconstruction event.
823 * returns nonzero if and only if there is nothing left unread on the
824 * indicated disk
825 *****************************************************************************/
826 static int
827 ProcessReconEvent(raidPtr, frow, event)
828 RF_Raid_t *raidPtr;
829 RF_RowCol_t frow;
830 RF_ReconEvent_t *event;
831 {
832 int retcode = 0, submitblocked;
833 RF_ReconBuffer_t *rbuf;
834 RF_SectorCount_t sectorsPerRU;
835
836 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
837 switch (event->type) {
838
839 /* a read I/O has completed */
840 case RF_REVENT_READDONE:
841 rbuf = raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf;
842 Dprintf3("RECON: READDONE EVENT: row %d col %d psid %ld\n",
843 frow, event->col, rbuf->parityStripeID);
844 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
845 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
846 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
847 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
848 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
849 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
850 if (!submitblocked)
851 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
852 break;
853
854 /* a write I/O has completed */
855 case RF_REVENT_WRITEDONE:
856 #if RF_DEBUG_RECON
857 if (rf_floatingRbufDebug) {
858 rf_CheckFloatingRbufCount(raidPtr, 1);
859 }
860 #endif
861 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
862 rbuf = (RF_ReconBuffer_t *) event->arg;
863 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
864 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
865 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl[frow]->percentComplete);
866 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl[frow]->reconMap,
867 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
868 rf_RemoveFromActiveReconTable(raidPtr, frow, rbuf->parityStripeID, rbuf->which_ru);
869
870 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
871 RF_LOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
872 raidPtr->numFullReconBuffers--;
873 rf_ReleaseFloatingReconBuffer(raidPtr, frow, rbuf);
874 RF_UNLOCK_MUTEX(raidPtr->reconControl[frow]->rb_mutex);
875 } else
876 if (rbuf->type == RF_RBUF_TYPE_FORCED)
877 rf_FreeReconBuffer(rbuf);
878 else
879 RF_ASSERT(0);
880 break;
881
882 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
883 * cleared */
884 Dprintf2("RECON: BUFCLEAR EVENT: row %d col %d\n", frow, event->col);
885 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl[frow]->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
886 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
887 * BUFCLEAR event if we
888 * couldn't submit */
889 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
890 break;
891
892 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
893 * blockage has been cleared */
894 DDprintf2("RECON: BLOCKCLEAR EVENT: row %d col %d\n", frow, event->col);
895 retcode = TryToRead(raidPtr, frow, event->col);
896 break;
897
898 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
899 * reconstruction blockage has been
900 * cleared */
901 Dprintf2("RECON: HEADSEPCLEAR EVENT: row %d col %d\n", frow, event->col);
902 retcode = TryToRead(raidPtr, frow, event->col);
903 break;
904
905 /* a buffer has become ready to write */
906 case RF_REVENT_BUFREADY:
907 Dprintf2("RECON: BUFREADY EVENT: row %d col %d\n", frow, event->col);
908 retcode = IssueNextWriteRequest(raidPtr, frow);
909 #if RF_DEBUG_RECON
910 if (rf_floatingRbufDebug) {
911 rf_CheckFloatingRbufCount(raidPtr, 1);
912 }
913 #endif
914 break;
915
916 /* we need to skip the current RU entirely because it got
917 * recon'd while we were waiting for something else to happen */
918 case RF_REVENT_SKIP:
919 DDprintf2("RECON: SKIP EVENT: row %d col %d\n", frow, event->col);
920 retcode = IssueNextReadRequest(raidPtr, frow, event->col);
921 break;
922
923 /* a forced-reconstruction read access has completed. Just
924 * submit the buffer */
925 case RF_REVENT_FORCEDREADDONE:
926 rbuf = (RF_ReconBuffer_t *) event->arg;
927 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
928 DDprintf2("RECON: FORCEDREADDONE EVENT: row %d col %d\n", frow, event->col);
929 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
930 RF_ASSERT(!submitblocked);
931 break;
932
933 default:
934 RF_PANIC();
935 }
936 rf_FreeReconEventDesc(event);
937 return (retcode);
938 }
939 /*****************************************************************************
940 *
941 * find the next thing that's needed on the indicated disk, and issue
942 * a read request for it. We assume that the reconstruction buffer
943 * associated with this process is free to receive the data. If
944 * reconstruction is blocked on the indicated RU, we issue a
945 * blockage-release request instead of a physical disk read request.
946 * If the current disk gets too far ahead of the others, we issue a
947 * head-separation wait request and return.
948 *
949 * ctrl->{ru_count, curPSID, diskOffset} and
950 * rbuf->failedDiskSectorOffset are maintained to point to the unit
951 * we're currently accessing. Note that this deviates from the
952 * standard C idiom of having counters point to the next thing to be
953 * accessed. This allows us to easily retry when we're blocked by
954 * head separation or reconstruction-blockage events.
955 *
956 * returns nonzero if and only if there is nothing left unread on the
957 * indicated disk
958 *
959 *****************************************************************************/
960 static int
961 IssueNextReadRequest(raidPtr, row, col)
962 RF_Raid_t *raidPtr;
963 RF_RowCol_t row;
964 RF_RowCol_t col;
965 {
966 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
967 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
968 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
969 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
970 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
971 int do_new_check = 0, retcode = 0, status;
972
973 /* if we are currently the slowest disk, mark that we have to do a new
974 * check */
975 if (ctrl->headSepCounter <= raidPtr->reconControl[row]->minHeadSepCounter)
976 do_new_check = 1;
977
978 while (1) {
979
980 ctrl->ru_count++;
981 if (ctrl->ru_count < RUsPerPU) {
982 ctrl->diskOffset += sectorsPerRU;
983 rbuf->failedDiskSectorOffset += sectorsPerRU;
984 } else {
985 ctrl->curPSID++;
986 ctrl->ru_count = 0;
987 /* code left over from when head-sep was based on
988 * parity stripe id */
989 if (ctrl->curPSID >= raidPtr->reconControl[row]->lastPSID) {
990 CheckForNewMinHeadSep(raidPtr, row, ++(ctrl->headSepCounter));
991 return (1); /* finito! */
992 }
993 /* find the disk offsets of the start of the parity
994 * stripe on both the current disk and the failed
995 * disk. skip this entire parity stripe if either disk
996 * does not appear in the indicated PS */
997 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, row, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
998 &rbuf->spRow, &rbuf->spCol, &rbuf->spOffset);
999 if (status) {
1000 ctrl->ru_count = RUsPerPU - 1;
1001 continue;
1002 }
1003 }
1004 rbuf->which_ru = ctrl->ru_count;
1005
1006 /* skip this RU if it's already been reconstructed */
1007 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, rbuf->failedDiskSectorOffset)) {
1008 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1009 continue;
1010 }
1011 break;
1012 }
1013 ctrl->headSepCounter++;
1014 if (do_new_check)
1015 CheckForNewMinHeadSep(raidPtr, row, ctrl->headSepCounter); /* update min if needed */
1016
1017
1018 /* at this point, we have definitely decided what to do, and we have
1019 * only to see if we can actually do it now */
1020 rbuf->parityStripeID = ctrl->curPSID;
1021 rbuf->which_ru = ctrl->ru_count;
1022 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1023 sizeof(raidPtr->recon_tracerecs[col]));
1024 raidPtr->recon_tracerecs[col].reconacc = 1;
1025 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1026 retcode = TryToRead(raidPtr, row, col);
1027 return (retcode);
1028 }
1029
1030 /*
1031 * tries to issue the next read on the indicated disk. We may be
1032 * blocked by (a) the heads being too far apart, or (b) recon on the
1033 * indicated RU being blocked due to a write by a user thread. In
1034 * this case, we issue a head-sep or blockage wait request, which will
1035 * cause this same routine to be invoked again later when the blockage
1036 * has cleared.
1037 */
1038
1039 static int
1040 TryToRead(raidPtr, row, col)
1041 RF_Raid_t *raidPtr;
1042 RF_RowCol_t row;
1043 RF_RowCol_t col;
1044 {
1045 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl[row]->perDiskInfo[col];
1046 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1047 RF_StripeNum_t psid = ctrl->curPSID;
1048 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1049 RF_DiskQueueData_t *req;
1050 int status, created = 0;
1051 RF_ReconParityStripeStatus_t *pssPtr;
1052
1053 /* if the current disk is too far ahead of the others, issue a
1054 * head-separation wait and return */
1055 if (CheckHeadSeparation(raidPtr, ctrl, row, col, ctrl->headSepCounter, which_ru))
1056 return (0);
1057 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1058 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1059
1060 /* if recon is blocked on the indicated parity stripe, issue a
1061 * block-wait request and return. this also must mark the indicated RU
1062 * in the stripe as under reconstruction if not blocked. */
1063 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, row, col, psid, which_ru);
1064 if (status == RF_PSS_RECON_BLOCKED) {
1065 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1066 goto out;
1067 } else
1068 if (status == RF_PSS_FORCED_ON_WRITE) {
1069 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1070 goto out;
1071 }
1072 /* make one last check to be sure that the indicated RU didn't get
1073 * reconstructed while we were waiting for something else to happen.
1074 * This is unfortunate in that it causes us to make this check twice
1075 * in the normal case. Might want to make some attempt to re-work
1076 * this so that we only do this check if we've definitely blocked on
1077 * one of the above checks. When this condition is detected, we may
1078 * have just created a bogus status entry, which we need to delete. */
1079 if (rf_CheckRUReconstructed(raidPtr->reconControl[row]->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1080 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1081 if (created)
1082 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1083 rf_CauseReconEvent(raidPtr, row, col, NULL, RF_REVENT_SKIP);
1084 goto out;
1085 }
1086 /* found something to read. issue the I/O */
1087 Dprintf5("RECON: Read for psid %ld on row %d col %d offset %ld buf %lx\n",
1088 psid, row, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1089 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1090 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1091 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1092 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1093 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1094
1095 /* should be ok to use a NULL proc pointer here, all the bufs we use
1096 * should be in kernel space */
1097 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1098 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1099
1100 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1101
1102 ctrl->rbuf->arg = (void *) req;
1103 rf_DiskIOEnqueue(&raidPtr->Queues[row][col], req, RF_IO_RECON_PRIORITY);
1104 pssPtr->issued[col] = 1;
1105
1106 out:
1107 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1108 return (0);
1109 }
1110
1111
1112 /*
1113 * given a parity stripe ID, we want to find out whether both the
1114 * current disk and the failed disk exist in that parity stripe. If
1115 * not, we want to skip this whole PS. If so, we want to find the
1116 * disk offset of the start of the PS on both the current disk and the
1117 * failed disk.
1118 *
1119 * this works by getting a list of disks comprising the indicated
1120 * parity stripe, and searching the list for the current and failed
1121 * disks. Once we've decided they both exist in the parity stripe, we
1122 * need to decide whether each is data or parity, so that we'll know
1123 * which mapping function to call to get the corresponding disk
1124 * offsets.
1125 *
1126 * this is kind of unpleasant, but doing it this way allows the
1127 * reconstruction code to use parity stripe IDs rather than physical
1128 * disks address to march through the failed disk, which greatly
1129 * simplifies a lot of code, as well as eliminating the need for a
1130 * reverse-mapping function. I also think it will execute faster,
1131 * since the calls to the mapping module are kept to a minimum.
1132 *
1133 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1134 * THE STRIPE IN THE CORRECT ORDER */
1135
1136
1137 static int
1138 ComputePSDiskOffsets(
1139 RF_Raid_t * raidPtr, /* raid descriptor */
1140 RF_StripeNum_t psid, /* parity stripe identifier */
1141 RF_RowCol_t row, /* row and column of disk to find the offsets
1142 * for */
1143 RF_RowCol_t col,
1144 RF_SectorNum_t * outDiskOffset,
1145 RF_SectorNum_t * outFailedDiskSectorOffset,
1146 RF_RowCol_t * spRow, /* OUT: row,col of spare unit for failed unit */
1147 RF_RowCol_t * spCol,
1148 RF_SectorNum_t * spOffset)
1149 { /* OUT: offset into disk containing spare unit */
1150 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1151 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1152 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1153 RF_RowCol_t *diskids;
1154 u_int i, j, k, i_offset, j_offset;
1155 RF_RowCol_t prow, pcol;
1156 int testcol, testrow;
1157 RF_RowCol_t stripe;
1158 RF_SectorNum_t poffset;
1159 char i_is_parity = 0, j_is_parity = 0;
1160 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1161
1162 /* get a listing of the disks comprising that stripe */
1163 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1164 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids, &stripe);
1165 RF_ASSERT(diskids);
1166
1167 /* reject this entire parity stripe if it does not contain the
1168 * indicated disk or it does not contain the failed disk */
1169 if (row != stripe)
1170 goto skipit;
1171 for (i = 0; i < stripeWidth; i++) {
1172 if (col == diskids[i])
1173 break;
1174 }
1175 if (i == stripeWidth)
1176 goto skipit;
1177 for (j = 0; j < stripeWidth; j++) {
1178 if (fcol == diskids[j])
1179 break;
1180 }
1181 if (j == stripeWidth) {
1182 goto skipit;
1183 }
1184 /* find out which disk the parity is on */
1185 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &prow, &pcol, &poffset, RF_DONT_REMAP);
1186
1187 /* find out if either the current RU or the failed RU is parity */
1188 /* also, if the parity occurs in this stripe prior to the data and/or
1189 * failed col, we need to decrement i and/or j */
1190 for (k = 0; k < stripeWidth; k++)
1191 if (diskids[k] == pcol)
1192 break;
1193 RF_ASSERT(k < stripeWidth);
1194 i_offset = i;
1195 j_offset = j;
1196 if (k < i)
1197 i_offset--;
1198 else
1199 if (k == i) {
1200 i_is_parity = 1;
1201 i_offset = 0;
1202 } /* set offsets to zero to disable multiply
1203 * below */
1204 if (k < j)
1205 j_offset--;
1206 else
1207 if (k == j) {
1208 j_is_parity = 1;
1209 j_offset = 0;
1210 }
1211 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1212 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1213 * tells us how far into the stripe the [current,failed] disk is. */
1214
1215 /* call the mapping routine to get the offset into the current disk,
1216 * repeat for failed disk. */
1217 if (i_is_parity)
1218 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1219 else
1220 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outDiskOffset, RF_DONT_REMAP);
1221
1222 RF_ASSERT(row == testrow && col == testcol);
1223
1224 if (j_is_parity)
1225 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1226 else
1227 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testrow, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1228 RF_ASSERT(row == testrow && fcol == testcol);
1229
1230 /* now locate the spare unit for the failed unit */
1231 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1232 if (j_is_parity)
1233 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1234 else
1235 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spRow, spCol, spOffset, RF_REMAP);
1236 } else {
1237 *spRow = raidPtr->reconControl[row]->spareRow;
1238 *spCol = raidPtr->reconControl[row]->spareCol;
1239 *spOffset = *outFailedDiskSectorOffset;
1240 }
1241
1242 return (0);
1243
1244 skipit:
1245 Dprintf3("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1246 psid, row, col);
1247 return (1);
1248 }
1249 /* this is called when a buffer has become ready to write to the replacement disk */
1250 static int
1251 IssueNextWriteRequest(raidPtr, row)
1252 RF_Raid_t *raidPtr;
1253 RF_RowCol_t row;
1254 {
1255 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1256 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1257 RF_RowCol_t fcol = raidPtr->reconControl[row]->fcol;
1258 RF_ReconBuffer_t *rbuf;
1259 RF_DiskQueueData_t *req;
1260
1261 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl[row]);
1262 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1263 * have gotten the event that sent us here */
1264 RF_ASSERT(rbuf->pssPtr);
1265
1266 rbuf->pssPtr->writeRbuf = rbuf;
1267 rbuf->pssPtr = NULL;
1268
1269 Dprintf7("RECON: New write (r %d c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1270 rbuf->spRow, rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1271 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1272 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1273 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1274 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1275
1276 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1277 * kernel space */
1278 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1279 sectorsPerRU, rbuf->buffer,
1280 rbuf->parityStripeID, rbuf->which_ru,
1281 ReconWriteDoneProc, (void *) rbuf, NULL,
1282 &raidPtr->recon_tracerecs[fcol],
1283 (void *) raidPtr, 0, NULL);
1284
1285 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1286
1287 rbuf->arg = (void *) req;
1288 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spRow][rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1289
1290 return (0);
1291 }
1292
1293 /*
1294 * this gets called upon the completion of a reconstruction read
1295 * operation the arg is a pointer to the per-disk reconstruction
1296 * control structure for the process that just finished a read.
1297 *
1298 * called at interrupt context in the kernel, so don't do anything
1299 * illegal here.
1300 */
1301 static int
1302 ReconReadDoneProc(arg, status)
1303 void *arg;
1304 int status;
1305 {
1306 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1307 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1308
1309 if (status) {
1310 /*
1311 * XXX
1312 */
1313 printf("Recon read failed!\n");
1314 RF_PANIC();
1315 }
1316 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1317 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1318 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1319 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1320 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1321
1322 rf_CauseReconEvent(raidPtr, ctrl->row, ctrl->col, NULL, RF_REVENT_READDONE);
1323 return (0);
1324 }
1325 /* this gets called upon the completion of a reconstruction write operation.
1326 * the arg is a pointer to the rbuf that was just written
1327 *
1328 * called at interrupt context in the kernel, so don't do anything illegal here.
1329 */
1330 static int
1331 ReconWriteDoneProc(arg, status)
1332 void *arg;
1333 int status;
1334 {
1335 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1336
1337 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1338 if (status) {
1339 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1340 * write failed!\n"); */
1341 RF_PANIC();
1342 }
1343 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, arg, RF_REVENT_WRITEDONE);
1344 return (0);
1345 }
1346
1347
1348 /*
1349 * computes a new minimum head sep, and wakes up anyone who needs to
1350 * be woken as a result
1351 */
1352 static void
1353 CheckForNewMinHeadSep(raidPtr, row, hsCtr)
1354 RF_Raid_t *raidPtr;
1355 RF_RowCol_t row;
1356 RF_HeadSepLimit_t hsCtr;
1357 {
1358 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1359 RF_HeadSepLimit_t new_min;
1360 RF_RowCol_t i;
1361 RF_CallbackDesc_t *p;
1362 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1363 * of a minimum */
1364
1365
1366 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1367
1368 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1369 for (i = 0; i < raidPtr->numCol; i++)
1370 if (i != reconCtrlPtr->fcol) {
1371 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1372 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1373 }
1374 /* set the new minimum and wake up anyone who can now run again */
1375 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1376 reconCtrlPtr->minHeadSepCounter = new_min;
1377 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1378 while (reconCtrlPtr->headSepCBList) {
1379 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1380 break;
1381 p = reconCtrlPtr->headSepCBList;
1382 reconCtrlPtr->headSepCBList = p->next;
1383 p->next = NULL;
1384 rf_CauseReconEvent(raidPtr, p->row, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1385 rf_FreeCallbackDesc(p);
1386 }
1387
1388 }
1389 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1390 }
1391
1392 /*
1393 * checks to see that the maximum head separation will not be violated
1394 * if we initiate a reconstruction I/O on the indicated disk.
1395 * Limiting the maximum head separation between two disks eliminates
1396 * the nasty buffer-stall conditions that occur when one disk races
1397 * ahead of the others and consumes all of the floating recon buffers.
1398 * This code is complex and unpleasant but it's necessary to avoid
1399 * some very nasty, albeit fairly rare, reconstruction behavior.
1400 *
1401 * returns non-zero if and only if we have to stop working on the
1402 * indicated disk due to a head-separation delay.
1403 */
1404 static int
1405 CheckHeadSeparation(
1406 RF_Raid_t * raidPtr,
1407 RF_PerDiskReconCtrl_t * ctrl,
1408 RF_RowCol_t row,
1409 RF_RowCol_t col,
1410 RF_HeadSepLimit_t hsCtr,
1411 RF_ReconUnitNum_t which_ru)
1412 {
1413 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl[row];
1414 RF_CallbackDesc_t *cb, *p, *pt;
1415 int retval = 0;
1416
1417 /* if we're too far ahead of the slowest disk, stop working on this
1418 * disk until the slower ones catch up. We do this by scheduling a
1419 * wakeup callback for the time when the slowest disk has caught up.
1420 * We define "caught up" with 20% hysteresis, i.e. the head separation
1421 * must have fallen to at most 80% of the max allowable head
1422 * separation before we'll wake up.
1423 *
1424 */
1425 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1426 if ((raidPtr->headSepLimit >= 0) &&
1427 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1428 Dprintf6("raid%d: RECON: head sep stall: row %d col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1429 raidPtr->raidid, row, col, ctrl->headSepCounter,
1430 reconCtrlPtr->minHeadSepCounter,
1431 raidPtr->headSepLimit);
1432 cb = rf_AllocCallbackDesc();
1433 /* the minHeadSepCounter value we have to get to before we'll
1434 * wake up. build in 20% hysteresis. */
1435 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1436 cb->row = row;
1437 cb->col = col;
1438 cb->next = NULL;
1439
1440 /* insert this callback descriptor into the sorted list of
1441 * pending head-sep callbacks */
1442 p = reconCtrlPtr->headSepCBList;
1443 if (!p)
1444 reconCtrlPtr->headSepCBList = cb;
1445 else
1446 if (cb->callbackArg.v < p->callbackArg.v) {
1447 cb->next = reconCtrlPtr->headSepCBList;
1448 reconCtrlPtr->headSepCBList = cb;
1449 } else {
1450 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1451 cb->next = p;
1452 pt->next = cb;
1453 }
1454 retval = 1;
1455 #if RF_RECON_STATS > 0
1456 ctrl->reconCtrl->reconDesc->hsStallCount++;
1457 #endif /* RF_RECON_STATS > 0 */
1458 }
1459 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1460
1461 return (retval);
1462 }
1463 /*
1464 * checks to see if reconstruction has been either forced or blocked
1465 * by a user operation. if forced, we skip this RU entirely. else if
1466 * blocked, put ourselves on the wait list. else return 0.
1467 *
1468 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1469 */
1470 static int
1471 CheckForcedOrBlockedReconstruction(
1472 RF_Raid_t * raidPtr,
1473 RF_ReconParityStripeStatus_t * pssPtr,
1474 RF_PerDiskReconCtrl_t * ctrl,
1475 RF_RowCol_t row,
1476 RF_RowCol_t col,
1477 RF_StripeNum_t psid,
1478 RF_ReconUnitNum_t which_ru)
1479 {
1480 RF_CallbackDesc_t *cb;
1481 int retcode = 0;
1482
1483 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1484 retcode = RF_PSS_FORCED_ON_WRITE;
1485 else
1486 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1487 Dprintf4("RECON: row %d col %d blocked at psid %ld ru %d\n", row, col, psid, which_ru);
1488 cb = rf_AllocCallbackDesc(); /* append ourselves to
1489 * the blockage-wait
1490 * list */
1491 cb->row = row;
1492 cb->col = col;
1493 cb->next = pssPtr->blockWaitList;
1494 pssPtr->blockWaitList = cb;
1495 retcode = RF_PSS_RECON_BLOCKED;
1496 }
1497 if (!retcode)
1498 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1499 * reconstruction */
1500
1501 return (retcode);
1502 }
1503 /*
1504 * if reconstruction is currently ongoing for the indicated stripeID,
1505 * reconstruction is forced to completion and we return non-zero to
1506 * indicate that the caller must wait. If not, then reconstruction is
1507 * blocked on the indicated stripe and the routine returns zero. If
1508 * and only if we return non-zero, we'll cause the cbFunc to get
1509 * invoked with the cbArg when the reconstruction has completed.
1510 */
1511 int
1512 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1513 RF_Raid_t *raidPtr;
1514 RF_AccessStripeMap_t *asmap;
1515 void (*cbFunc) (RF_Raid_t *, void *);
1516 void *cbArg;
1517 {
1518 RF_RowCol_t row = asmap->physInfo->row; /* which row of the array
1519 * we're working on */
1520 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1521 * forcing recon on */
1522 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1523 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1524 * stripe status structure */
1525 RF_StripeNum_t psid; /* parity stripe id */
1526 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1527 * offset */
1528 RF_RowCol_t *diskids;
1529 RF_RowCol_t stripe;
1530 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1531 RF_RowCol_t fcol, diskno, i;
1532 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1533 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1534 RF_CallbackDesc_t *cb;
1535 int created = 0, nPromoted;
1536
1537 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1538
1539 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1540
1541 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1542
1543 /* if recon is not ongoing on this PS, just return */
1544 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1545 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1546 return (0);
1547 }
1548 /* otherwise, we have to wait for reconstruction to complete on this
1549 * RU. */
1550 /* In order to avoid waiting for a potentially large number of
1551 * low-priority accesses to complete, we force a normal-priority (i.e.
1552 * not low-priority) reconstruction on this RU. */
1553 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1554 DDprintf1("Forcing recon on psid %ld\n", psid);
1555 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1556 * forced recon */
1557 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1558 * that we just set */
1559 fcol = raidPtr->reconControl[row]->fcol;
1560
1561 /* get a listing of the disks comprising the indicated stripe */
1562 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids, &stripe);
1563 RF_ASSERT(row == stripe);
1564
1565 /* For previously issued reads, elevate them to normal
1566 * priority. If the I/O has already completed, it won't be
1567 * found in the queue, and hence this will be a no-op. For
1568 * unissued reads, allocate buffers and issue new reads. The
1569 * fact that we've set the FORCED bit means that the regular
1570 * recon procs will not re-issue these reqs */
1571 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1572 if ((diskno = diskids[i]) != fcol) {
1573 if (pssPtr->issued[diskno]) {
1574 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[row][diskno], psid, which_ru);
1575 if (rf_reconDebug && nPromoted)
1576 printf("raid%d: promoted read from row %d col %d\n", raidPtr->raidid, row, diskno);
1577 } else {
1578 new_rbuf = rf_MakeReconBuffer(raidPtr, row, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1579 ComputePSDiskOffsets(raidPtr, psid, row, diskno, &offset, &fd_offset,
1580 &new_rbuf->spRow, &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1581 * location */
1582 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1583 new_rbuf->which_ru = which_ru;
1584 new_rbuf->failedDiskSectorOffset = fd_offset;
1585 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1586
1587 /* use NULL b_proc b/c all addrs
1588 * should be in kernel space */
1589 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1590 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1591 NULL, (void *) raidPtr, 0, NULL);
1592
1593 RF_ASSERT(req); /* XXX -- fix this --
1594 * XXX */
1595
1596 new_rbuf->arg = req;
1597 rf_DiskIOEnqueue(&raidPtr->Queues[row][diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1598 Dprintf3("raid%d: Issued new read req on row %d col %d\n", raidPtr->raidid, row, diskno);
1599 }
1600 }
1601 /* if the write is sitting in the disk queue, elevate its
1602 * priority */
1603 if (rf_DiskIOPromote(&raidPtr->Queues[row][fcol], psid, which_ru))
1604 printf("raid%d: promoted write to row %d col %d\n",
1605 raidPtr->raidid, row, fcol);
1606 }
1607 /* install a callback descriptor to be invoked when recon completes on
1608 * this parity stripe. */
1609 cb = rf_AllocCallbackDesc();
1610 /* XXX the following is bogus.. These functions don't really match!!
1611 * GO */
1612 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1613 cb->callbackArg.p = (void *) cbArg;
1614 cb->next = pssPtr->procWaitList;
1615 pssPtr->procWaitList = cb;
1616 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1617 raidPtr->raidid, psid);
1618
1619 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1620 return (1);
1621 }
1622 /* called upon the completion of a forced reconstruction read.
1623 * all we do is schedule the FORCEDREADONE event.
1624 * called at interrupt context in the kernel, so don't do anything illegal here.
1625 */
1626 static void
1627 ForceReconReadDoneProc(arg, status)
1628 void *arg;
1629 int status;
1630 {
1631 RF_ReconBuffer_t *rbuf = arg;
1632
1633 if (status) {
1634 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1635 * recon read
1636 * failed!\n"); */
1637 RF_PANIC();
1638 }
1639 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->row, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1640 }
1641 /* releases a block on the reconstruction of the indicated stripe */
1642 int
1643 rf_UnblockRecon(raidPtr, asmap)
1644 RF_Raid_t *raidPtr;
1645 RF_AccessStripeMap_t *asmap;
1646 {
1647 RF_RowCol_t row = asmap->origRow;
1648 RF_StripeNum_t stripeID = asmap->stripeID;
1649 RF_ReconParityStripeStatus_t *pssPtr;
1650 RF_ReconUnitNum_t which_ru;
1651 RF_StripeNum_t psid;
1652 int created = 0;
1653 RF_CallbackDesc_t *cb;
1654
1655 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1656 RF_LOCK_PSS_MUTEX(raidPtr, row, psid);
1657 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl[row]->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1658
1659 /* When recon is forced, the pss desc can get deleted before we get
1660 * back to unblock recon. But, this can _only_ happen when recon is
1661 * forced. It would be good to put some kind of sanity check here, but
1662 * how to decide if recon was just forced or not? */
1663 if (!pssPtr) {
1664 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1665 * RU %d\n",psid,which_ru); */
1666 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1667 if (rf_reconDebug || rf_pssDebug)
1668 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1669 #endif
1670 goto out;
1671 }
1672 pssPtr->blockCount--;
1673 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1674 raidPtr->raidid, psid, pssPtr->blockCount);
1675 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1676
1677 /* unblock recon before calling CauseReconEvent in case
1678 * CauseReconEvent causes us to try to issue a new read before
1679 * returning here. */
1680 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1681
1682
1683 while (pssPtr->blockWaitList) {
1684 /* spin through the block-wait list and
1685 release all the waiters */
1686 cb = pssPtr->blockWaitList;
1687 pssPtr->blockWaitList = cb->next;
1688 cb->next = NULL;
1689 rf_CauseReconEvent(raidPtr, cb->row, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1690 rf_FreeCallbackDesc(cb);
1691 }
1692 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1693 /* if no recon was requested while recon was blocked */
1694 rf_PSStatusDelete(raidPtr, raidPtr->reconControl[row]->pssTable, pssPtr);
1695 }
1696 }
1697 out:
1698 RF_UNLOCK_PSS_MUTEX(raidPtr, row, psid);
1699 return (0);
1700 }
1701