rf_reconstruct.c revision 1.56.2.8 1 /* $NetBSD: rf_reconstruct.c,v 1.56.2.8 2005/02/06 08:59:23 skrll Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.56.2.8 2005/02/06 08:59:23 skrll Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 RF_RowCol_t, RF_HeadSepLimit_t,
120 RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 RF_ReconParityStripeStatus_t *,
123 RF_PerDiskReconCtrl_t *,
124 RF_RowCol_t, RF_StripeNum_t,
125 RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128
129 struct RF_ReconDoneProc_s {
130 void (*proc) (RF_Raid_t *, void *);
131 void *arg;
132 RF_ReconDoneProc_t *next;
133 };
134
135 /**************************************************************************
136 *
137 * sets up the parameters that will be used by the reconstruction process
138 * currently there are none, except for those that the layout-specific
139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140 *
141 * in the kernel, we fire off the recon thread.
142 *
143 **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157
158 return (0);
159 }
160
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 RF_RowCol_t scol)
165 {
166
167 RF_RaidReconDesc_t *reconDesc;
168
169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 (RF_RaidReconDesc_t *));
171 reconDesc->raidPtr = raidPtr;
172 reconDesc->col = col;
173 reconDesc->spareDiskPtr = spareDiskPtr;
174 reconDesc->numDisksDone = numDisksDone;
175 reconDesc->scol = scol;
176 reconDesc->next = NULL;
177
178 return (reconDesc);
179 }
180
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 reconDesc->raidPtr->raidid,
187 (long) reconDesc->numReconEventWaits,
188 (long) reconDesc->numReconExecDelays);
189 #endif /* RF_RECON_STATS > 0 */
190 printf("raid%d: %lu max exec ticks\n",
191 reconDesc->raidPtr->raidid,
192 (long) reconDesc->maxReconExecTicks);
193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
194 printf("\n");
195 #endif /* (RF_RECON_STATS > 0) || KERNEL */
196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
197 }
198
199
200 /*****************************************************************************
201 *
202 * primary routine to reconstruct a failed disk. This should be called from
203 * within its own thread. It won't return until reconstruction completes,
204 * fails, or is aborted.
205 *****************************************************************************/
206 int
207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
208 {
209 const RF_LayoutSW_t *lp;
210 int rc;
211
212 lp = raidPtr->Layout.map;
213 if (lp->SubmitReconBuffer) {
214 /*
215 * The current infrastructure only supports reconstructing one
216 * disk at a time for each array.
217 */
218 RF_LOCK_MUTEX(raidPtr->mutex);
219 while (raidPtr->reconInProgress) {
220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
221 }
222 raidPtr->reconInProgress++;
223 RF_UNLOCK_MUTEX(raidPtr->mutex);
224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
225 RF_LOCK_MUTEX(raidPtr->mutex);
226 raidPtr->reconInProgress--;
227 RF_UNLOCK_MUTEX(raidPtr->mutex);
228 } else {
229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 lp->parityConfig);
231 rc = EIO;
232 }
233 RF_SIGNAL_COND(raidPtr->waitForReconCond);
234 return (rc);
235 }
236
237 int
238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
239 {
240 RF_ComponentLabel_t c_label;
241 RF_RaidDisk_t *spareDiskPtr = NULL;
242 RF_RaidReconDesc_t *reconDesc;
243 RF_RowCol_t scol;
244 int numDisksDone = 0, rc;
245
246 /* first look for a spare drive onto which to reconstruct the data */
247 /* spare disk descriptors are stored in row 0. This may have to
248 * change eventually */
249
250 RF_LOCK_MUTEX(raidPtr->mutex);
251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
254 if (raidPtr->status != rf_rs_degraded) {
255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
256 RF_UNLOCK_MUTEX(raidPtr->mutex);
257 return (EINVAL);
258 }
259 scol = (-1);
260 } else {
261 #endif
262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
263 if (raidPtr->Disks[scol].status == rf_ds_spare) {
264 spareDiskPtr = &raidPtr->Disks[scol];
265 spareDiskPtr->status = rf_ds_used_spare;
266 break;
267 }
268 }
269 if (!spareDiskPtr) {
270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
271 RF_UNLOCK_MUTEX(raidPtr->mutex);
272 return (ENOSPC);
273 }
274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
276 }
277 #endif
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279
280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
281 raidPtr->reconDesc = (void *) reconDesc;
282 #if RF_RECON_STATS > 0
283 reconDesc->hsStallCount = 0;
284 reconDesc->numReconExecDelays = 0;
285 reconDesc->numReconEventWaits = 0;
286 #endif /* RF_RECON_STATS > 0 */
287 reconDesc->reconExecTimerRunning = 0;
288 reconDesc->reconExecTicks = 0;
289 reconDesc->maxReconExecTicks = 0;
290 rc = rf_ContinueReconstructFailedDisk(reconDesc);
291
292 if (!rc) {
293 /* fix up the component label */
294 /* Don't actually need the read here.. */
295 raidread_component_label(
296 raidPtr->raid_cinfo[scol].ci_dev,
297 raidPtr->raid_cinfo[scol].ci_vp,
298 &c_label);
299
300 raid_init_component_label( raidPtr, &c_label);
301 c_label.row = 0;
302 c_label.column = col;
303 c_label.clean = RF_RAID_DIRTY;
304 c_label.status = rf_ds_optimal;
305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
306
307 /* We've just done a rebuild based on all the other
308 disks, so at this point the parity is known to be
309 clean, even if it wasn't before. */
310
311 /* XXX doesn't hold for RAID 6!!*/
312
313 RF_LOCK_MUTEX(raidPtr->mutex);
314 raidPtr->parity_good = RF_RAID_CLEAN;
315 RF_UNLOCK_MUTEX(raidPtr->mutex);
316
317 /* XXXX MORE NEEDED HERE */
318
319 raidwrite_component_label(
320 raidPtr->raid_cinfo[scol].ci_dev,
321 raidPtr->raid_cinfo[scol].ci_vp,
322 &c_label);
323
324 } else {
325 /* Reconstruct failed. */
326
327 RF_LOCK_MUTEX(raidPtr->mutex);
328 /* Failed disk goes back to "failed" status */
329 raidPtr->Disks[col].status = rf_ds_failed;
330
331 /* Spare disk goes back to "spare" status. */
332 spareDiskPtr->status = rf_ds_spare;
333 RF_UNLOCK_MUTEX(raidPtr->mutex);
334
335 }
336 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
337 return (rc);
338 }
339
340 /*
341
342 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
343 and you don't get a spare until the next Monday. With this function
344 (and hot-swappable drives) you can now put your new disk containing
345 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
346 rebuild the data "on the spot".
347
348 */
349
350 int
351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
352 {
353 RF_RaidDisk_t *spareDiskPtr = NULL;
354 RF_RaidReconDesc_t *reconDesc;
355 const RF_LayoutSW_t *lp;
356 RF_ComponentLabel_t c_label;
357 int numDisksDone = 0, rc;
358 struct partinfo dpart;
359 struct vnode *vp;
360 struct vattr va;
361 struct lwp *lwp;
362 int retcode;
363 int ac;
364
365 lp = raidPtr->Layout.map;
366 if (!lp->SubmitReconBuffer) {
367 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
368 lp->parityConfig);
369 /* wakeup anyone who might be waiting to do a reconstruct */
370 RF_SIGNAL_COND(raidPtr->waitForReconCond);
371 return(EIO);
372 }
373
374 /*
375 * The current infrastructure only supports reconstructing one
376 * disk at a time for each array.
377 */
378 RF_LOCK_MUTEX(raidPtr->mutex);
379
380 if (raidPtr->Disks[col].status != rf_ds_failed) {
381 /* "It's gone..." */
382 raidPtr->numFailures++;
383 raidPtr->Disks[col].status = rf_ds_failed;
384 raidPtr->status = rf_rs_degraded;
385 RF_UNLOCK_MUTEX(raidPtr->mutex);
386 rf_update_component_labels(raidPtr,
387 RF_NORMAL_COMPONENT_UPDATE);
388 RF_LOCK_MUTEX(raidPtr->mutex);
389 }
390
391 while (raidPtr->reconInProgress) {
392 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
393 }
394
395 raidPtr->reconInProgress++;
396
397 /* first look for a spare drive onto which to reconstruct the
398 data. spare disk descriptors are stored in row 0. This
399 may have to change eventually */
400
401 /* Actually, we don't care if it's failed or not... On a RAID
402 set with correct parity, this function should be callable
403 on any component without ill affects. */
404 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
405
406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
407 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
408 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
409
410 raidPtr->reconInProgress--;
411 RF_UNLOCK_MUTEX(raidPtr->mutex);
412 RF_SIGNAL_COND(raidPtr->waitForReconCond);
413 return (EINVAL);
414 }
415 #endif
416 lwp = LIST_FIRST(&raidPtr->engine_thread->p_lwps);
417
418 /* This device may have been opened successfully the
419 first time. Close it before trying to open it again.. */
420
421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 printf("Closed the open device: %s\n",
424 raidPtr->Disks[col].devname);
425 #endif
426 vp = raidPtr->raid_cinfo[col].ci_vp;
427 ac = raidPtr->Disks[col].auto_configured;
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 rf_close_component(raidPtr, vp, ac);
430 RF_LOCK_MUTEX(raidPtr->mutex);
431 raidPtr->raid_cinfo[col].ci_vp = NULL;
432 }
433 /* note that this disk was *not* auto_configured (any longer)*/
434 raidPtr->Disks[col].auto_configured = 0;
435
436 #if 0
437 printf("About to (re-)open the device for rebuilding: %s\n",
438 raidPtr->Disks[col].devname);
439 #endif
440 RF_UNLOCK_MUTEX(raidPtr->mutex);
441 retcode = raidlookup(raidPtr->Disks[col].devname, lwp, &vp);
442
443 if (retcode) {
444 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
445 raidPtr->Disks[col].devname, retcode);
446
447 /* the component isn't responding properly...
448 must be still dead :-( */
449 RF_LOCK_MUTEX(raidPtr->mutex);
450 raidPtr->reconInProgress--;
451 RF_UNLOCK_MUTEX(raidPtr->mutex);
452 RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 return(retcode);
454 }
455
456 /* Ok, so we can at least do a lookup...
457 How about actually getting a vp for it? */
458
459 if ((retcode = VOP_GETATTR(vp, &va, lwp->l_proc->p_ucred, lwp)) != 0) {
460 RF_LOCK_MUTEX(raidPtr->mutex);
461 raidPtr->reconInProgress--;
462 RF_UNLOCK_MUTEX(raidPtr->mutex);
463 RF_SIGNAL_COND(raidPtr->waitForReconCond);
464 return(retcode);
465 }
466
467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, lwp->l_proc->p_ucred, lwp);
468 if (retcode) {
469 RF_LOCK_MUTEX(raidPtr->mutex);
470 raidPtr->reconInProgress--;
471 RF_UNLOCK_MUTEX(raidPtr->mutex);
472 RF_SIGNAL_COND(raidPtr->waitForReconCond);
473 return(retcode);
474 }
475 RF_LOCK_MUTEX(raidPtr->mutex);
476 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
477
478 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
479 rf_protectedSectors;
480
481 raidPtr->raid_cinfo[col].ci_vp = vp;
482 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
483
484 raidPtr->Disks[col].dev = va.va_rdev;
485
486 /* we allow the user to specify that only a fraction
487 of the disks should be used this is just for debug:
488 it speeds up * the parity scan */
489 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
490 rf_sizePercentage / 100;
491 RF_UNLOCK_MUTEX(raidPtr->mutex);
492
493 spareDiskPtr = &raidPtr->Disks[col];
494 spareDiskPtr->status = rf_ds_used_spare;
495
496 printf("raid%d: initiating in-place reconstruction on column %d\n",
497 raidPtr->raidid, col);
498
499 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
500 numDisksDone, col);
501 raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 reconDesc->hsStallCount = 0;
504 reconDesc->numReconExecDelays = 0;
505 reconDesc->numReconEventWaits = 0;
506 #endif /* RF_RECON_STATS > 0 */
507 reconDesc->reconExecTimerRunning = 0;
508 reconDesc->reconExecTicks = 0;
509 reconDesc->maxReconExecTicks = 0;
510 rc = rf_ContinueReconstructFailedDisk(reconDesc);
511
512 if (!rc) {
513 RF_LOCK_MUTEX(raidPtr->mutex);
514 /* Need to set these here, as at this point it'll be claiming
515 that the disk is in rf_ds_spared! But we know better :-) */
516
517 raidPtr->Disks[col].status = rf_ds_optimal;
518 raidPtr->status = rf_rs_optimal;
519 RF_UNLOCK_MUTEX(raidPtr->mutex);
520
521 /* fix up the component label */
522 /* Don't actually need the read here.. */
523 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
524 raidPtr->raid_cinfo[col].ci_vp,
525 &c_label);
526
527 RF_LOCK_MUTEX(raidPtr->mutex);
528 raid_init_component_label(raidPtr, &c_label);
529
530 c_label.row = 0;
531 c_label.column = col;
532
533 /* We've just done a rebuild based on all the other
534 disks, so at this point the parity is known to be
535 clean, even if it wasn't before. */
536
537 /* XXX doesn't hold for RAID 6!!*/
538
539 raidPtr->parity_good = RF_RAID_CLEAN;
540 RF_UNLOCK_MUTEX(raidPtr->mutex);
541
542 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
543 raidPtr->raid_cinfo[col].ci_vp,
544 &c_label);
545
546 } else {
547 /* Reconstruct-in-place failed. Disk goes back to
548 "failed" status, regardless of what it was before. */
549 RF_LOCK_MUTEX(raidPtr->mutex);
550 raidPtr->Disks[col].status = rf_ds_failed;
551 RF_UNLOCK_MUTEX(raidPtr->mutex);
552 }
553
554 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
555
556 RF_LOCK_MUTEX(raidPtr->mutex);
557 raidPtr->reconInProgress--;
558 RF_UNLOCK_MUTEX(raidPtr->mutex);
559
560 RF_SIGNAL_COND(raidPtr->waitForReconCond);
561 return (rc);
562 }
563
564
565 int
566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
567 {
568 RF_Raid_t *raidPtr = reconDesc->raidPtr;
569 RF_RowCol_t col = reconDesc->col;
570 RF_RowCol_t scol = reconDesc->scol;
571 RF_ReconMap_t *mapPtr;
572 RF_ReconCtrl_t *tmp_reconctrl;
573 RF_ReconEvent_t *event;
574 RF_CallbackDesc_t *p;
575 struct timeval etime, elpsd;
576 unsigned long xor_s, xor_resid_us;
577 int i, ds;
578 int status;
579 int recon_error, write_error;
580
581 raidPtr->accumXorTimeUs = 0;
582 #if RF_ACC_TRACE > 0
583 /* create one trace record per physical disk */
584 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
585 #endif
586
587 /* quiesce the array prior to starting recon. this is needed
588 * to assure no nasty interactions with pending user writes.
589 * We need to do this before we change the disk or row status. */
590
591 Dprintf("RECON: begin request suspend\n");
592 rf_SuspendNewRequestsAndWait(raidPtr);
593 Dprintf("RECON: end request suspend\n");
594
595 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
596 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
597
598 RF_LOCK_MUTEX(raidPtr->mutex);
599
600 /* create the reconstruction control pointer and install it in
601 * the right slot */
602 raidPtr->reconControl = tmp_reconctrl;
603 mapPtr = raidPtr->reconControl->reconMap;
604 raidPtr->status = rf_rs_reconstructing;
605 raidPtr->Disks[col].status = rf_ds_reconstructing;
606 raidPtr->Disks[col].spareCol = scol;
607
608 RF_UNLOCK_MUTEX(raidPtr->mutex);
609
610 RF_GETTIME(raidPtr->reconControl->starttime);
611
612 /* now start up the actual reconstruction: issue a read for
613 * each surviving disk */
614
615 reconDesc->numDisksDone = 0;
616 for (i = 0; i < raidPtr->numCol; i++) {
617 if (i != col) {
618 /* find and issue the next I/O on the
619 * indicated disk */
620 if (IssueNextReadRequest(raidPtr, i)) {
621 Dprintf1("RECON: done issuing for c%d\n", i);
622 reconDesc->numDisksDone++;
623 }
624 }
625 }
626
627 Dprintf("RECON: resume requests\n");
628 rf_ResumeNewRequests(raidPtr);
629
630 /* process reconstruction events until all disks report that
631 * they've completed all work */
632
633 mapPtr = raidPtr->reconControl->reconMap;
634 recon_error = 0;
635 write_error = 0;
636
637 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
638
639 event = rf_GetNextReconEvent(reconDesc);
640 status = ProcessReconEvent(raidPtr, event);
641
642 /* the normal case is that a read completes, and all is well. */
643 if (status == RF_RECON_DONE_READS) {
644 reconDesc->numDisksDone++;
645 } else if ((status == RF_RECON_READ_ERROR) ||
646 (status == RF_RECON_WRITE_ERROR)) {
647 /* an error was encountered while reconstructing...
648 Pretend we've finished this disk.
649 */
650 recon_error = 1;
651 raidPtr->reconControl->error = 1;
652
653 /* bump the numDisksDone count for reads,
654 but not for writes */
655 if (status == RF_RECON_READ_ERROR)
656 reconDesc->numDisksDone++;
657
658 /* write errors are special -- when we are
659 done dealing with the reads that are
660 finished, we don't want to wait for any
661 writes */
662 if (status == RF_RECON_WRITE_ERROR)
663 write_error = 1;
664
665 } else if (status == RF_RECON_READ_STOPPED) {
666 /* count this component as being "done" */
667 reconDesc->numDisksDone++;
668 }
669
670 if (recon_error) {
671
672 /* make sure any stragglers are woken up so that
673 their theads will complete, and we can get out
674 of here with all IO processed */
675
676 while (raidPtr->reconControl->headSepCBList) {
677 p = raidPtr->reconControl->headSepCBList;
678 raidPtr->reconControl->headSepCBList = p->next;
679 p->next = NULL;
680 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
681 rf_FreeCallbackDesc(p);
682 }
683 }
684
685 raidPtr->reconControl->numRUsTotal =
686 mapPtr->totalRUs;
687 raidPtr->reconControl->numRUsComplete =
688 mapPtr->totalRUs -
689 rf_UnitsLeftToReconstruct(mapPtr);
690
691 #if RF_DEBUG_RECON
692 raidPtr->reconControl->percentComplete =
693 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
694 if (rf_prReconSched) {
695 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
696 }
697 #endif
698 }
699
700 mapPtr = raidPtr->reconControl->reconMap;
701 if (rf_reconDebug) {
702 printf("RECON: all reads completed\n");
703 }
704 /* at this point all the reads have completed. We now wait
705 * for any pending writes to complete, and then we're done */
706
707 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
708
709 event = rf_GetNextReconEvent(reconDesc);
710 status = ProcessReconEvent(raidPtr, event);
711
712 if (status == RF_RECON_WRITE_ERROR) {
713 recon_error = 1;
714 raidPtr->reconControl->error = 1;
715 /* an error was encountered at the very end... bail */
716 } else {
717 #if RF_DEBUG_RECON
718 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
719 if (rf_prReconSched) {
720 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
721 }
722 #endif
723 }
724 }
725
726 if (recon_error) {
727 /* we've encountered an error in reconstructing. */
728 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
729
730 /* we start by blocking IO to the RAID set. */
731 rf_SuspendNewRequestsAndWait(raidPtr);
732
733 RF_LOCK_MUTEX(raidPtr->mutex);
734 /* mark set as being degraded, rather than
735 rf_rs_reconstructing as we were before the problem.
736 After this is done we can update status of the
737 component disks without worrying about someone
738 trying to read from a failed component.
739 */
740 raidPtr->status = rf_rs_degraded;
741 RF_UNLOCK_MUTEX(raidPtr->mutex);
742
743 /* resume IO */
744 rf_ResumeNewRequests(raidPtr);
745
746 /* At this point there are two cases:
747 1) If we've experienced a read error, then we've
748 already waited for all the reads we're going to get,
749 and we just need to wait for the writes.
750
751 2) If we've experienced a write error, we've also
752 already waited for all the reads to complete,
753 but there is little point in waiting for the writes --
754 when they do complete, they will just be ignored.
755
756 So we just wait for writes to complete if we didn't have a
757 write error.
758 */
759
760 if (!write_error) {
761 /* wait for writes to complete */
762 while (raidPtr->reconControl->pending_writes > 0) {
763
764 event = rf_GetNextReconEvent(reconDesc);
765 status = ProcessReconEvent(raidPtr, event);
766
767 if (status == RF_RECON_WRITE_ERROR) {
768 raidPtr->reconControl->error = 1;
769 /* an error was encountered at the very end... bail.
770 This will be very bad news for the user, since
771 at this point there will have been a read error
772 on one component, and a write error on another!
773 */
774 break;
775 }
776 }
777 }
778
779
780 /* cleanup */
781
782 /* drain the event queue - after waiting for the writes above,
783 there shouldn't be much (if anything!) left in the queue. */
784
785 rf_DrainReconEventQueue(reconDesc);
786
787 /* XXX As much as we'd like to free the recon control structure
788 and the reconDesc, we have no way of knowing if/when those will
789 be touched by IO that has yet to occur. It is rather poor to be
790 basically causing a 'memory leak' here, but there doesn't seem to be
791 a cleaner alternative at this time. Perhaps when the reconstruct code
792 gets a makeover this problem will go away.
793 */
794 #if 0
795 rf_FreeReconControl(raidPtr);
796 #endif
797
798 #if RF_ACC_TRACE > 0
799 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
800 #endif
801 /* XXX see comment above */
802 #if 0
803 FreeReconDesc(reconDesc);
804 #endif
805
806 return (1);
807 }
808
809 /* Success: mark the dead disk as reconstructed. We quiesce
810 * the array here to assure no nasty interactions with pending
811 * user accesses when we free up the psstatus structure as
812 * part of FreeReconControl() */
813
814 rf_SuspendNewRequestsAndWait(raidPtr);
815
816 RF_LOCK_MUTEX(raidPtr->mutex);
817 raidPtr->numFailures--;
818 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
819 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
820 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
821 RF_UNLOCK_MUTEX(raidPtr->mutex);
822 RF_GETTIME(etime);
823 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
824
825 rf_ResumeNewRequests(raidPtr);
826
827 printf("raid%d: Reconstruction of disk at col %d completed\n",
828 raidPtr->raidid, col);
829 xor_s = raidPtr->accumXorTimeUs / 1000000;
830 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
831 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
832 raidPtr->raidid,
833 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
834 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
835 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
836 raidPtr->raidid,
837 (int) raidPtr->reconControl->starttime.tv_sec,
838 (int) raidPtr->reconControl->starttime.tv_usec,
839 (int) etime.tv_sec, (int) etime.tv_usec);
840 #if RF_RECON_STATS > 0
841 printf("raid%d: Total head-sep stall count was %d\n",
842 raidPtr->raidid, (int) reconDesc->hsStallCount);
843 #endif /* RF_RECON_STATS > 0 */
844 rf_FreeReconControl(raidPtr);
845 #if RF_ACC_TRACE > 0
846 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
847 #endif
848 FreeReconDesc(reconDesc);
849
850 return (0);
851
852 }
853 /*****************************************************************************
854 * do the right thing upon each reconstruction event.
855 *****************************************************************************/
856 static int
857 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
858 {
859 int retcode = 0, submitblocked;
860 RF_ReconBuffer_t *rbuf;
861 RF_SectorCount_t sectorsPerRU;
862
863 retcode = RF_RECON_READ_STOPPED;
864
865 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
866 switch (event->type) {
867
868 /* a read I/O has completed */
869 case RF_REVENT_READDONE:
870 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
871 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
872 event->col, rbuf->parityStripeID);
873 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
874 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
875 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
876 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
877 if (!raidPtr->reconControl->error) {
878 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
879 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
880 if (!submitblocked)
881 retcode = IssueNextReadRequest(raidPtr, event->col);
882 }
883 break;
884
885 /* a write I/O has completed */
886 case RF_REVENT_WRITEDONE:
887 #if RF_DEBUG_RECON
888 if (rf_floatingRbufDebug) {
889 rf_CheckFloatingRbufCount(raidPtr, 1);
890 }
891 #endif
892 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
893 rbuf = (RF_ReconBuffer_t *) event->arg;
894 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
895 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
896 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
897 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
898 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
899 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
900
901 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
902 raidPtr->reconControl->pending_writes--;
903 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
904
905 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
906 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
907 while(raidPtr->reconControl->rb_lock) {
908 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
909 &raidPtr->reconControl->rb_mutex);
910 }
911 raidPtr->reconControl->rb_lock = 1;
912 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
913
914 raidPtr->numFullReconBuffers--;
915 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
916
917 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
918 raidPtr->reconControl->rb_lock = 0;
919 wakeup(&raidPtr->reconControl->rb_lock);
920 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
921 } else
922 if (rbuf->type == RF_RBUF_TYPE_FORCED)
923 rf_FreeReconBuffer(rbuf);
924 else
925 RF_ASSERT(0);
926 retcode = 0;
927 break;
928
929 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
930 * cleared */
931 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
932 if (!raidPtr->reconControl->error) {
933 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
934 0, (int) (long) event->arg);
935 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
936 * BUFCLEAR event if we
937 * couldn't submit */
938 retcode = IssueNextReadRequest(raidPtr, event->col);
939 }
940 break;
941
942 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
943 * blockage has been cleared */
944 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
945 if (!raidPtr->reconControl->error) {
946 retcode = TryToRead(raidPtr, event->col);
947 }
948 break;
949
950 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
951 * reconstruction blockage has been
952 * cleared */
953 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
954 if (!raidPtr->reconControl->error) {
955 retcode = TryToRead(raidPtr, event->col);
956 }
957 break;
958
959 /* a buffer has become ready to write */
960 case RF_REVENT_BUFREADY:
961 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
962 if (!raidPtr->reconControl->error) {
963 retcode = IssueNextWriteRequest(raidPtr);
964 #if RF_DEBUG_RECON
965 if (rf_floatingRbufDebug) {
966 rf_CheckFloatingRbufCount(raidPtr, 1);
967 }
968 #endif
969 }
970 break;
971
972 /* we need to skip the current RU entirely because it got
973 * recon'd while we were waiting for something else to happen */
974 case RF_REVENT_SKIP:
975 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
976 if (!raidPtr->reconControl->error) {
977 retcode = IssueNextReadRequest(raidPtr, event->col);
978 }
979 break;
980
981 /* a forced-reconstruction read access has completed. Just
982 * submit the buffer */
983 case RF_REVENT_FORCEDREADDONE:
984 rbuf = (RF_ReconBuffer_t *) event->arg;
985 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
986 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
987 if (!raidPtr->reconControl->error) {
988 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
989 RF_ASSERT(!submitblocked);
990 }
991 break;
992
993 /* A read I/O failed to complete */
994 case RF_REVENT_READ_FAILED:
995 retcode = RF_RECON_READ_ERROR;
996 break;
997
998 /* A write I/O failed to complete */
999 case RF_REVENT_WRITE_FAILED:
1000 retcode = RF_RECON_WRITE_ERROR;
1001
1002 rbuf = (RF_ReconBuffer_t *) event->arg;
1003
1004 /* cleanup the disk queue data */
1005 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1006
1007 /* At this point we're erroring out, badly, and floatingRbufs
1008 may not even be valid. Rather than putting this back onto
1009 the floatingRbufs list, just arrange for its immediate
1010 destruction.
1011 */
1012 rf_FreeReconBuffer(rbuf);
1013 break;
1014
1015 /* a forced read I/O failed to complete */
1016 case RF_REVENT_FORCEDREAD_FAILED:
1017 retcode = RF_RECON_READ_ERROR;
1018 break;
1019
1020 default:
1021 RF_PANIC();
1022 }
1023 rf_FreeReconEventDesc(event);
1024 return (retcode);
1025 }
1026 /*****************************************************************************
1027 *
1028 * find the next thing that's needed on the indicated disk, and issue
1029 * a read request for it. We assume that the reconstruction buffer
1030 * associated with this process is free to receive the data. If
1031 * reconstruction is blocked on the indicated RU, we issue a
1032 * blockage-release request instead of a physical disk read request.
1033 * If the current disk gets too far ahead of the others, we issue a
1034 * head-separation wait request and return.
1035 *
1036 * ctrl->{ru_count, curPSID, diskOffset} and
1037 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1038 * we're currently accessing. Note that this deviates from the
1039 * standard C idiom of having counters point to the next thing to be
1040 * accessed. This allows us to easily retry when we're blocked by
1041 * head separation or reconstruction-blockage events.
1042 *
1043 *****************************************************************************/
1044 static int
1045 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1046 {
1047 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1048 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1049 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1050 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1051 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1052 int do_new_check = 0, retcode = 0, status;
1053
1054 /* if we are currently the slowest disk, mark that we have to do a new
1055 * check */
1056 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1057 do_new_check = 1;
1058
1059 while (1) {
1060
1061 ctrl->ru_count++;
1062 if (ctrl->ru_count < RUsPerPU) {
1063 ctrl->diskOffset += sectorsPerRU;
1064 rbuf->failedDiskSectorOffset += sectorsPerRU;
1065 } else {
1066 ctrl->curPSID++;
1067 ctrl->ru_count = 0;
1068 /* code left over from when head-sep was based on
1069 * parity stripe id */
1070 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1071 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1072 return (RF_RECON_DONE_READS); /* finito! */
1073 }
1074 /* find the disk offsets of the start of the parity
1075 * stripe on both the current disk and the failed
1076 * disk. skip this entire parity stripe if either disk
1077 * does not appear in the indicated PS */
1078 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1079 &rbuf->spCol, &rbuf->spOffset);
1080 if (status) {
1081 ctrl->ru_count = RUsPerPU - 1;
1082 continue;
1083 }
1084 }
1085 rbuf->which_ru = ctrl->ru_count;
1086
1087 /* skip this RU if it's already been reconstructed */
1088 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1089 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1090 continue;
1091 }
1092 break;
1093 }
1094 ctrl->headSepCounter++;
1095 if (do_new_check)
1096 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1097
1098
1099 /* at this point, we have definitely decided what to do, and we have
1100 * only to see if we can actually do it now */
1101 rbuf->parityStripeID = ctrl->curPSID;
1102 rbuf->which_ru = ctrl->ru_count;
1103 #if RF_ACC_TRACE > 0
1104 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1105 sizeof(raidPtr->recon_tracerecs[col]));
1106 raidPtr->recon_tracerecs[col].reconacc = 1;
1107 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1108 #endif
1109 retcode = TryToRead(raidPtr, col);
1110 return (retcode);
1111 }
1112
1113 /*
1114 * tries to issue the next read on the indicated disk. We may be
1115 * blocked by (a) the heads being too far apart, or (b) recon on the
1116 * indicated RU being blocked due to a write by a user thread. In
1117 * this case, we issue a head-sep or blockage wait request, which will
1118 * cause this same routine to be invoked again later when the blockage
1119 * has cleared.
1120 */
1121
1122 static int
1123 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1124 {
1125 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1126 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1127 RF_StripeNum_t psid = ctrl->curPSID;
1128 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1129 RF_DiskQueueData_t *req;
1130 int status;
1131 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1132
1133 /* if the current disk is too far ahead of the others, issue a
1134 * head-separation wait and return */
1135 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1136 return (0);
1137
1138 /* allocate a new PSS in case we need it */
1139 newpssPtr = rf_AllocPSStatus(raidPtr);
1140
1141 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1142 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1143
1144 if (pssPtr != newpssPtr) {
1145 rf_FreePSStatus(raidPtr, newpssPtr);
1146 }
1147
1148 /* if recon is blocked on the indicated parity stripe, issue a
1149 * block-wait request and return. this also must mark the indicated RU
1150 * in the stripe as under reconstruction if not blocked. */
1151 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1152 if (status == RF_PSS_RECON_BLOCKED) {
1153 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1154 goto out;
1155 } else
1156 if (status == RF_PSS_FORCED_ON_WRITE) {
1157 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1158 goto out;
1159 }
1160 /* make one last check to be sure that the indicated RU didn't get
1161 * reconstructed while we were waiting for something else to happen.
1162 * This is unfortunate in that it causes us to make this check twice
1163 * in the normal case. Might want to make some attempt to re-work
1164 * this so that we only do this check if we've definitely blocked on
1165 * one of the above checks. When this condition is detected, we may
1166 * have just created a bogus status entry, which we need to delete. */
1167 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1168 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1169 if (pssPtr == newpssPtr)
1170 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1171 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1172 goto out;
1173 }
1174 /* found something to read. issue the I/O */
1175 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1176 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1177 #if RF_ACC_TRACE > 0
1178 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1179 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1180 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1181 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1182 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1183 #endif
1184 /* should be ok to use a NULL proc pointer here, all the bufs we use
1185 * should be in kernel space */
1186 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1187 ReconReadDoneProc, (void *) ctrl, NULL,
1188 #if RF_ACC_TRACE > 0
1189 &raidPtr->recon_tracerecs[col],
1190 #else
1191 NULL,
1192 #endif
1193 (void *) raidPtr, 0, NULL);
1194
1195 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1196
1197 ctrl->rbuf->arg = (void *) req;
1198 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1199 pssPtr->issued[col] = 1;
1200
1201 out:
1202 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1203 return (0);
1204 }
1205
1206
1207 /*
1208 * given a parity stripe ID, we want to find out whether both the
1209 * current disk and the failed disk exist in that parity stripe. If
1210 * not, we want to skip this whole PS. If so, we want to find the
1211 * disk offset of the start of the PS on both the current disk and the
1212 * failed disk.
1213 *
1214 * this works by getting a list of disks comprising the indicated
1215 * parity stripe, and searching the list for the current and failed
1216 * disks. Once we've decided they both exist in the parity stripe, we
1217 * need to decide whether each is data or parity, so that we'll know
1218 * which mapping function to call to get the corresponding disk
1219 * offsets.
1220 *
1221 * this is kind of unpleasant, but doing it this way allows the
1222 * reconstruction code to use parity stripe IDs rather than physical
1223 * disks address to march through the failed disk, which greatly
1224 * simplifies a lot of code, as well as eliminating the need for a
1225 * reverse-mapping function. I also think it will execute faster,
1226 * since the calls to the mapping module are kept to a minimum.
1227 *
1228 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1229 * THE STRIPE IN THE CORRECT ORDER
1230 *
1231 * raidPtr - raid descriptor
1232 * psid - parity stripe identifier
1233 * col - column of disk to find the offsets for
1234 * spCol - out: col of spare unit for failed unit
1235 * spOffset - out: offset into disk containing spare unit
1236 *
1237 */
1238
1239
1240 static int
1241 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1242 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1243 RF_SectorNum_t *outFailedDiskSectorOffset,
1244 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1245 {
1246 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1247 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1248 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1249 RF_RowCol_t *diskids;
1250 u_int i, j, k, i_offset, j_offset;
1251 RF_RowCol_t pcol;
1252 int testcol;
1253 RF_SectorNum_t poffset;
1254 char i_is_parity = 0, j_is_parity = 0;
1255 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1256
1257 /* get a listing of the disks comprising that stripe */
1258 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1259 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1260 RF_ASSERT(diskids);
1261
1262 /* reject this entire parity stripe if it does not contain the
1263 * indicated disk or it does not contain the failed disk */
1264
1265 for (i = 0; i < stripeWidth; i++) {
1266 if (col == diskids[i])
1267 break;
1268 }
1269 if (i == stripeWidth)
1270 goto skipit;
1271 for (j = 0; j < stripeWidth; j++) {
1272 if (fcol == diskids[j])
1273 break;
1274 }
1275 if (j == stripeWidth) {
1276 goto skipit;
1277 }
1278 /* find out which disk the parity is on */
1279 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1280
1281 /* find out if either the current RU or the failed RU is parity */
1282 /* also, if the parity occurs in this stripe prior to the data and/or
1283 * failed col, we need to decrement i and/or j */
1284 for (k = 0; k < stripeWidth; k++)
1285 if (diskids[k] == pcol)
1286 break;
1287 RF_ASSERT(k < stripeWidth);
1288 i_offset = i;
1289 j_offset = j;
1290 if (k < i)
1291 i_offset--;
1292 else
1293 if (k == i) {
1294 i_is_parity = 1;
1295 i_offset = 0;
1296 } /* set offsets to zero to disable multiply
1297 * below */
1298 if (k < j)
1299 j_offset--;
1300 else
1301 if (k == j) {
1302 j_is_parity = 1;
1303 j_offset = 0;
1304 }
1305 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1306 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1307 * tells us how far into the stripe the [current,failed] disk is. */
1308
1309 /* call the mapping routine to get the offset into the current disk,
1310 * repeat for failed disk. */
1311 if (i_is_parity)
1312 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1313 else
1314 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1315
1316 RF_ASSERT(col == testcol);
1317
1318 if (j_is_parity)
1319 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1320 else
1321 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1322 RF_ASSERT(fcol == testcol);
1323
1324 /* now locate the spare unit for the failed unit */
1325 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1326 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1327 if (j_is_parity)
1328 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1329 else
1330 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1331 } else {
1332 #endif
1333 *spCol = raidPtr->reconControl->spareCol;
1334 *spOffset = *outFailedDiskSectorOffset;
1335 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1336 }
1337 #endif
1338 return (0);
1339
1340 skipit:
1341 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1342 psid, col);
1343 return (1);
1344 }
1345 /* this is called when a buffer has become ready to write to the replacement disk */
1346 static int
1347 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1348 {
1349 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1350 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1351 #if RF_ACC_TRACE > 0
1352 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1353 #endif
1354 RF_ReconBuffer_t *rbuf;
1355 RF_DiskQueueData_t *req;
1356
1357 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1358 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1359 * have gotten the event that sent us here */
1360 RF_ASSERT(rbuf->pssPtr);
1361
1362 rbuf->pssPtr->writeRbuf = rbuf;
1363 rbuf->pssPtr = NULL;
1364
1365 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1366 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1367 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1368 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1369 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1370 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1371
1372 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1373 * kernel space */
1374 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1375 sectorsPerRU, rbuf->buffer,
1376 rbuf->parityStripeID, rbuf->which_ru,
1377 ReconWriteDoneProc, (void *) rbuf, NULL,
1378 #if RF_ACC_TRACE > 0
1379 &raidPtr->recon_tracerecs[fcol],
1380 #else
1381 NULL,
1382 #endif
1383 (void *) raidPtr, 0, NULL);
1384
1385 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1386
1387 rbuf->arg = (void *) req;
1388 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1389 raidPtr->reconControl->pending_writes++;
1390 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1391 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1392
1393 return (0);
1394 }
1395
1396 /*
1397 * this gets called upon the completion of a reconstruction read
1398 * operation the arg is a pointer to the per-disk reconstruction
1399 * control structure for the process that just finished a read.
1400 *
1401 * called at interrupt context in the kernel, so don't do anything
1402 * illegal here.
1403 */
1404 static int
1405 ReconReadDoneProc(void *arg, int status)
1406 {
1407 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1408 RF_Raid_t *raidPtr;
1409
1410 /* Detect that reconCtrl is no longer valid, and if that
1411 is the case, bail without calling rf_CauseReconEvent().
1412 There won't be anyone listening for this event anyway */
1413
1414 if (ctrl->reconCtrl == NULL)
1415 return(0);
1416
1417 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1418
1419 if (status) {
1420 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1421 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1422 return(0);
1423 }
1424 #if RF_ACC_TRACE > 0
1425 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1426 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1427 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1428 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1429 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1430 #endif
1431 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1432 return (0);
1433 }
1434 /* this gets called upon the completion of a reconstruction write operation.
1435 * the arg is a pointer to the rbuf that was just written
1436 *
1437 * called at interrupt context in the kernel, so don't do anything illegal here.
1438 */
1439 static int
1440 ReconWriteDoneProc(void *arg, int status)
1441 {
1442 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1443
1444 /* Detect that reconControl is no longer valid, and if that
1445 is the case, bail without calling rf_CauseReconEvent().
1446 There won't be anyone listening for this event anyway */
1447
1448 if (rbuf->raidPtr->reconControl == NULL)
1449 return(0);
1450
1451 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1452 if (status) {
1453 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1454 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1455 return(0);
1456 }
1457 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1458 return (0);
1459 }
1460
1461
1462 /*
1463 * computes a new minimum head sep, and wakes up anyone who needs to
1464 * be woken as a result
1465 */
1466 static void
1467 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1468 {
1469 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1470 RF_HeadSepLimit_t new_min;
1471 RF_RowCol_t i;
1472 RF_CallbackDesc_t *p;
1473 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1474 * of a minimum */
1475
1476
1477 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1478 while(reconCtrlPtr->rb_lock) {
1479 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1480 }
1481 reconCtrlPtr->rb_lock = 1;
1482 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1483
1484 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1485 for (i = 0; i < raidPtr->numCol; i++)
1486 if (i != reconCtrlPtr->fcol) {
1487 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1488 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1489 }
1490 /* set the new minimum and wake up anyone who can now run again */
1491 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1492 reconCtrlPtr->minHeadSepCounter = new_min;
1493 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1494 while (reconCtrlPtr->headSepCBList) {
1495 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1496 break;
1497 p = reconCtrlPtr->headSepCBList;
1498 reconCtrlPtr->headSepCBList = p->next;
1499 p->next = NULL;
1500 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1501 rf_FreeCallbackDesc(p);
1502 }
1503
1504 }
1505 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1506 reconCtrlPtr->rb_lock = 0;
1507 wakeup(&reconCtrlPtr->rb_lock);
1508 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1509 }
1510
1511 /*
1512 * checks to see that the maximum head separation will not be violated
1513 * if we initiate a reconstruction I/O on the indicated disk.
1514 * Limiting the maximum head separation between two disks eliminates
1515 * the nasty buffer-stall conditions that occur when one disk races
1516 * ahead of the others and consumes all of the floating recon buffers.
1517 * This code is complex and unpleasant but it's necessary to avoid
1518 * some very nasty, albeit fairly rare, reconstruction behavior.
1519 *
1520 * returns non-zero if and only if we have to stop working on the
1521 * indicated disk due to a head-separation delay.
1522 */
1523 static int
1524 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1525 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1526 RF_ReconUnitNum_t which_ru)
1527 {
1528 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1529 RF_CallbackDesc_t *cb, *p, *pt;
1530 int retval = 0;
1531
1532 /* if we're too far ahead of the slowest disk, stop working on this
1533 * disk until the slower ones catch up. We do this by scheduling a
1534 * wakeup callback for the time when the slowest disk has caught up.
1535 * We define "caught up" with 20% hysteresis, i.e. the head separation
1536 * must have fallen to at most 80% of the max allowable head
1537 * separation before we'll wake up.
1538 *
1539 */
1540 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1541 while(reconCtrlPtr->rb_lock) {
1542 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1543 }
1544 reconCtrlPtr->rb_lock = 1;
1545 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1546 if ((raidPtr->headSepLimit >= 0) &&
1547 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1548 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1549 raidPtr->raidid, col, ctrl->headSepCounter,
1550 reconCtrlPtr->minHeadSepCounter,
1551 raidPtr->headSepLimit);
1552 cb = rf_AllocCallbackDesc();
1553 /* the minHeadSepCounter value we have to get to before we'll
1554 * wake up. build in 20% hysteresis. */
1555 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1556 cb->col = col;
1557 cb->next = NULL;
1558
1559 /* insert this callback descriptor into the sorted list of
1560 * pending head-sep callbacks */
1561 p = reconCtrlPtr->headSepCBList;
1562 if (!p)
1563 reconCtrlPtr->headSepCBList = cb;
1564 else
1565 if (cb->callbackArg.v < p->callbackArg.v) {
1566 cb->next = reconCtrlPtr->headSepCBList;
1567 reconCtrlPtr->headSepCBList = cb;
1568 } else {
1569 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1570 cb->next = p;
1571 pt->next = cb;
1572 }
1573 retval = 1;
1574 #if RF_RECON_STATS > 0
1575 ctrl->reconCtrl->reconDesc->hsStallCount++;
1576 #endif /* RF_RECON_STATS > 0 */
1577 }
1578 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1579 reconCtrlPtr->rb_lock = 0;
1580 wakeup(&reconCtrlPtr->rb_lock);
1581 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1582
1583 return (retval);
1584 }
1585 /*
1586 * checks to see if reconstruction has been either forced or blocked
1587 * by a user operation. if forced, we skip this RU entirely. else if
1588 * blocked, put ourselves on the wait list. else return 0.
1589 *
1590 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1591 */
1592 static int
1593 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1594 RF_ReconParityStripeStatus_t *pssPtr,
1595 RF_PerDiskReconCtrl_t *ctrl,
1596 RF_RowCol_t col, RF_StripeNum_t psid,
1597 RF_ReconUnitNum_t which_ru)
1598 {
1599 RF_CallbackDesc_t *cb;
1600 int retcode = 0;
1601
1602 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1603 retcode = RF_PSS_FORCED_ON_WRITE;
1604 else
1605 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1606 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1607 cb = rf_AllocCallbackDesc(); /* append ourselves to
1608 * the blockage-wait
1609 * list */
1610 cb->col = col;
1611 cb->next = pssPtr->blockWaitList;
1612 pssPtr->blockWaitList = cb;
1613 retcode = RF_PSS_RECON_BLOCKED;
1614 }
1615 if (!retcode)
1616 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1617 * reconstruction */
1618
1619 return (retcode);
1620 }
1621 /*
1622 * if reconstruction is currently ongoing for the indicated stripeID,
1623 * reconstruction is forced to completion and we return non-zero to
1624 * indicate that the caller must wait. If not, then reconstruction is
1625 * blocked on the indicated stripe and the routine returns zero. If
1626 * and only if we return non-zero, we'll cause the cbFunc to get
1627 * invoked with the cbArg when the reconstruction has completed.
1628 */
1629 int
1630 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1631 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1632 {
1633 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1634 * forcing recon on */
1635 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1636 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1637 * stripe status structure */
1638 RF_StripeNum_t psid; /* parity stripe id */
1639 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1640 * offset */
1641 RF_RowCol_t *diskids;
1642 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1643 RF_RowCol_t fcol, diskno, i;
1644 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1645 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1646 RF_CallbackDesc_t *cb;
1647 int nPromoted;
1648
1649 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1650
1651 /* allocate a new PSS in case we need it */
1652 newpssPtr = rf_AllocPSStatus(raidPtr);
1653
1654 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1655
1656 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1657
1658 if (pssPtr != newpssPtr) {
1659 rf_FreePSStatus(raidPtr, newpssPtr);
1660 }
1661
1662 /* if recon is not ongoing on this PS, just return */
1663 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1664 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1665 return (0);
1666 }
1667 /* otherwise, we have to wait for reconstruction to complete on this
1668 * RU. */
1669 /* In order to avoid waiting for a potentially large number of
1670 * low-priority accesses to complete, we force a normal-priority (i.e.
1671 * not low-priority) reconstruction on this RU. */
1672 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1673 DDprintf1("Forcing recon on psid %ld\n", psid);
1674 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1675 * forced recon */
1676 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1677 * that we just set */
1678 fcol = raidPtr->reconControl->fcol;
1679
1680 /* get a listing of the disks comprising the indicated stripe */
1681 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1682
1683 /* For previously issued reads, elevate them to normal
1684 * priority. If the I/O has already completed, it won't be
1685 * found in the queue, and hence this will be a no-op. For
1686 * unissued reads, allocate buffers and issue new reads. The
1687 * fact that we've set the FORCED bit means that the regular
1688 * recon procs will not re-issue these reqs */
1689 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1690 if ((diskno = diskids[i]) != fcol) {
1691 if (pssPtr->issued[diskno]) {
1692 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1693 if (rf_reconDebug && nPromoted)
1694 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1695 } else {
1696 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1697 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1698 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1699 * location */
1700 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1701 new_rbuf->which_ru = which_ru;
1702 new_rbuf->failedDiskSectorOffset = fd_offset;
1703 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1704
1705 /* use NULL b_proc b/c all addrs
1706 * should be in kernel space */
1707 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1708 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1709 NULL, (void *) raidPtr, 0, NULL);
1710
1711 RF_ASSERT(req); /* XXX -- fix this --
1712 * XXX */
1713
1714 new_rbuf->arg = req;
1715 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1716 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1717 }
1718 }
1719 /* if the write is sitting in the disk queue, elevate its
1720 * priority */
1721 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1722 printf("raid%d: promoted write to col %d\n",
1723 raidPtr->raidid, fcol);
1724 }
1725 /* install a callback descriptor to be invoked when recon completes on
1726 * this parity stripe. */
1727 cb = rf_AllocCallbackDesc();
1728 /* XXX the following is bogus.. These functions don't really match!!
1729 * GO */
1730 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1731 cb->callbackArg.p = (void *) cbArg;
1732 cb->next = pssPtr->procWaitList;
1733 pssPtr->procWaitList = cb;
1734 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1735 raidPtr->raidid, psid);
1736
1737 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1738 return (1);
1739 }
1740 /* called upon the completion of a forced reconstruction read.
1741 * all we do is schedule the FORCEDREADONE event.
1742 * called at interrupt context in the kernel, so don't do anything illegal here.
1743 */
1744 static void
1745 ForceReconReadDoneProc(void *arg, int status)
1746 {
1747 RF_ReconBuffer_t *rbuf = arg;
1748
1749 /* Detect that reconControl is no longer valid, and if that
1750 is the case, bail without calling rf_CauseReconEvent().
1751 There won't be anyone listening for this event anyway */
1752
1753 if (rbuf->raidPtr->reconControl == NULL)
1754 return;
1755
1756 if (status) {
1757 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1758 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1759 return;
1760 }
1761 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1762 }
1763 /* releases a block on the reconstruction of the indicated stripe */
1764 int
1765 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1766 {
1767 RF_StripeNum_t stripeID = asmap->stripeID;
1768 RF_ReconParityStripeStatus_t *pssPtr;
1769 RF_ReconUnitNum_t which_ru;
1770 RF_StripeNum_t psid;
1771 RF_CallbackDesc_t *cb;
1772
1773 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1774 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1775 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1776
1777 /* When recon is forced, the pss desc can get deleted before we get
1778 * back to unblock recon. But, this can _only_ happen when recon is
1779 * forced. It would be good to put some kind of sanity check here, but
1780 * how to decide if recon was just forced or not? */
1781 if (!pssPtr) {
1782 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1783 * RU %d\n",psid,which_ru); */
1784 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1785 if (rf_reconDebug || rf_pssDebug)
1786 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1787 #endif
1788 goto out;
1789 }
1790 pssPtr->blockCount--;
1791 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1792 raidPtr->raidid, psid, pssPtr->blockCount);
1793 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1794
1795 /* unblock recon before calling CauseReconEvent in case
1796 * CauseReconEvent causes us to try to issue a new read before
1797 * returning here. */
1798 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1799
1800
1801 while (pssPtr->blockWaitList) {
1802 /* spin through the block-wait list and
1803 release all the waiters */
1804 cb = pssPtr->blockWaitList;
1805 pssPtr->blockWaitList = cb->next;
1806 cb->next = NULL;
1807 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1808 rf_FreeCallbackDesc(cb);
1809 }
1810 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1811 /* if no recon was requested while recon was blocked */
1812 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1813 }
1814 }
1815 out:
1816 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1817 return (0);
1818 }
1819