rf_reconstruct.c revision 1.57 1 /* $NetBSD: rf_reconstruct.c,v 1.57 2003/12/29 02:38:18 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.57 2003/12/29 02:38:18 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_freelist.h"
61 #include "rf_driver.h"
62 #include "rf_utils.h"
63 #include "rf_shutdown.h"
64
65 #include "rf_kintf.h"
66
67 /* setting these to -1 causes them to be set to their default values if not set by debug options */
68
69 #if RF_DEBUG_RECON
70 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
74 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
75 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
76 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
77 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
78
79 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
80 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
81
82 #else /* RF_DEBUG_RECON */
83
84 #define Dprintf(s) {}
85 #define Dprintf1(s,a) {}
86 #define Dprintf2(s,a,b) {}
87 #define Dprintf3(s,a,b,c) {}
88 #define Dprintf4(s,a,b,c,d) {}
89 #define Dprintf5(s,a,b,c,d,e) {}
90 #define Dprintf6(s,a,b,c,d,e,f) {}
91 #define Dprintf7(s,a,b,c,d,e,f,g) {}
92
93 #define DDprintf1(s,a) {}
94 #define DDprintf2(s,a,b) {}
95
96 #endif /* RF_DEBUG_RECON */
97
98
99 static RF_FreeList_t *rf_recond_freelist;
100 #define RF_MAX_FREE_RECOND 4
101 #define RF_RECOND_INC 1
102
103 static RF_RaidReconDesc_t *
104 AllocRaidReconDesc(RF_Raid_t * raidPtr,
105 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
106 int numDisksDone, RF_RowCol_t scol);
107 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
108 static int
109 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
110 static int
111 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
113 static int
114 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
115 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
116 RF_SectorNum_t * outFailedDiskSectorOffset,
117 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
118 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
119 static int ReconReadDoneProc(void *arg, int status);
120 static int ReconWriteDoneProc(void *arg, int status);
121 static void
122 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
123 static int
124 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
125 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
126 RF_ReconUnitNum_t which_ru);
127 static int
128 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
129 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
130 RF_RowCol_t col, RF_StripeNum_t psid,
131 RF_ReconUnitNum_t which_ru);
132 static void ForceReconReadDoneProc(void *arg, int status);
133
134 static void rf_ShutdownReconstruction(void *);
135
136 struct RF_ReconDoneProc_s {
137 void (*proc) (RF_Raid_t *, void *);
138 void *arg;
139 RF_ReconDoneProc_t *next;
140 };
141
142 static RF_FreeList_t *rf_rdp_freelist;
143 #define RF_MAX_FREE_RDP 4
144 #define RF_RDP_INC 1
145
146 static void
147 SignalReconDone(RF_Raid_t * raidPtr)
148 {
149 RF_ReconDoneProc_t *p;
150
151 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
152 for (p = raidPtr->recon_done_procs; p; p = p->next) {
153 p->proc(raidPtr, p->arg);
154 }
155 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
156 }
157
158 /**************************************************************************
159 *
160 * sets up the parameters that will be used by the reconstruction process
161 * currently there are none, except for those that the layout-specific
162 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
163 *
164 * in the kernel, we fire off the recon thread.
165 *
166 **************************************************************************/
167 static void
168 rf_ShutdownReconstruction(ignored)
169 void *ignored;
170 {
171 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
172 RF_FREELIST_DESTROY(rf_rdp_freelist, next, (RF_ReconDoneProc_t *));
173 }
174
175 int
176 rf_ConfigureReconstruction(listp)
177 RF_ShutdownList_t **listp;
178 {
179 int rc;
180
181 RF_FREELIST_CREATE(rf_recond_freelist, RF_MAX_FREE_RECOND,
182 RF_RECOND_INC, sizeof(RF_RaidReconDesc_t));
183 if (rf_recond_freelist == NULL)
184 return (ENOMEM);
185 RF_FREELIST_CREATE(rf_rdp_freelist, RF_MAX_FREE_RDP,
186 RF_RDP_INC, sizeof(RF_ReconDoneProc_t));
187 if (rf_rdp_freelist == NULL) {
188 RF_FREELIST_DESTROY(rf_recond_freelist, next, (RF_RaidReconDesc_t *));
189 return (ENOMEM);
190 }
191 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
192 if (rc) {
193 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
194 rf_ShutdownReconstruction(NULL);
195 return (rc);
196 }
197 return (0);
198 }
199
200 static RF_RaidReconDesc_t *
201 AllocRaidReconDesc(raidPtr, col, spareDiskPtr, numDisksDone, scol)
202 RF_Raid_t *raidPtr;
203 RF_RowCol_t col;
204 RF_RaidDisk_t *spareDiskPtr;
205 int numDisksDone;
206 RF_RowCol_t scol;
207 {
208
209 RF_RaidReconDesc_t *reconDesc;
210
211 RF_FREELIST_GET(rf_recond_freelist, reconDesc, next, (RF_RaidReconDesc_t *));
212
213 reconDesc->raidPtr = raidPtr;
214 reconDesc->col = col;
215 reconDesc->spareDiskPtr = spareDiskPtr;
216 reconDesc->numDisksDone = numDisksDone;
217 reconDesc->scol = scol;
218 reconDesc->state = 0;
219 reconDesc->next = NULL;
220
221 return (reconDesc);
222 }
223
224 static void
225 FreeReconDesc(reconDesc)
226 RF_RaidReconDesc_t *reconDesc;
227 {
228 #if RF_RECON_STATS > 0
229 printf("raid%d: %lu recon event waits, %lu recon delays\n",
230 reconDesc->raidPtr->raidid,
231 (long) reconDesc->numReconEventWaits,
232 (long) reconDesc->numReconExecDelays);
233 #endif /* RF_RECON_STATS > 0 */
234 printf("raid%d: %lu max exec ticks\n",
235 reconDesc->raidPtr->raidid,
236 (long) reconDesc->maxReconExecTicks);
237 #if (RF_RECON_STATS > 0) || defined(KERNEL)
238 printf("\n");
239 #endif /* (RF_RECON_STATS > 0) || KERNEL */
240 RF_FREELIST_FREE(rf_recond_freelist, reconDesc, next);
241 }
242
243
244 /*****************************************************************************
245 *
246 * primary routine to reconstruct a failed disk. This should be called from
247 * within its own thread. It won't return until reconstruction completes,
248 * fails, or is aborted.
249 *****************************************************************************/
250 int
251 rf_ReconstructFailedDisk(raidPtr, col)
252 RF_Raid_t *raidPtr;
253 RF_RowCol_t col;
254 {
255 const RF_LayoutSW_t *lp;
256 int rc;
257
258 lp = raidPtr->Layout.map;
259 if (lp->SubmitReconBuffer) {
260 /*
261 * The current infrastructure only supports reconstructing one
262 * disk at a time for each array.
263 */
264 RF_LOCK_MUTEX(raidPtr->mutex);
265 while (raidPtr->reconInProgress) {
266 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
267 }
268 raidPtr->reconInProgress++;
269 RF_UNLOCK_MUTEX(raidPtr->mutex);
270 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
271 RF_LOCK_MUTEX(raidPtr->mutex);
272 raidPtr->reconInProgress--;
273 RF_UNLOCK_MUTEX(raidPtr->mutex);
274 } else {
275 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
276 lp->parityConfig);
277 rc = EIO;
278 }
279 RF_SIGNAL_COND(raidPtr->waitForReconCond);
280 return (rc);
281 }
282
283 int
284 rf_ReconstructFailedDiskBasic(raidPtr, col)
285 RF_Raid_t *raidPtr;
286 RF_RowCol_t col;
287 {
288 RF_ComponentLabel_t c_label;
289 RF_RaidDisk_t *spareDiskPtr = NULL;
290 RF_RaidReconDesc_t *reconDesc;
291 RF_RowCol_t scol;
292 int numDisksDone = 0, rc;
293
294 /* first look for a spare drive onto which to reconstruct the data */
295 /* spare disk descriptors are stored in row 0. This may have to
296 * change eventually */
297
298 RF_LOCK_MUTEX(raidPtr->mutex);
299 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
300
301 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
302 if (raidPtr->status != rf_rs_degraded) {
303 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
304 RF_UNLOCK_MUTEX(raidPtr->mutex);
305 return (EINVAL);
306 }
307 scol = (-1);
308 } else {
309 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
310 if (raidPtr->Disks[scol].status == rf_ds_spare) {
311 spareDiskPtr = &raidPtr->Disks[scol];
312 spareDiskPtr->status = rf_ds_used_spare;
313 break;
314 }
315 }
316 if (!spareDiskPtr) {
317 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
318 RF_UNLOCK_MUTEX(raidPtr->mutex);
319 return (ENOSPC);
320 }
321 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
322 }
323 RF_UNLOCK_MUTEX(raidPtr->mutex);
324
325 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
326 raidPtr->reconDesc = (void *) reconDesc;
327 #if RF_RECON_STATS > 0
328 reconDesc->hsStallCount = 0;
329 reconDesc->numReconExecDelays = 0;
330 reconDesc->numReconEventWaits = 0;
331 #endif /* RF_RECON_STATS > 0 */
332 reconDesc->reconExecTimerRunning = 0;
333 reconDesc->reconExecTicks = 0;
334 reconDesc->maxReconExecTicks = 0;
335 rc = rf_ContinueReconstructFailedDisk(reconDesc);
336
337 if (!rc) {
338 /* fix up the component label */
339 /* Don't actually need the read here.. */
340 raidread_component_label(
341 raidPtr->raid_cinfo[scol].ci_dev,
342 raidPtr->raid_cinfo[scol].ci_vp,
343 &c_label);
344
345 raid_init_component_label( raidPtr, &c_label);
346 c_label.row = 0;
347 c_label.column = col;
348 c_label.clean = RF_RAID_DIRTY;
349 c_label.status = rf_ds_optimal;
350 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
351
352 /* We've just done a rebuild based on all the other
353 disks, so at this point the parity is known to be
354 clean, even if it wasn't before. */
355
356 /* XXX doesn't hold for RAID 6!!*/
357
358 RF_LOCK_MUTEX(raidPtr->mutex);
359 raidPtr->parity_good = RF_RAID_CLEAN;
360 RF_UNLOCK_MUTEX(raidPtr->mutex);
361
362 /* XXXX MORE NEEDED HERE */
363
364 raidwrite_component_label(
365 raidPtr->raid_cinfo[scol].ci_dev,
366 raidPtr->raid_cinfo[scol].ci_vp,
367 &c_label);
368
369
370 rf_update_component_labels(raidPtr,
371 RF_NORMAL_COMPONENT_UPDATE);
372
373 }
374 return (rc);
375 }
376
377 /*
378
379 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
380 and you don't get a spare until the next Monday. With this function
381 (and hot-swappable drives) you can now put your new disk containing
382 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
383 rebuild the data "on the spot".
384
385 */
386
387 int
388 rf_ReconstructInPlace(raidPtr, col)
389 RF_Raid_t *raidPtr;
390 RF_RowCol_t col;
391 {
392 RF_RaidDisk_t *spareDiskPtr = NULL;
393 RF_RaidReconDesc_t *reconDesc;
394 const RF_LayoutSW_t *lp;
395 RF_ComponentLabel_t c_label;
396 int numDisksDone = 0, rc;
397 struct partinfo dpart;
398 struct vnode *vp;
399 struct vattr va;
400 struct proc *proc;
401 int retcode;
402 int ac;
403
404 lp = raidPtr->Layout.map;
405 if (lp->SubmitReconBuffer) {
406 /*
407 * The current infrastructure only supports reconstructing one
408 * disk at a time for each array.
409 */
410 RF_LOCK_MUTEX(raidPtr->mutex);
411
412 if (raidPtr->Disks[col].status != rf_ds_failed) {
413 /* "It's gone..." */
414 raidPtr->numFailures++;
415 raidPtr->Disks[col].status = rf_ds_failed;
416 raidPtr->status = rf_rs_degraded;
417 RF_UNLOCK_MUTEX(raidPtr->mutex);
418 rf_update_component_labels(raidPtr,
419 RF_NORMAL_COMPONENT_UPDATE);
420 RF_LOCK_MUTEX(raidPtr->mutex);
421 }
422
423 while (raidPtr->reconInProgress) {
424 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
425 }
426
427 raidPtr->reconInProgress++;
428
429
430 /* first look for a spare drive onto which to reconstruct
431 the data. spare disk descriptors are stored in row 0.
432 This may have to change eventually */
433
434 /* Actually, we don't care if it's failed or not...
435 On a RAID set with correct parity, this function
436 should be callable on any component without ill affects. */
437 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
438 */
439
440 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
441 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
442
443 raidPtr->reconInProgress--;
444 RF_UNLOCK_MUTEX(raidPtr->mutex);
445 return (EINVAL);
446 }
447
448 proc = raidPtr->engine_thread;
449
450 /* This device may have been opened successfully the
451 first time. Close it before trying to open it again.. */
452
453 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
454 #if 0
455 printf("Closed the open device: %s\n",
456 raidPtr->Disks[col].devname);
457 #endif
458 vp = raidPtr->raid_cinfo[col].ci_vp;
459 ac = raidPtr->Disks[col].auto_configured;
460 RF_UNLOCK_MUTEX(raidPtr->mutex);
461 rf_close_component(raidPtr, vp, ac);
462 RF_LOCK_MUTEX(raidPtr->mutex);
463 raidPtr->raid_cinfo[col].ci_vp = NULL;
464 }
465 /* note that this disk was *not* auto_configured (any longer)*/
466 raidPtr->Disks[col].auto_configured = 0;
467
468 #if 0
469 printf("About to (re-)open the device for rebuilding: %s\n",
470 raidPtr->Disks[col].devname);
471 #endif
472 RF_UNLOCK_MUTEX(raidPtr->mutex);
473 retcode = raidlookup(raidPtr->Disks[col].devname,
474 proc, &vp);
475
476 if (retcode) {
477 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
478 raidPtr->Disks[col].devname, retcode);
479
480 /* the component isn't responding properly...
481 must be still dead :-( */
482 RF_LOCK_MUTEX(raidPtr->mutex);
483 raidPtr->reconInProgress--;
484 RF_UNLOCK_MUTEX(raidPtr->mutex);
485 return(retcode);
486
487 } else {
488
489 /* Ok, so we can at least do a lookup...
490 How about actually getting a vp for it? */
491
492 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
493 proc)) != 0) {
494 RF_LOCK_MUTEX(raidPtr->mutex);
495 raidPtr->reconInProgress--;
496 RF_UNLOCK_MUTEX(raidPtr->mutex);
497 return(retcode);
498 }
499 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart,
500 FREAD, proc->p_ucred, proc);
501 if (retcode) {
502 RF_LOCK_MUTEX(raidPtr->mutex);
503 raidPtr->reconInProgress--;
504 RF_UNLOCK_MUTEX(raidPtr->mutex);
505 return(retcode);
506 }
507 RF_LOCK_MUTEX(raidPtr->mutex);
508 raidPtr->Disks[col].blockSize =
509 dpart.disklab->d_secsize;
510
511 raidPtr->Disks[col].numBlocks =
512 dpart.part->p_size - rf_protectedSectors;
513
514 raidPtr->raid_cinfo[col].ci_vp = vp;
515 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
516
517 raidPtr->Disks[col].dev = va.va_rdev;
518
519 /* we allow the user to specify that only a
520 fraction of the disks should be used this is
521 just for debug: it speeds up
522 * the parity scan */
523 raidPtr->Disks[col].numBlocks =
524 raidPtr->Disks[col].numBlocks *
525 rf_sizePercentage / 100;
526 RF_UNLOCK_MUTEX(raidPtr->mutex);
527 }
528
529
530
531 spareDiskPtr = &raidPtr->Disks[col];
532 spareDiskPtr->status = rf_ds_used_spare;
533
534 printf("raid%d: initiating in-place reconstruction on column %d\n", raidPtr->raidid, col);
535
536 reconDesc = AllocRaidReconDesc((void *) raidPtr, col,
537 spareDiskPtr, numDisksDone,
538 col);
539 raidPtr->reconDesc = (void *) reconDesc;
540 #if RF_RECON_STATS > 0
541 reconDesc->hsStallCount = 0;
542 reconDesc->numReconExecDelays = 0;
543 reconDesc->numReconEventWaits = 0;
544 #endif /* RF_RECON_STATS > 0 */
545 reconDesc->reconExecTimerRunning = 0;
546 reconDesc->reconExecTicks = 0;
547 reconDesc->maxReconExecTicks = 0;
548 rc = rf_ContinueReconstructFailedDisk(reconDesc);
549
550 RF_LOCK_MUTEX(raidPtr->mutex);
551 raidPtr->reconInProgress--;
552 RF_UNLOCK_MUTEX(raidPtr->mutex);
553
554 } else {
555 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
556 lp->parityConfig);
557 rc = EIO;
558 }
559
560 if (!rc) {
561 RF_LOCK_MUTEX(raidPtr->mutex);
562 /* Need to set these here, as at this point it'll be claiming
563 that the disk is in rf_ds_spared! But we know better :-) */
564
565 raidPtr->Disks[col].status = rf_ds_optimal;
566 raidPtr->status = rf_rs_optimal;
567 RF_UNLOCK_MUTEX(raidPtr->mutex);
568
569 /* fix up the component label */
570 /* Don't actually need the read here.. */
571 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
572 raidPtr->raid_cinfo[col].ci_vp,
573 &c_label);
574
575 RF_LOCK_MUTEX(raidPtr->mutex);
576 raid_init_component_label(raidPtr, &c_label);
577
578 c_label.row = 0;
579 c_label.column = col;
580
581 /* We've just done a rebuild based on all the other
582 disks, so at this point the parity is known to be
583 clean, even if it wasn't before. */
584
585 /* XXX doesn't hold for RAID 6!!*/
586
587 raidPtr->parity_good = RF_RAID_CLEAN;
588 RF_UNLOCK_MUTEX(raidPtr->mutex);
589
590 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
591 raidPtr->raid_cinfo[col].ci_vp,
592 &c_label);
593
594 rf_update_component_labels(raidPtr,
595 RF_NORMAL_COMPONENT_UPDATE);
596
597 }
598 RF_SIGNAL_COND(raidPtr->waitForReconCond);
599 return (rc);
600 }
601
602
603 int
604 rf_ContinueReconstructFailedDisk(reconDesc)
605 RF_RaidReconDesc_t *reconDesc;
606 {
607 RF_Raid_t *raidPtr = reconDesc->raidPtr;
608 RF_RowCol_t col = reconDesc->col;
609 RF_RowCol_t scol = reconDesc->scol;
610 RF_ReconMap_t *mapPtr;
611 RF_ReconCtrl_t *tmp_reconctrl;
612 RF_ReconEvent_t *event;
613 struct timeval etime, elpsd;
614 unsigned long xor_s, xor_resid_us;
615 int i, ds;
616
617 switch (reconDesc->state) {
618
619
620 case 0:
621
622 raidPtr->accumXorTimeUs = 0;
623
624 /* create one trace record per physical disk */
625 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
626
627 /* quiesce the array prior to starting recon. this is needed
628 * to assure no nasty interactions with pending user writes.
629 * We need to do this before we change the disk or row status. */
630 reconDesc->state = 1;
631
632 Dprintf("RECON: begin request suspend\n");
633 rf_SuspendNewRequestsAndWait(raidPtr);
634 Dprintf("RECON: end request suspend\n");
635 rf_StartUserStats(raidPtr); /* zero out the stats kept on
636 * user accs */
637
638 /* fall through to state 1 */
639
640 case 1:
641
642 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
643 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
644
645 RF_LOCK_MUTEX(raidPtr->mutex);
646
647 /* create the reconstruction control pointer and install it in
648 * the right slot */
649 raidPtr->reconControl = tmp_reconctrl;
650 mapPtr = raidPtr->reconControl->reconMap;
651 raidPtr->status = rf_rs_reconstructing;
652 raidPtr->Disks[col].status = rf_ds_reconstructing;
653 raidPtr->Disks[col].spareCol = scol;
654
655 RF_UNLOCK_MUTEX(raidPtr->mutex);
656
657 RF_GETTIME(raidPtr->reconControl->starttime);
658
659 /* now start up the actual reconstruction: issue a read for
660 * each surviving disk */
661
662 reconDesc->numDisksDone = 0;
663 for (i = 0; i < raidPtr->numCol; i++) {
664 if (i != col) {
665 /* find and issue the next I/O on the
666 * indicated disk */
667 if (IssueNextReadRequest(raidPtr, i)) {
668 Dprintf1("RECON: done issuing for c%d\n", i);
669 reconDesc->numDisksDone++;
670 }
671 }
672 }
673
674 case 2:
675 Dprintf("RECON: resume requests\n");
676 rf_ResumeNewRequests(raidPtr);
677
678
679 reconDesc->state = 3;
680
681 case 3:
682
683 /* process reconstruction events until all disks report that
684 * they've completed all work */
685 mapPtr = raidPtr->reconControl->reconMap;
686
687
688
689 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
690
691 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
692 RF_ASSERT(event);
693
694 if (ProcessReconEvent(raidPtr, event))
695 reconDesc->numDisksDone++;
696 raidPtr->reconControl->numRUsTotal =
697 mapPtr->totalRUs;
698 raidPtr->reconControl->numRUsComplete =
699 mapPtr->totalRUs -
700 rf_UnitsLeftToReconstruct(mapPtr);
701
702 raidPtr->reconControl->percentComplete =
703 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
704 #if RF_DEBUG_RECON
705 if (rf_prReconSched) {
706 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
707 }
708 #endif
709 }
710
711
712
713 reconDesc->state = 4;
714
715
716 case 4:
717 mapPtr = raidPtr->reconControl->reconMap;
718 if (rf_reconDebug) {
719 printf("RECON: all reads completed\n");
720 }
721 /* at this point all the reads have completed. We now wait
722 * for any pending writes to complete, and then we're done */
723
724 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
725
726 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
727 RF_ASSERT(event);
728
729 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
730 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
731 #if RF_DEBUG_RECON
732 if (rf_prReconSched) {
733 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
734 }
735 #endif
736 }
737 reconDesc->state = 5;
738
739 case 5:
740 /* Success: mark the dead disk as reconstructed. We quiesce
741 * the array here to assure no nasty interactions with pending
742 * user accesses when we free up the psstatus structure as
743 * part of FreeReconControl() */
744
745 reconDesc->state = 6;
746
747 rf_SuspendNewRequestsAndWait(raidPtr);
748 rf_StopUserStats(raidPtr);
749 rf_PrintUserStats(raidPtr); /* print out the stats on user
750 * accs accumulated during
751 * recon */
752
753 /* fall through to state 6 */
754 case 6:
755
756
757
758 RF_LOCK_MUTEX(raidPtr->mutex);
759 raidPtr->numFailures--;
760 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
761 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
762 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
763 RF_UNLOCK_MUTEX(raidPtr->mutex);
764 RF_GETTIME(etime);
765 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
766
767 /* XXX -- why is state 7 different from state 6 if there is no
768 * return() here? -- XXX Note that I set elpsd above & use it
769 * below, so if you put a return here you'll have to fix this.
770 * (also, FreeReconControl is called below) */
771
772 case 7:
773
774 rf_ResumeNewRequests(raidPtr);
775
776 printf("raid%d: Reconstruction of disk at col %d completed\n",
777 raidPtr->raidid, col);
778 xor_s = raidPtr->accumXorTimeUs / 1000000;
779 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
780 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
781 raidPtr->raidid,
782 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
783 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
784 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
785 raidPtr->raidid,
786 (int) raidPtr->reconControl->starttime.tv_sec,
787 (int) raidPtr->reconControl->starttime.tv_usec,
788 (int) etime.tv_sec, (int) etime.tv_usec);
789
790 #if RF_RECON_STATS > 0
791 printf("raid%d: Total head-sep stall count was %d\n",
792 raidPtr->raidid, (int) reconDesc->hsStallCount);
793 #endif /* RF_RECON_STATS > 0 */
794 rf_FreeReconControl(raidPtr);
795 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
796 FreeReconDesc(reconDesc);
797
798 }
799
800 SignalReconDone(raidPtr);
801 return (0);
802 }
803 /*****************************************************************************
804 * do the right thing upon each reconstruction event.
805 * returns nonzero if and only if there is nothing left unread on the
806 * indicated disk
807 *****************************************************************************/
808 static int
809 ProcessReconEvent(raidPtr, event)
810 RF_Raid_t *raidPtr;
811 RF_ReconEvent_t *event;
812 {
813 int retcode = 0, submitblocked;
814 RF_ReconBuffer_t *rbuf;
815 RF_SectorCount_t sectorsPerRU;
816
817 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
818 switch (event->type) {
819
820 /* a read I/O has completed */
821 case RF_REVENT_READDONE:
822 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
823 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
824 event->col, rbuf->parityStripeID);
825 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
826 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
827 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
828 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
829 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
830 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
831 if (!submitblocked)
832 retcode = IssueNextReadRequest(raidPtr, event->col);
833 break;
834
835 /* a write I/O has completed */
836 case RF_REVENT_WRITEDONE:
837 #if RF_DEBUG_RECON
838 if (rf_floatingRbufDebug) {
839 rf_CheckFloatingRbufCount(raidPtr, 1);
840 }
841 #endif
842 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
843 rbuf = (RF_ReconBuffer_t *) event->arg;
844 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
845 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
846 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
847 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
848 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
849 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
850
851 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
852 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
853 raidPtr->numFullReconBuffers--;
854 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
855 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
856 } else
857 if (rbuf->type == RF_RBUF_TYPE_FORCED)
858 rf_FreeReconBuffer(rbuf);
859 else
860 RF_ASSERT(0);
861 break;
862
863 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
864 * cleared */
865 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
866 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
867 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
868 * BUFCLEAR event if we
869 * couldn't submit */
870 retcode = IssueNextReadRequest(raidPtr, event->col);
871 break;
872
873 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
874 * blockage has been cleared */
875 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
876 retcode = TryToRead(raidPtr, event->col);
877 break;
878
879 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
880 * reconstruction blockage has been
881 * cleared */
882 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
883 retcode = TryToRead(raidPtr, event->col);
884 break;
885
886 /* a buffer has become ready to write */
887 case RF_REVENT_BUFREADY:
888 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
889 retcode = IssueNextWriteRequest(raidPtr);
890 #if RF_DEBUG_RECON
891 if (rf_floatingRbufDebug) {
892 rf_CheckFloatingRbufCount(raidPtr, 1);
893 }
894 #endif
895 break;
896
897 /* we need to skip the current RU entirely because it got
898 * recon'd while we were waiting for something else to happen */
899 case RF_REVENT_SKIP:
900 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
901 retcode = IssueNextReadRequest(raidPtr, event->col);
902 break;
903
904 /* a forced-reconstruction read access has completed. Just
905 * submit the buffer */
906 case RF_REVENT_FORCEDREADDONE:
907 rbuf = (RF_ReconBuffer_t *) event->arg;
908 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
909 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
910 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
911 RF_ASSERT(!submitblocked);
912 break;
913
914 default:
915 RF_PANIC();
916 }
917 rf_FreeReconEventDesc(event);
918 return (retcode);
919 }
920 /*****************************************************************************
921 *
922 * find the next thing that's needed on the indicated disk, and issue
923 * a read request for it. We assume that the reconstruction buffer
924 * associated with this process is free to receive the data. If
925 * reconstruction is blocked on the indicated RU, we issue a
926 * blockage-release request instead of a physical disk read request.
927 * If the current disk gets too far ahead of the others, we issue a
928 * head-separation wait request and return.
929 *
930 * ctrl->{ru_count, curPSID, diskOffset} and
931 * rbuf->failedDiskSectorOffset are maintained to point to the unit
932 * we're currently accessing. Note that this deviates from the
933 * standard C idiom of having counters point to the next thing to be
934 * accessed. This allows us to easily retry when we're blocked by
935 * head separation or reconstruction-blockage events.
936 *
937 * returns nonzero if and only if there is nothing left unread on the
938 * indicated disk
939 *
940 *****************************************************************************/
941 static int
942 IssueNextReadRequest(raidPtr, col)
943 RF_Raid_t *raidPtr;
944 RF_RowCol_t col;
945 {
946 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
947 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
948 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
949 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
950 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
951 int do_new_check = 0, retcode = 0, status;
952
953 /* if we are currently the slowest disk, mark that we have to do a new
954 * check */
955 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
956 do_new_check = 1;
957
958 while (1) {
959
960 ctrl->ru_count++;
961 if (ctrl->ru_count < RUsPerPU) {
962 ctrl->diskOffset += sectorsPerRU;
963 rbuf->failedDiskSectorOffset += sectorsPerRU;
964 } else {
965 ctrl->curPSID++;
966 ctrl->ru_count = 0;
967 /* code left over from when head-sep was based on
968 * parity stripe id */
969 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
970 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
971 return (1); /* finito! */
972 }
973 /* find the disk offsets of the start of the parity
974 * stripe on both the current disk and the failed
975 * disk. skip this entire parity stripe if either disk
976 * does not appear in the indicated PS */
977 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
978 &rbuf->spCol, &rbuf->spOffset);
979 if (status) {
980 ctrl->ru_count = RUsPerPU - 1;
981 continue;
982 }
983 }
984 rbuf->which_ru = ctrl->ru_count;
985
986 /* skip this RU if it's already been reconstructed */
987 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
988 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
989 continue;
990 }
991 break;
992 }
993 ctrl->headSepCounter++;
994 if (do_new_check)
995 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
996
997
998 /* at this point, we have definitely decided what to do, and we have
999 * only to see if we can actually do it now */
1000 rbuf->parityStripeID = ctrl->curPSID;
1001 rbuf->which_ru = ctrl->ru_count;
1002 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1003 sizeof(raidPtr->recon_tracerecs[col]));
1004 raidPtr->recon_tracerecs[col].reconacc = 1;
1005 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1006 retcode = TryToRead(raidPtr, col);
1007 return (retcode);
1008 }
1009
1010 /*
1011 * tries to issue the next read on the indicated disk. We may be
1012 * blocked by (a) the heads being too far apart, or (b) recon on the
1013 * indicated RU being blocked due to a write by a user thread. In
1014 * this case, we issue a head-sep or blockage wait request, which will
1015 * cause this same routine to be invoked again later when the blockage
1016 * has cleared.
1017 */
1018
1019 static int
1020 TryToRead(raidPtr, col)
1021 RF_Raid_t *raidPtr;
1022 RF_RowCol_t col;
1023 {
1024 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1025 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1026 RF_StripeNum_t psid = ctrl->curPSID;
1027 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1028 RF_DiskQueueData_t *req;
1029 int status, created = 0;
1030 RF_ReconParityStripeStatus_t *pssPtr;
1031
1032 /* if the current disk is too far ahead of the others, issue a
1033 * head-separation wait and return */
1034 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1035 return (0);
1036 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1037 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1038
1039 /* if recon is blocked on the indicated parity stripe, issue a
1040 * block-wait request and return. this also must mark the indicated RU
1041 * in the stripe as under reconstruction if not blocked. */
1042 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1043 if (status == RF_PSS_RECON_BLOCKED) {
1044 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1045 goto out;
1046 } else
1047 if (status == RF_PSS_FORCED_ON_WRITE) {
1048 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1049 goto out;
1050 }
1051 /* make one last check to be sure that the indicated RU didn't get
1052 * reconstructed while we were waiting for something else to happen.
1053 * This is unfortunate in that it causes us to make this check twice
1054 * in the normal case. Might want to make some attempt to re-work
1055 * this so that we only do this check if we've definitely blocked on
1056 * one of the above checks. When this condition is detected, we may
1057 * have just created a bogus status entry, which we need to delete. */
1058 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1059 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1060 if (created)
1061 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1062 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1063 goto out;
1064 }
1065 /* found something to read. issue the I/O */
1066 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1067 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1068 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1069 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1070 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1071 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1072 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1073
1074 /* should be ok to use a NULL proc pointer here, all the bufs we use
1075 * should be in kernel space */
1076 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1077 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1078
1079 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1080
1081 ctrl->rbuf->arg = (void *) req;
1082 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1083 pssPtr->issued[col] = 1;
1084
1085 out:
1086 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1087 return (0);
1088 }
1089
1090
1091 /*
1092 * given a parity stripe ID, we want to find out whether both the
1093 * current disk and the failed disk exist in that parity stripe. If
1094 * not, we want to skip this whole PS. If so, we want to find the
1095 * disk offset of the start of the PS on both the current disk and the
1096 * failed disk.
1097 *
1098 * this works by getting a list of disks comprising the indicated
1099 * parity stripe, and searching the list for the current and failed
1100 * disks. Once we've decided they both exist in the parity stripe, we
1101 * need to decide whether each is data or parity, so that we'll know
1102 * which mapping function to call to get the corresponding disk
1103 * offsets.
1104 *
1105 * this is kind of unpleasant, but doing it this way allows the
1106 * reconstruction code to use parity stripe IDs rather than physical
1107 * disks address to march through the failed disk, which greatly
1108 * simplifies a lot of code, as well as eliminating the need for a
1109 * reverse-mapping function. I also think it will execute faster,
1110 * since the calls to the mapping module are kept to a minimum.
1111 *
1112 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1113 * THE STRIPE IN THE CORRECT ORDER */
1114
1115
1116 static int
1117 ComputePSDiskOffsets(
1118 RF_Raid_t * raidPtr, /* raid descriptor */
1119 RF_StripeNum_t psid, /* parity stripe identifier */
1120 RF_RowCol_t col, /* column of disk to find the offsets for */
1121 RF_SectorNum_t * outDiskOffset,
1122 RF_SectorNum_t * outFailedDiskSectorOffset,
1123 RF_RowCol_t * spCol, /* OUT: col of spare unit for failed unit */
1124 RF_SectorNum_t * spOffset)
1125 { /* OUT: offset into disk containing spare unit */
1126 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1127 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1128 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1129 RF_RowCol_t *diskids;
1130 u_int i, j, k, i_offset, j_offset;
1131 RF_RowCol_t pcol;
1132 int testcol;
1133 RF_SectorNum_t poffset;
1134 char i_is_parity = 0, j_is_parity = 0;
1135 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1136
1137 /* get a listing of the disks comprising that stripe */
1138 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1139 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1140 RF_ASSERT(diskids);
1141
1142 /* reject this entire parity stripe if it does not contain the
1143 * indicated disk or it does not contain the failed disk */
1144
1145 for (i = 0; i < stripeWidth; i++) {
1146 if (col == diskids[i])
1147 break;
1148 }
1149 if (i == stripeWidth)
1150 goto skipit;
1151 for (j = 0; j < stripeWidth; j++) {
1152 if (fcol == diskids[j])
1153 break;
1154 }
1155 if (j == stripeWidth) {
1156 goto skipit;
1157 }
1158 /* find out which disk the parity is on */
1159 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1160
1161 /* find out if either the current RU or the failed RU is parity */
1162 /* also, if the parity occurs in this stripe prior to the data and/or
1163 * failed col, we need to decrement i and/or j */
1164 for (k = 0; k < stripeWidth; k++)
1165 if (diskids[k] == pcol)
1166 break;
1167 RF_ASSERT(k < stripeWidth);
1168 i_offset = i;
1169 j_offset = j;
1170 if (k < i)
1171 i_offset--;
1172 else
1173 if (k == i) {
1174 i_is_parity = 1;
1175 i_offset = 0;
1176 } /* set offsets to zero to disable multiply
1177 * below */
1178 if (k < j)
1179 j_offset--;
1180 else
1181 if (k == j) {
1182 j_is_parity = 1;
1183 j_offset = 0;
1184 }
1185 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1186 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1187 * tells us how far into the stripe the [current,failed] disk is. */
1188
1189 /* call the mapping routine to get the offset into the current disk,
1190 * repeat for failed disk. */
1191 if (i_is_parity)
1192 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1193 else
1194 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1195
1196 RF_ASSERT(col == testcol);
1197
1198 if (j_is_parity)
1199 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1200 else
1201 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1202 RF_ASSERT(fcol == testcol);
1203
1204 /* now locate the spare unit for the failed unit */
1205 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1206 if (j_is_parity)
1207 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1208 else
1209 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1210 } else {
1211 *spCol = raidPtr->reconControl->spareCol;
1212 *spOffset = *outFailedDiskSectorOffset;
1213 }
1214
1215 return (0);
1216
1217 skipit:
1218 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1219 psid, col);
1220 return (1);
1221 }
1222 /* this is called when a buffer has become ready to write to the replacement disk */
1223 static int
1224 IssueNextWriteRequest(raidPtr)
1225 RF_Raid_t *raidPtr;
1226 {
1227 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1228 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1229 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1230 RF_ReconBuffer_t *rbuf;
1231 RF_DiskQueueData_t *req;
1232
1233 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1234 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1235 * have gotten the event that sent us here */
1236 RF_ASSERT(rbuf->pssPtr);
1237
1238 rbuf->pssPtr->writeRbuf = rbuf;
1239 rbuf->pssPtr = NULL;
1240
1241 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1242 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1243 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1244 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1245 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1246 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1247
1248 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1249 * kernel space */
1250 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1251 sectorsPerRU, rbuf->buffer,
1252 rbuf->parityStripeID, rbuf->which_ru,
1253 ReconWriteDoneProc, (void *) rbuf, NULL,
1254 &raidPtr->recon_tracerecs[fcol],
1255 (void *) raidPtr, 0, NULL);
1256
1257 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1258
1259 rbuf->arg = (void *) req;
1260 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1261
1262 return (0);
1263 }
1264
1265 /*
1266 * this gets called upon the completion of a reconstruction read
1267 * operation the arg is a pointer to the per-disk reconstruction
1268 * control structure for the process that just finished a read.
1269 *
1270 * called at interrupt context in the kernel, so don't do anything
1271 * illegal here.
1272 */
1273 static int
1274 ReconReadDoneProc(arg, status)
1275 void *arg;
1276 int status;
1277 {
1278 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1279 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1280
1281 if (status) {
1282 /*
1283 * XXX
1284 */
1285 printf("Recon read failed!\n");
1286 RF_PANIC();
1287 }
1288 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1289 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1290 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1291 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1292 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1293
1294 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1295 return (0);
1296 }
1297 /* this gets called upon the completion of a reconstruction write operation.
1298 * the arg is a pointer to the rbuf that was just written
1299 *
1300 * called at interrupt context in the kernel, so don't do anything illegal here.
1301 */
1302 static int
1303 ReconWriteDoneProc(arg, status)
1304 void *arg;
1305 int status;
1306 {
1307 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1308
1309 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1310 if (status) {
1311 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1312 * write failed!\n"); */
1313 RF_PANIC();
1314 }
1315 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1316 return (0);
1317 }
1318
1319
1320 /*
1321 * computes a new minimum head sep, and wakes up anyone who needs to
1322 * be woken as a result
1323 */
1324 static void
1325 CheckForNewMinHeadSep(raidPtr, hsCtr)
1326 RF_Raid_t *raidPtr;
1327 RF_HeadSepLimit_t hsCtr;
1328 {
1329 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1330 RF_HeadSepLimit_t new_min;
1331 RF_RowCol_t i;
1332 RF_CallbackDesc_t *p;
1333 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1334 * of a minimum */
1335
1336
1337 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1338
1339 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1340 for (i = 0; i < raidPtr->numCol; i++)
1341 if (i != reconCtrlPtr->fcol) {
1342 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1343 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1344 }
1345 /* set the new minimum and wake up anyone who can now run again */
1346 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1347 reconCtrlPtr->minHeadSepCounter = new_min;
1348 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1349 while (reconCtrlPtr->headSepCBList) {
1350 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1351 break;
1352 p = reconCtrlPtr->headSepCBList;
1353 reconCtrlPtr->headSepCBList = p->next;
1354 p->next = NULL;
1355 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1356 rf_FreeCallbackDesc(p);
1357 }
1358
1359 }
1360 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1361 }
1362
1363 /*
1364 * checks to see that the maximum head separation will not be violated
1365 * if we initiate a reconstruction I/O on the indicated disk.
1366 * Limiting the maximum head separation between two disks eliminates
1367 * the nasty buffer-stall conditions that occur when one disk races
1368 * ahead of the others and consumes all of the floating recon buffers.
1369 * This code is complex and unpleasant but it's necessary to avoid
1370 * some very nasty, albeit fairly rare, reconstruction behavior.
1371 *
1372 * returns non-zero if and only if we have to stop working on the
1373 * indicated disk due to a head-separation delay.
1374 */
1375 static int
1376 CheckHeadSeparation(
1377 RF_Raid_t * raidPtr,
1378 RF_PerDiskReconCtrl_t * ctrl,
1379 RF_RowCol_t col,
1380 RF_HeadSepLimit_t hsCtr,
1381 RF_ReconUnitNum_t which_ru)
1382 {
1383 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1384 RF_CallbackDesc_t *cb, *p, *pt;
1385 int retval = 0;
1386
1387 /* if we're too far ahead of the slowest disk, stop working on this
1388 * disk until the slower ones catch up. We do this by scheduling a
1389 * wakeup callback for the time when the slowest disk has caught up.
1390 * We define "caught up" with 20% hysteresis, i.e. the head separation
1391 * must have fallen to at most 80% of the max allowable head
1392 * separation before we'll wake up.
1393 *
1394 */
1395 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1396 if ((raidPtr->headSepLimit >= 0) &&
1397 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1398 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1399 raidPtr->raidid, col, ctrl->headSepCounter,
1400 reconCtrlPtr->minHeadSepCounter,
1401 raidPtr->headSepLimit);
1402 cb = rf_AllocCallbackDesc();
1403 /* the minHeadSepCounter value we have to get to before we'll
1404 * wake up. build in 20% hysteresis. */
1405 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1406 cb->col = col;
1407 cb->next = NULL;
1408
1409 /* insert this callback descriptor into the sorted list of
1410 * pending head-sep callbacks */
1411 p = reconCtrlPtr->headSepCBList;
1412 if (!p)
1413 reconCtrlPtr->headSepCBList = cb;
1414 else
1415 if (cb->callbackArg.v < p->callbackArg.v) {
1416 cb->next = reconCtrlPtr->headSepCBList;
1417 reconCtrlPtr->headSepCBList = cb;
1418 } else {
1419 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1420 cb->next = p;
1421 pt->next = cb;
1422 }
1423 retval = 1;
1424 #if RF_RECON_STATS > 0
1425 ctrl->reconCtrl->reconDesc->hsStallCount++;
1426 #endif /* RF_RECON_STATS > 0 */
1427 }
1428 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1429
1430 return (retval);
1431 }
1432 /*
1433 * checks to see if reconstruction has been either forced or blocked
1434 * by a user operation. if forced, we skip this RU entirely. else if
1435 * blocked, put ourselves on the wait list. else return 0.
1436 *
1437 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1438 */
1439 static int
1440 CheckForcedOrBlockedReconstruction(
1441 RF_Raid_t * raidPtr,
1442 RF_ReconParityStripeStatus_t * pssPtr,
1443 RF_PerDiskReconCtrl_t * ctrl,
1444 RF_RowCol_t col,
1445 RF_StripeNum_t psid,
1446 RF_ReconUnitNum_t which_ru)
1447 {
1448 RF_CallbackDesc_t *cb;
1449 int retcode = 0;
1450
1451 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1452 retcode = RF_PSS_FORCED_ON_WRITE;
1453 else
1454 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1455 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1456 cb = rf_AllocCallbackDesc(); /* append ourselves to
1457 * the blockage-wait
1458 * list */
1459 cb->col = col;
1460 cb->next = pssPtr->blockWaitList;
1461 pssPtr->blockWaitList = cb;
1462 retcode = RF_PSS_RECON_BLOCKED;
1463 }
1464 if (!retcode)
1465 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1466 * reconstruction */
1467
1468 return (retcode);
1469 }
1470 /*
1471 * if reconstruction is currently ongoing for the indicated stripeID,
1472 * reconstruction is forced to completion and we return non-zero to
1473 * indicate that the caller must wait. If not, then reconstruction is
1474 * blocked on the indicated stripe and the routine returns zero. If
1475 * and only if we return non-zero, we'll cause the cbFunc to get
1476 * invoked with the cbArg when the reconstruction has completed.
1477 */
1478 int
1479 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1480 RF_Raid_t *raidPtr;
1481 RF_AccessStripeMap_t *asmap;
1482 void (*cbFunc) (RF_Raid_t *, void *);
1483 void *cbArg;
1484 {
1485 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1486 * forcing recon on */
1487 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1488 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1489 * stripe status structure */
1490 RF_StripeNum_t psid; /* parity stripe id */
1491 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1492 * offset */
1493 RF_RowCol_t *diskids;
1494 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1495 RF_RowCol_t fcol, diskno, i;
1496 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1497 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1498 RF_CallbackDesc_t *cb;
1499 int created = 0, nPromoted;
1500
1501 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1502
1503 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1504
1505 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1506
1507 /* if recon is not ongoing on this PS, just return */
1508 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1509 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1510 return (0);
1511 }
1512 /* otherwise, we have to wait for reconstruction to complete on this
1513 * RU. */
1514 /* In order to avoid waiting for a potentially large number of
1515 * low-priority accesses to complete, we force a normal-priority (i.e.
1516 * not low-priority) reconstruction on this RU. */
1517 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1518 DDprintf1("Forcing recon on psid %ld\n", psid);
1519 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1520 * forced recon */
1521 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1522 * that we just set */
1523 fcol = raidPtr->reconControl->fcol;
1524
1525 /* get a listing of the disks comprising the indicated stripe */
1526 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1527
1528 /* For previously issued reads, elevate them to normal
1529 * priority. If the I/O has already completed, it won't be
1530 * found in the queue, and hence this will be a no-op. For
1531 * unissued reads, allocate buffers and issue new reads. The
1532 * fact that we've set the FORCED bit means that the regular
1533 * recon procs will not re-issue these reqs */
1534 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1535 if ((diskno = diskids[i]) != fcol) {
1536 if (pssPtr->issued[diskno]) {
1537 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1538 if (rf_reconDebug && nPromoted)
1539 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1540 } else {
1541 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1542 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1543 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1544 * location */
1545 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1546 new_rbuf->which_ru = which_ru;
1547 new_rbuf->failedDiskSectorOffset = fd_offset;
1548 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1549
1550 /* use NULL b_proc b/c all addrs
1551 * should be in kernel space */
1552 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1553 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1554 NULL, (void *) raidPtr, 0, NULL);
1555
1556 RF_ASSERT(req); /* XXX -- fix this --
1557 * XXX */
1558
1559 new_rbuf->arg = req;
1560 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1561 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1562 }
1563 }
1564 /* if the write is sitting in the disk queue, elevate its
1565 * priority */
1566 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1567 printf("raid%d: promoted write to col %d\n",
1568 raidPtr->raidid, fcol);
1569 }
1570 /* install a callback descriptor to be invoked when recon completes on
1571 * this parity stripe. */
1572 cb = rf_AllocCallbackDesc();
1573 /* XXX the following is bogus.. These functions don't really match!!
1574 * GO */
1575 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1576 cb->callbackArg.p = (void *) cbArg;
1577 cb->next = pssPtr->procWaitList;
1578 pssPtr->procWaitList = cb;
1579 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1580 raidPtr->raidid, psid);
1581
1582 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1583 return (1);
1584 }
1585 /* called upon the completion of a forced reconstruction read.
1586 * all we do is schedule the FORCEDREADONE event.
1587 * called at interrupt context in the kernel, so don't do anything illegal here.
1588 */
1589 static void
1590 ForceReconReadDoneProc(arg, status)
1591 void *arg;
1592 int status;
1593 {
1594 RF_ReconBuffer_t *rbuf = arg;
1595
1596 if (status) {
1597 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1598 * recon read
1599 * failed!\n"); */
1600 RF_PANIC();
1601 }
1602 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1603 }
1604 /* releases a block on the reconstruction of the indicated stripe */
1605 int
1606 rf_UnblockRecon(raidPtr, asmap)
1607 RF_Raid_t *raidPtr;
1608 RF_AccessStripeMap_t *asmap;
1609 {
1610 RF_StripeNum_t stripeID = asmap->stripeID;
1611 RF_ReconParityStripeStatus_t *pssPtr;
1612 RF_ReconUnitNum_t which_ru;
1613 RF_StripeNum_t psid;
1614 int created = 0;
1615 RF_CallbackDesc_t *cb;
1616
1617 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1618 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1619 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1620
1621 /* When recon is forced, the pss desc can get deleted before we get
1622 * back to unblock recon. But, this can _only_ happen when recon is
1623 * forced. It would be good to put some kind of sanity check here, but
1624 * how to decide if recon was just forced or not? */
1625 if (!pssPtr) {
1626 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1627 * RU %d\n",psid,which_ru); */
1628 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1629 if (rf_reconDebug || rf_pssDebug)
1630 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1631 #endif
1632 goto out;
1633 }
1634 pssPtr->blockCount--;
1635 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1636 raidPtr->raidid, psid, pssPtr->blockCount);
1637 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1638
1639 /* unblock recon before calling CauseReconEvent in case
1640 * CauseReconEvent causes us to try to issue a new read before
1641 * returning here. */
1642 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1643
1644
1645 while (pssPtr->blockWaitList) {
1646 /* spin through the block-wait list and
1647 release all the waiters */
1648 cb = pssPtr->blockWaitList;
1649 pssPtr->blockWaitList = cb->next;
1650 cb->next = NULL;
1651 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1652 rf_FreeCallbackDesc(cb);
1653 }
1654 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1655 /* if no recon was requested while recon was blocked */
1656 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1657 }
1658 }
1659 out:
1660 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1661 return (0);
1662 }
1663