rf_reconstruct.c revision 1.58 1 /* $NetBSD: rf_reconstruct.c,v 1.58 2003/12/29 03:33:48 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.58 2003/12/29 03:33:48 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105 int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115 RF_SectorNum_t * outFailedDiskSectorOffset,
116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125 RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129 RF_RowCol_t col, RF_StripeNum_t psid,
130 RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132
133 static void rf_ShutdownReconstruction(void *);
134
135 struct RF_ReconDoneProc_s {
136 void (*proc) (RF_Raid_t *, void *);
137 void *arg;
138 RF_ReconDoneProc_t *next;
139 };
140
141 static void
142 SignalReconDone(RF_Raid_t * raidPtr)
143 {
144 RF_ReconDoneProc_t *p;
145
146 RF_LOCK_MUTEX(raidPtr->recon_done_proc_mutex);
147 for (p = raidPtr->recon_done_procs; p; p = p->next) {
148 p->proc(raidPtr, p->arg);
149 }
150 RF_UNLOCK_MUTEX(raidPtr->recon_done_proc_mutex);
151 }
152
153 /**************************************************************************
154 *
155 * sets up the parameters that will be used by the reconstruction process
156 * currently there are none, except for those that the layout-specific
157 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
158 *
159 * in the kernel, we fire off the recon thread.
160 *
161 **************************************************************************/
162 static void
163 rf_ShutdownReconstruction(ignored)
164 void *ignored;
165 {
166 pool_destroy(&rf_recond_pool);
167 }
168
169 int
170 rf_ConfigureReconstruction(listp)
171 RF_ShutdownList_t **listp;
172 {
173 int rc;
174
175 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
176 "rf_recond_pl", NULL);
177 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
178 if (rc) {
179 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
180 rf_ShutdownReconstruction(NULL);
181 return (rc);
182 }
183 return (0);
184 }
185
186 static RF_RaidReconDesc_t *
187 AllocRaidReconDesc(raidPtr, col, spareDiskPtr, numDisksDone, scol)
188 RF_Raid_t *raidPtr;
189 RF_RowCol_t col;
190 RF_RaidDisk_t *spareDiskPtr;
191 int numDisksDone;
192 RF_RowCol_t scol;
193 {
194
195 RF_RaidReconDesc_t *reconDesc;
196
197 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
198
199 reconDesc->raidPtr = raidPtr;
200 reconDesc->col = col;
201 reconDesc->spareDiskPtr = spareDiskPtr;
202 reconDesc->numDisksDone = numDisksDone;
203 reconDesc->scol = scol;
204 reconDesc->state = 0;
205 reconDesc->next = NULL;
206
207 return (reconDesc);
208 }
209
210 static void
211 FreeReconDesc(reconDesc)
212 RF_RaidReconDesc_t *reconDesc;
213 {
214 #if RF_RECON_STATS > 0
215 printf("raid%d: %lu recon event waits, %lu recon delays\n",
216 reconDesc->raidPtr->raidid,
217 (long) reconDesc->numReconEventWaits,
218 (long) reconDesc->numReconExecDelays);
219 #endif /* RF_RECON_STATS > 0 */
220 printf("raid%d: %lu max exec ticks\n",
221 reconDesc->raidPtr->raidid,
222 (long) reconDesc->maxReconExecTicks);
223 #if (RF_RECON_STATS > 0) || defined(KERNEL)
224 printf("\n");
225 #endif /* (RF_RECON_STATS > 0) || KERNEL */
226 pool_put(&rf_recond_pool, reconDesc);
227 }
228
229
230 /*****************************************************************************
231 *
232 * primary routine to reconstruct a failed disk. This should be called from
233 * within its own thread. It won't return until reconstruction completes,
234 * fails, or is aborted.
235 *****************************************************************************/
236 int
237 rf_ReconstructFailedDisk(raidPtr, col)
238 RF_Raid_t *raidPtr;
239 RF_RowCol_t col;
240 {
241 const RF_LayoutSW_t *lp;
242 int rc;
243
244 lp = raidPtr->Layout.map;
245 if (lp->SubmitReconBuffer) {
246 /*
247 * The current infrastructure only supports reconstructing one
248 * disk at a time for each array.
249 */
250 RF_LOCK_MUTEX(raidPtr->mutex);
251 while (raidPtr->reconInProgress) {
252 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
253 }
254 raidPtr->reconInProgress++;
255 RF_UNLOCK_MUTEX(raidPtr->mutex);
256 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
257 RF_LOCK_MUTEX(raidPtr->mutex);
258 raidPtr->reconInProgress--;
259 RF_UNLOCK_MUTEX(raidPtr->mutex);
260 } else {
261 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
262 lp->parityConfig);
263 rc = EIO;
264 }
265 RF_SIGNAL_COND(raidPtr->waitForReconCond);
266 return (rc);
267 }
268
269 int
270 rf_ReconstructFailedDiskBasic(raidPtr, col)
271 RF_Raid_t *raidPtr;
272 RF_RowCol_t col;
273 {
274 RF_ComponentLabel_t c_label;
275 RF_RaidDisk_t *spareDiskPtr = NULL;
276 RF_RaidReconDesc_t *reconDesc;
277 RF_RowCol_t scol;
278 int numDisksDone = 0, rc;
279
280 /* first look for a spare drive onto which to reconstruct the data */
281 /* spare disk descriptors are stored in row 0. This may have to
282 * change eventually */
283
284 RF_LOCK_MUTEX(raidPtr->mutex);
285 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
286
287 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
288 if (raidPtr->status != rf_rs_degraded) {
289 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
290 RF_UNLOCK_MUTEX(raidPtr->mutex);
291 return (EINVAL);
292 }
293 scol = (-1);
294 } else {
295 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
296 if (raidPtr->Disks[scol].status == rf_ds_spare) {
297 spareDiskPtr = &raidPtr->Disks[scol];
298 spareDiskPtr->status = rf_ds_used_spare;
299 break;
300 }
301 }
302 if (!spareDiskPtr) {
303 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
304 RF_UNLOCK_MUTEX(raidPtr->mutex);
305 return (ENOSPC);
306 }
307 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
308 }
309 RF_UNLOCK_MUTEX(raidPtr->mutex);
310
311 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
312 raidPtr->reconDesc = (void *) reconDesc;
313 #if RF_RECON_STATS > 0
314 reconDesc->hsStallCount = 0;
315 reconDesc->numReconExecDelays = 0;
316 reconDesc->numReconEventWaits = 0;
317 #endif /* RF_RECON_STATS > 0 */
318 reconDesc->reconExecTimerRunning = 0;
319 reconDesc->reconExecTicks = 0;
320 reconDesc->maxReconExecTicks = 0;
321 rc = rf_ContinueReconstructFailedDisk(reconDesc);
322
323 if (!rc) {
324 /* fix up the component label */
325 /* Don't actually need the read here.. */
326 raidread_component_label(
327 raidPtr->raid_cinfo[scol].ci_dev,
328 raidPtr->raid_cinfo[scol].ci_vp,
329 &c_label);
330
331 raid_init_component_label( raidPtr, &c_label);
332 c_label.row = 0;
333 c_label.column = col;
334 c_label.clean = RF_RAID_DIRTY;
335 c_label.status = rf_ds_optimal;
336 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
337
338 /* We've just done a rebuild based on all the other
339 disks, so at this point the parity is known to be
340 clean, even if it wasn't before. */
341
342 /* XXX doesn't hold for RAID 6!!*/
343
344 RF_LOCK_MUTEX(raidPtr->mutex);
345 raidPtr->parity_good = RF_RAID_CLEAN;
346 RF_UNLOCK_MUTEX(raidPtr->mutex);
347
348 /* XXXX MORE NEEDED HERE */
349
350 raidwrite_component_label(
351 raidPtr->raid_cinfo[scol].ci_dev,
352 raidPtr->raid_cinfo[scol].ci_vp,
353 &c_label);
354
355
356 rf_update_component_labels(raidPtr,
357 RF_NORMAL_COMPONENT_UPDATE);
358
359 }
360 return (rc);
361 }
362
363 /*
364
365 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
366 and you don't get a spare until the next Monday. With this function
367 (and hot-swappable drives) you can now put your new disk containing
368 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
369 rebuild the data "on the spot".
370
371 */
372
373 int
374 rf_ReconstructInPlace(raidPtr, col)
375 RF_Raid_t *raidPtr;
376 RF_RowCol_t col;
377 {
378 RF_RaidDisk_t *spareDiskPtr = NULL;
379 RF_RaidReconDesc_t *reconDesc;
380 const RF_LayoutSW_t *lp;
381 RF_ComponentLabel_t c_label;
382 int numDisksDone = 0, rc;
383 struct partinfo dpart;
384 struct vnode *vp;
385 struct vattr va;
386 struct proc *proc;
387 int retcode;
388 int ac;
389
390 lp = raidPtr->Layout.map;
391 if (lp->SubmitReconBuffer) {
392 /*
393 * The current infrastructure only supports reconstructing one
394 * disk at a time for each array.
395 */
396 RF_LOCK_MUTEX(raidPtr->mutex);
397
398 if (raidPtr->Disks[col].status != rf_ds_failed) {
399 /* "It's gone..." */
400 raidPtr->numFailures++;
401 raidPtr->Disks[col].status = rf_ds_failed;
402 raidPtr->status = rf_rs_degraded;
403 RF_UNLOCK_MUTEX(raidPtr->mutex);
404 rf_update_component_labels(raidPtr,
405 RF_NORMAL_COMPONENT_UPDATE);
406 RF_LOCK_MUTEX(raidPtr->mutex);
407 }
408
409 while (raidPtr->reconInProgress) {
410 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
411 }
412
413 raidPtr->reconInProgress++;
414
415
416 /* first look for a spare drive onto which to reconstruct
417 the data. spare disk descriptors are stored in row 0.
418 This may have to change eventually */
419
420 /* Actually, we don't care if it's failed or not...
421 On a RAID set with correct parity, this function
422 should be callable on any component without ill affects. */
423 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
424 */
425
426 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
427 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
428
429 raidPtr->reconInProgress--;
430 RF_UNLOCK_MUTEX(raidPtr->mutex);
431 return (EINVAL);
432 }
433
434 proc = raidPtr->engine_thread;
435
436 /* This device may have been opened successfully the
437 first time. Close it before trying to open it again.. */
438
439 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
440 #if 0
441 printf("Closed the open device: %s\n",
442 raidPtr->Disks[col].devname);
443 #endif
444 vp = raidPtr->raid_cinfo[col].ci_vp;
445 ac = raidPtr->Disks[col].auto_configured;
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 rf_close_component(raidPtr, vp, ac);
448 RF_LOCK_MUTEX(raidPtr->mutex);
449 raidPtr->raid_cinfo[col].ci_vp = NULL;
450 }
451 /* note that this disk was *not* auto_configured (any longer)*/
452 raidPtr->Disks[col].auto_configured = 0;
453
454 #if 0
455 printf("About to (re-)open the device for rebuilding: %s\n",
456 raidPtr->Disks[col].devname);
457 #endif
458 RF_UNLOCK_MUTEX(raidPtr->mutex);
459 retcode = raidlookup(raidPtr->Disks[col].devname,
460 proc, &vp);
461
462 if (retcode) {
463 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
464 raidPtr->Disks[col].devname, retcode);
465
466 /* the component isn't responding properly...
467 must be still dead :-( */
468 RF_LOCK_MUTEX(raidPtr->mutex);
469 raidPtr->reconInProgress--;
470 RF_UNLOCK_MUTEX(raidPtr->mutex);
471 return(retcode);
472
473 } else {
474
475 /* Ok, so we can at least do a lookup...
476 How about actually getting a vp for it? */
477
478 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
479 proc)) != 0) {
480 RF_LOCK_MUTEX(raidPtr->mutex);
481 raidPtr->reconInProgress--;
482 RF_UNLOCK_MUTEX(raidPtr->mutex);
483 return(retcode);
484 }
485 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart,
486 FREAD, proc->p_ucred, proc);
487 if (retcode) {
488 RF_LOCK_MUTEX(raidPtr->mutex);
489 raidPtr->reconInProgress--;
490 RF_UNLOCK_MUTEX(raidPtr->mutex);
491 return(retcode);
492 }
493 RF_LOCK_MUTEX(raidPtr->mutex);
494 raidPtr->Disks[col].blockSize =
495 dpart.disklab->d_secsize;
496
497 raidPtr->Disks[col].numBlocks =
498 dpart.part->p_size - rf_protectedSectors;
499
500 raidPtr->raid_cinfo[col].ci_vp = vp;
501 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
502
503 raidPtr->Disks[col].dev = va.va_rdev;
504
505 /* we allow the user to specify that only a
506 fraction of the disks should be used this is
507 just for debug: it speeds up
508 * the parity scan */
509 raidPtr->Disks[col].numBlocks =
510 raidPtr->Disks[col].numBlocks *
511 rf_sizePercentage / 100;
512 RF_UNLOCK_MUTEX(raidPtr->mutex);
513 }
514
515
516
517 spareDiskPtr = &raidPtr->Disks[col];
518 spareDiskPtr->status = rf_ds_used_spare;
519
520 printf("raid%d: initiating in-place reconstruction on column %d\n", raidPtr->raidid, col);
521
522 reconDesc = AllocRaidReconDesc((void *) raidPtr, col,
523 spareDiskPtr, numDisksDone,
524 col);
525 raidPtr->reconDesc = (void *) reconDesc;
526 #if RF_RECON_STATS > 0
527 reconDesc->hsStallCount = 0;
528 reconDesc->numReconExecDelays = 0;
529 reconDesc->numReconEventWaits = 0;
530 #endif /* RF_RECON_STATS > 0 */
531 reconDesc->reconExecTimerRunning = 0;
532 reconDesc->reconExecTicks = 0;
533 reconDesc->maxReconExecTicks = 0;
534 rc = rf_ContinueReconstructFailedDisk(reconDesc);
535
536 RF_LOCK_MUTEX(raidPtr->mutex);
537 raidPtr->reconInProgress--;
538 RF_UNLOCK_MUTEX(raidPtr->mutex);
539
540 } else {
541 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
542 lp->parityConfig);
543 rc = EIO;
544 }
545
546 if (!rc) {
547 RF_LOCK_MUTEX(raidPtr->mutex);
548 /* Need to set these here, as at this point it'll be claiming
549 that the disk is in rf_ds_spared! But we know better :-) */
550
551 raidPtr->Disks[col].status = rf_ds_optimal;
552 raidPtr->status = rf_rs_optimal;
553 RF_UNLOCK_MUTEX(raidPtr->mutex);
554
555 /* fix up the component label */
556 /* Don't actually need the read here.. */
557 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
558 raidPtr->raid_cinfo[col].ci_vp,
559 &c_label);
560
561 RF_LOCK_MUTEX(raidPtr->mutex);
562 raid_init_component_label(raidPtr, &c_label);
563
564 c_label.row = 0;
565 c_label.column = col;
566
567 /* We've just done a rebuild based on all the other
568 disks, so at this point the parity is known to be
569 clean, even if it wasn't before. */
570
571 /* XXX doesn't hold for RAID 6!!*/
572
573 raidPtr->parity_good = RF_RAID_CLEAN;
574 RF_UNLOCK_MUTEX(raidPtr->mutex);
575
576 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
577 raidPtr->raid_cinfo[col].ci_vp,
578 &c_label);
579
580 rf_update_component_labels(raidPtr,
581 RF_NORMAL_COMPONENT_UPDATE);
582
583 }
584 RF_SIGNAL_COND(raidPtr->waitForReconCond);
585 return (rc);
586 }
587
588
589 int
590 rf_ContinueReconstructFailedDisk(reconDesc)
591 RF_RaidReconDesc_t *reconDesc;
592 {
593 RF_Raid_t *raidPtr = reconDesc->raidPtr;
594 RF_RowCol_t col = reconDesc->col;
595 RF_RowCol_t scol = reconDesc->scol;
596 RF_ReconMap_t *mapPtr;
597 RF_ReconCtrl_t *tmp_reconctrl;
598 RF_ReconEvent_t *event;
599 struct timeval etime, elpsd;
600 unsigned long xor_s, xor_resid_us;
601 int i, ds;
602
603 switch (reconDesc->state) {
604
605
606 case 0:
607
608 raidPtr->accumXorTimeUs = 0;
609
610 /* create one trace record per physical disk */
611 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
612
613 /* quiesce the array prior to starting recon. this is needed
614 * to assure no nasty interactions with pending user writes.
615 * We need to do this before we change the disk or row status. */
616 reconDesc->state = 1;
617
618 Dprintf("RECON: begin request suspend\n");
619 rf_SuspendNewRequestsAndWait(raidPtr);
620 Dprintf("RECON: end request suspend\n");
621 rf_StartUserStats(raidPtr); /* zero out the stats kept on
622 * user accs */
623
624 /* fall through to state 1 */
625
626 case 1:
627
628 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
629 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
630
631 RF_LOCK_MUTEX(raidPtr->mutex);
632
633 /* create the reconstruction control pointer and install it in
634 * the right slot */
635 raidPtr->reconControl = tmp_reconctrl;
636 mapPtr = raidPtr->reconControl->reconMap;
637 raidPtr->status = rf_rs_reconstructing;
638 raidPtr->Disks[col].status = rf_ds_reconstructing;
639 raidPtr->Disks[col].spareCol = scol;
640
641 RF_UNLOCK_MUTEX(raidPtr->mutex);
642
643 RF_GETTIME(raidPtr->reconControl->starttime);
644
645 /* now start up the actual reconstruction: issue a read for
646 * each surviving disk */
647
648 reconDesc->numDisksDone = 0;
649 for (i = 0; i < raidPtr->numCol; i++) {
650 if (i != col) {
651 /* find and issue the next I/O on the
652 * indicated disk */
653 if (IssueNextReadRequest(raidPtr, i)) {
654 Dprintf1("RECON: done issuing for c%d\n", i);
655 reconDesc->numDisksDone++;
656 }
657 }
658 }
659
660 case 2:
661 Dprintf("RECON: resume requests\n");
662 rf_ResumeNewRequests(raidPtr);
663
664
665 reconDesc->state = 3;
666
667 case 3:
668
669 /* process reconstruction events until all disks report that
670 * they've completed all work */
671 mapPtr = raidPtr->reconControl->reconMap;
672
673
674
675 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
676
677 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
678 RF_ASSERT(event);
679
680 if (ProcessReconEvent(raidPtr, event))
681 reconDesc->numDisksDone++;
682 raidPtr->reconControl->numRUsTotal =
683 mapPtr->totalRUs;
684 raidPtr->reconControl->numRUsComplete =
685 mapPtr->totalRUs -
686 rf_UnitsLeftToReconstruct(mapPtr);
687
688 raidPtr->reconControl->percentComplete =
689 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
690 #if RF_DEBUG_RECON
691 if (rf_prReconSched) {
692 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
693 }
694 #endif
695 }
696
697
698
699 reconDesc->state = 4;
700
701
702 case 4:
703 mapPtr = raidPtr->reconControl->reconMap;
704 if (rf_reconDebug) {
705 printf("RECON: all reads completed\n");
706 }
707 /* at this point all the reads have completed. We now wait
708 * for any pending writes to complete, and then we're done */
709
710 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
711
712 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
713 RF_ASSERT(event);
714
715 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
716 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
717 #if RF_DEBUG_RECON
718 if (rf_prReconSched) {
719 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
720 }
721 #endif
722 }
723 reconDesc->state = 5;
724
725 case 5:
726 /* Success: mark the dead disk as reconstructed. We quiesce
727 * the array here to assure no nasty interactions with pending
728 * user accesses when we free up the psstatus structure as
729 * part of FreeReconControl() */
730
731 reconDesc->state = 6;
732
733 rf_SuspendNewRequestsAndWait(raidPtr);
734 rf_StopUserStats(raidPtr);
735 rf_PrintUserStats(raidPtr); /* print out the stats on user
736 * accs accumulated during
737 * recon */
738
739 /* fall through to state 6 */
740 case 6:
741
742
743
744 RF_LOCK_MUTEX(raidPtr->mutex);
745 raidPtr->numFailures--;
746 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
747 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
748 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
749 RF_UNLOCK_MUTEX(raidPtr->mutex);
750 RF_GETTIME(etime);
751 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
752
753 /* XXX -- why is state 7 different from state 6 if there is no
754 * return() here? -- XXX Note that I set elpsd above & use it
755 * below, so if you put a return here you'll have to fix this.
756 * (also, FreeReconControl is called below) */
757
758 case 7:
759
760 rf_ResumeNewRequests(raidPtr);
761
762 printf("raid%d: Reconstruction of disk at col %d completed\n",
763 raidPtr->raidid, col);
764 xor_s = raidPtr->accumXorTimeUs / 1000000;
765 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
766 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
767 raidPtr->raidid,
768 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
769 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
770 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
771 raidPtr->raidid,
772 (int) raidPtr->reconControl->starttime.tv_sec,
773 (int) raidPtr->reconControl->starttime.tv_usec,
774 (int) etime.tv_sec, (int) etime.tv_usec);
775
776 #if RF_RECON_STATS > 0
777 printf("raid%d: Total head-sep stall count was %d\n",
778 raidPtr->raidid, (int) reconDesc->hsStallCount);
779 #endif /* RF_RECON_STATS > 0 */
780 rf_FreeReconControl(raidPtr);
781 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
782 FreeReconDesc(reconDesc);
783
784 }
785
786 SignalReconDone(raidPtr);
787 return (0);
788 }
789 /*****************************************************************************
790 * do the right thing upon each reconstruction event.
791 * returns nonzero if and only if there is nothing left unread on the
792 * indicated disk
793 *****************************************************************************/
794 static int
795 ProcessReconEvent(raidPtr, event)
796 RF_Raid_t *raidPtr;
797 RF_ReconEvent_t *event;
798 {
799 int retcode = 0, submitblocked;
800 RF_ReconBuffer_t *rbuf;
801 RF_SectorCount_t sectorsPerRU;
802
803 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
804 switch (event->type) {
805
806 /* a read I/O has completed */
807 case RF_REVENT_READDONE:
808 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
809 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
810 event->col, rbuf->parityStripeID);
811 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
812 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
813 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
814 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
815 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
816 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
817 if (!submitblocked)
818 retcode = IssueNextReadRequest(raidPtr, event->col);
819 break;
820
821 /* a write I/O has completed */
822 case RF_REVENT_WRITEDONE:
823 #if RF_DEBUG_RECON
824 if (rf_floatingRbufDebug) {
825 rf_CheckFloatingRbufCount(raidPtr, 1);
826 }
827 #endif
828 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
829 rbuf = (RF_ReconBuffer_t *) event->arg;
830 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
831 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
832 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
833 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
834 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
835 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
836
837 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
838 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
839 raidPtr->numFullReconBuffers--;
840 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
841 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
842 } else
843 if (rbuf->type == RF_RBUF_TYPE_FORCED)
844 rf_FreeReconBuffer(rbuf);
845 else
846 RF_ASSERT(0);
847 break;
848
849 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
850 * cleared */
851 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
852 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
853 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
854 * BUFCLEAR event if we
855 * couldn't submit */
856 retcode = IssueNextReadRequest(raidPtr, event->col);
857 break;
858
859 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
860 * blockage has been cleared */
861 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
862 retcode = TryToRead(raidPtr, event->col);
863 break;
864
865 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
866 * reconstruction blockage has been
867 * cleared */
868 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
869 retcode = TryToRead(raidPtr, event->col);
870 break;
871
872 /* a buffer has become ready to write */
873 case RF_REVENT_BUFREADY:
874 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
875 retcode = IssueNextWriteRequest(raidPtr);
876 #if RF_DEBUG_RECON
877 if (rf_floatingRbufDebug) {
878 rf_CheckFloatingRbufCount(raidPtr, 1);
879 }
880 #endif
881 break;
882
883 /* we need to skip the current RU entirely because it got
884 * recon'd while we were waiting for something else to happen */
885 case RF_REVENT_SKIP:
886 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
887 retcode = IssueNextReadRequest(raidPtr, event->col);
888 break;
889
890 /* a forced-reconstruction read access has completed. Just
891 * submit the buffer */
892 case RF_REVENT_FORCEDREADDONE:
893 rbuf = (RF_ReconBuffer_t *) event->arg;
894 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
895 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
896 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
897 RF_ASSERT(!submitblocked);
898 break;
899
900 default:
901 RF_PANIC();
902 }
903 rf_FreeReconEventDesc(event);
904 return (retcode);
905 }
906 /*****************************************************************************
907 *
908 * find the next thing that's needed on the indicated disk, and issue
909 * a read request for it. We assume that the reconstruction buffer
910 * associated with this process is free to receive the data. If
911 * reconstruction is blocked on the indicated RU, we issue a
912 * blockage-release request instead of a physical disk read request.
913 * If the current disk gets too far ahead of the others, we issue a
914 * head-separation wait request and return.
915 *
916 * ctrl->{ru_count, curPSID, diskOffset} and
917 * rbuf->failedDiskSectorOffset are maintained to point to the unit
918 * we're currently accessing. Note that this deviates from the
919 * standard C idiom of having counters point to the next thing to be
920 * accessed. This allows us to easily retry when we're blocked by
921 * head separation or reconstruction-blockage events.
922 *
923 * returns nonzero if and only if there is nothing left unread on the
924 * indicated disk
925 *
926 *****************************************************************************/
927 static int
928 IssueNextReadRequest(raidPtr, col)
929 RF_Raid_t *raidPtr;
930 RF_RowCol_t col;
931 {
932 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
933 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
934 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
935 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
936 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
937 int do_new_check = 0, retcode = 0, status;
938
939 /* if we are currently the slowest disk, mark that we have to do a new
940 * check */
941 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
942 do_new_check = 1;
943
944 while (1) {
945
946 ctrl->ru_count++;
947 if (ctrl->ru_count < RUsPerPU) {
948 ctrl->diskOffset += sectorsPerRU;
949 rbuf->failedDiskSectorOffset += sectorsPerRU;
950 } else {
951 ctrl->curPSID++;
952 ctrl->ru_count = 0;
953 /* code left over from when head-sep was based on
954 * parity stripe id */
955 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
956 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
957 return (1); /* finito! */
958 }
959 /* find the disk offsets of the start of the parity
960 * stripe on both the current disk and the failed
961 * disk. skip this entire parity stripe if either disk
962 * does not appear in the indicated PS */
963 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
964 &rbuf->spCol, &rbuf->spOffset);
965 if (status) {
966 ctrl->ru_count = RUsPerPU - 1;
967 continue;
968 }
969 }
970 rbuf->which_ru = ctrl->ru_count;
971
972 /* skip this RU if it's already been reconstructed */
973 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
974 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
975 continue;
976 }
977 break;
978 }
979 ctrl->headSepCounter++;
980 if (do_new_check)
981 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
982
983
984 /* at this point, we have definitely decided what to do, and we have
985 * only to see if we can actually do it now */
986 rbuf->parityStripeID = ctrl->curPSID;
987 rbuf->which_ru = ctrl->ru_count;
988 memset((char *) &raidPtr->recon_tracerecs[col], 0,
989 sizeof(raidPtr->recon_tracerecs[col]));
990 raidPtr->recon_tracerecs[col].reconacc = 1;
991 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
992 retcode = TryToRead(raidPtr, col);
993 return (retcode);
994 }
995
996 /*
997 * tries to issue the next read on the indicated disk. We may be
998 * blocked by (a) the heads being too far apart, or (b) recon on the
999 * indicated RU being blocked due to a write by a user thread. In
1000 * this case, we issue a head-sep or blockage wait request, which will
1001 * cause this same routine to be invoked again later when the blockage
1002 * has cleared.
1003 */
1004
1005 static int
1006 TryToRead(raidPtr, col)
1007 RF_Raid_t *raidPtr;
1008 RF_RowCol_t col;
1009 {
1010 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1011 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1012 RF_StripeNum_t psid = ctrl->curPSID;
1013 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1014 RF_DiskQueueData_t *req;
1015 int status, created = 0;
1016 RF_ReconParityStripeStatus_t *pssPtr;
1017
1018 /* if the current disk is too far ahead of the others, issue a
1019 * head-separation wait and return */
1020 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1021 return (0);
1022 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1023 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1024
1025 /* if recon is blocked on the indicated parity stripe, issue a
1026 * block-wait request and return. this also must mark the indicated RU
1027 * in the stripe as under reconstruction if not blocked. */
1028 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1029 if (status == RF_PSS_RECON_BLOCKED) {
1030 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1031 goto out;
1032 } else
1033 if (status == RF_PSS_FORCED_ON_WRITE) {
1034 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1035 goto out;
1036 }
1037 /* make one last check to be sure that the indicated RU didn't get
1038 * reconstructed while we were waiting for something else to happen.
1039 * This is unfortunate in that it causes us to make this check twice
1040 * in the normal case. Might want to make some attempt to re-work
1041 * this so that we only do this check if we've definitely blocked on
1042 * one of the above checks. When this condition is detected, we may
1043 * have just created a bogus status entry, which we need to delete. */
1044 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1045 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1046 if (created)
1047 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1048 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1049 goto out;
1050 }
1051 /* found something to read. issue the I/O */
1052 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1053 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1054 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1055 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1056 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1057 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1058 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1059
1060 /* should be ok to use a NULL proc pointer here, all the bufs we use
1061 * should be in kernel space */
1062 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1063 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1064
1065 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1066
1067 ctrl->rbuf->arg = (void *) req;
1068 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1069 pssPtr->issued[col] = 1;
1070
1071 out:
1072 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1073 return (0);
1074 }
1075
1076
1077 /*
1078 * given a parity stripe ID, we want to find out whether both the
1079 * current disk and the failed disk exist in that parity stripe. If
1080 * not, we want to skip this whole PS. If so, we want to find the
1081 * disk offset of the start of the PS on both the current disk and the
1082 * failed disk.
1083 *
1084 * this works by getting a list of disks comprising the indicated
1085 * parity stripe, and searching the list for the current and failed
1086 * disks. Once we've decided they both exist in the parity stripe, we
1087 * need to decide whether each is data or parity, so that we'll know
1088 * which mapping function to call to get the corresponding disk
1089 * offsets.
1090 *
1091 * this is kind of unpleasant, but doing it this way allows the
1092 * reconstruction code to use parity stripe IDs rather than physical
1093 * disks address to march through the failed disk, which greatly
1094 * simplifies a lot of code, as well as eliminating the need for a
1095 * reverse-mapping function. I also think it will execute faster,
1096 * since the calls to the mapping module are kept to a minimum.
1097 *
1098 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1099 * THE STRIPE IN THE CORRECT ORDER */
1100
1101
1102 static int
1103 ComputePSDiskOffsets(
1104 RF_Raid_t * raidPtr, /* raid descriptor */
1105 RF_StripeNum_t psid, /* parity stripe identifier */
1106 RF_RowCol_t col, /* column of disk to find the offsets for */
1107 RF_SectorNum_t * outDiskOffset,
1108 RF_SectorNum_t * outFailedDiskSectorOffset,
1109 RF_RowCol_t * spCol, /* OUT: col of spare unit for failed unit */
1110 RF_SectorNum_t * spOffset)
1111 { /* OUT: offset into disk containing spare unit */
1112 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1113 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1114 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1115 RF_RowCol_t *diskids;
1116 u_int i, j, k, i_offset, j_offset;
1117 RF_RowCol_t pcol;
1118 int testcol;
1119 RF_SectorNum_t poffset;
1120 char i_is_parity = 0, j_is_parity = 0;
1121 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1122
1123 /* get a listing of the disks comprising that stripe */
1124 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1125 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1126 RF_ASSERT(diskids);
1127
1128 /* reject this entire parity stripe if it does not contain the
1129 * indicated disk or it does not contain the failed disk */
1130
1131 for (i = 0; i < stripeWidth; i++) {
1132 if (col == diskids[i])
1133 break;
1134 }
1135 if (i == stripeWidth)
1136 goto skipit;
1137 for (j = 0; j < stripeWidth; j++) {
1138 if (fcol == diskids[j])
1139 break;
1140 }
1141 if (j == stripeWidth) {
1142 goto skipit;
1143 }
1144 /* find out which disk the parity is on */
1145 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1146
1147 /* find out if either the current RU or the failed RU is parity */
1148 /* also, if the parity occurs in this stripe prior to the data and/or
1149 * failed col, we need to decrement i and/or j */
1150 for (k = 0; k < stripeWidth; k++)
1151 if (diskids[k] == pcol)
1152 break;
1153 RF_ASSERT(k < stripeWidth);
1154 i_offset = i;
1155 j_offset = j;
1156 if (k < i)
1157 i_offset--;
1158 else
1159 if (k == i) {
1160 i_is_parity = 1;
1161 i_offset = 0;
1162 } /* set offsets to zero to disable multiply
1163 * below */
1164 if (k < j)
1165 j_offset--;
1166 else
1167 if (k == j) {
1168 j_is_parity = 1;
1169 j_offset = 0;
1170 }
1171 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1172 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1173 * tells us how far into the stripe the [current,failed] disk is. */
1174
1175 /* call the mapping routine to get the offset into the current disk,
1176 * repeat for failed disk. */
1177 if (i_is_parity)
1178 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1179 else
1180 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1181
1182 RF_ASSERT(col == testcol);
1183
1184 if (j_is_parity)
1185 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1186 else
1187 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1188 RF_ASSERT(fcol == testcol);
1189
1190 /* now locate the spare unit for the failed unit */
1191 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1192 if (j_is_parity)
1193 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1194 else
1195 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1196 } else {
1197 *spCol = raidPtr->reconControl->spareCol;
1198 *spOffset = *outFailedDiskSectorOffset;
1199 }
1200
1201 return (0);
1202
1203 skipit:
1204 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1205 psid, col);
1206 return (1);
1207 }
1208 /* this is called when a buffer has become ready to write to the replacement disk */
1209 static int
1210 IssueNextWriteRequest(raidPtr)
1211 RF_Raid_t *raidPtr;
1212 {
1213 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1214 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1215 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1216 RF_ReconBuffer_t *rbuf;
1217 RF_DiskQueueData_t *req;
1218
1219 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1220 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1221 * have gotten the event that sent us here */
1222 RF_ASSERT(rbuf->pssPtr);
1223
1224 rbuf->pssPtr->writeRbuf = rbuf;
1225 rbuf->pssPtr = NULL;
1226
1227 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1228 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1229 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1230 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1231 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1232 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1233
1234 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1235 * kernel space */
1236 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1237 sectorsPerRU, rbuf->buffer,
1238 rbuf->parityStripeID, rbuf->which_ru,
1239 ReconWriteDoneProc, (void *) rbuf, NULL,
1240 &raidPtr->recon_tracerecs[fcol],
1241 (void *) raidPtr, 0, NULL);
1242
1243 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1244
1245 rbuf->arg = (void *) req;
1246 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1247
1248 return (0);
1249 }
1250
1251 /*
1252 * this gets called upon the completion of a reconstruction read
1253 * operation the arg is a pointer to the per-disk reconstruction
1254 * control structure for the process that just finished a read.
1255 *
1256 * called at interrupt context in the kernel, so don't do anything
1257 * illegal here.
1258 */
1259 static int
1260 ReconReadDoneProc(arg, status)
1261 void *arg;
1262 int status;
1263 {
1264 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1265 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1266
1267 if (status) {
1268 /*
1269 * XXX
1270 */
1271 printf("Recon read failed!\n");
1272 RF_PANIC();
1273 }
1274 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1275 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1276 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1277 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1278 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1279
1280 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1281 return (0);
1282 }
1283 /* this gets called upon the completion of a reconstruction write operation.
1284 * the arg is a pointer to the rbuf that was just written
1285 *
1286 * called at interrupt context in the kernel, so don't do anything illegal here.
1287 */
1288 static int
1289 ReconWriteDoneProc(arg, status)
1290 void *arg;
1291 int status;
1292 {
1293 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1294
1295 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1296 if (status) {
1297 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1298 * write failed!\n"); */
1299 RF_PANIC();
1300 }
1301 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1302 return (0);
1303 }
1304
1305
1306 /*
1307 * computes a new minimum head sep, and wakes up anyone who needs to
1308 * be woken as a result
1309 */
1310 static void
1311 CheckForNewMinHeadSep(raidPtr, hsCtr)
1312 RF_Raid_t *raidPtr;
1313 RF_HeadSepLimit_t hsCtr;
1314 {
1315 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1316 RF_HeadSepLimit_t new_min;
1317 RF_RowCol_t i;
1318 RF_CallbackDesc_t *p;
1319 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1320 * of a minimum */
1321
1322
1323 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1324
1325 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1326 for (i = 0; i < raidPtr->numCol; i++)
1327 if (i != reconCtrlPtr->fcol) {
1328 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1329 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1330 }
1331 /* set the new minimum and wake up anyone who can now run again */
1332 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1333 reconCtrlPtr->minHeadSepCounter = new_min;
1334 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1335 while (reconCtrlPtr->headSepCBList) {
1336 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1337 break;
1338 p = reconCtrlPtr->headSepCBList;
1339 reconCtrlPtr->headSepCBList = p->next;
1340 p->next = NULL;
1341 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1342 rf_FreeCallbackDesc(p);
1343 }
1344
1345 }
1346 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1347 }
1348
1349 /*
1350 * checks to see that the maximum head separation will not be violated
1351 * if we initiate a reconstruction I/O on the indicated disk.
1352 * Limiting the maximum head separation between two disks eliminates
1353 * the nasty buffer-stall conditions that occur when one disk races
1354 * ahead of the others and consumes all of the floating recon buffers.
1355 * This code is complex and unpleasant but it's necessary to avoid
1356 * some very nasty, albeit fairly rare, reconstruction behavior.
1357 *
1358 * returns non-zero if and only if we have to stop working on the
1359 * indicated disk due to a head-separation delay.
1360 */
1361 static int
1362 CheckHeadSeparation(
1363 RF_Raid_t * raidPtr,
1364 RF_PerDiskReconCtrl_t * ctrl,
1365 RF_RowCol_t col,
1366 RF_HeadSepLimit_t hsCtr,
1367 RF_ReconUnitNum_t which_ru)
1368 {
1369 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1370 RF_CallbackDesc_t *cb, *p, *pt;
1371 int retval = 0;
1372
1373 /* if we're too far ahead of the slowest disk, stop working on this
1374 * disk until the slower ones catch up. We do this by scheduling a
1375 * wakeup callback for the time when the slowest disk has caught up.
1376 * We define "caught up" with 20% hysteresis, i.e. the head separation
1377 * must have fallen to at most 80% of the max allowable head
1378 * separation before we'll wake up.
1379 *
1380 */
1381 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1382 if ((raidPtr->headSepLimit >= 0) &&
1383 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1384 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1385 raidPtr->raidid, col, ctrl->headSepCounter,
1386 reconCtrlPtr->minHeadSepCounter,
1387 raidPtr->headSepLimit);
1388 cb = rf_AllocCallbackDesc();
1389 /* the minHeadSepCounter value we have to get to before we'll
1390 * wake up. build in 20% hysteresis. */
1391 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1392 cb->col = col;
1393 cb->next = NULL;
1394
1395 /* insert this callback descriptor into the sorted list of
1396 * pending head-sep callbacks */
1397 p = reconCtrlPtr->headSepCBList;
1398 if (!p)
1399 reconCtrlPtr->headSepCBList = cb;
1400 else
1401 if (cb->callbackArg.v < p->callbackArg.v) {
1402 cb->next = reconCtrlPtr->headSepCBList;
1403 reconCtrlPtr->headSepCBList = cb;
1404 } else {
1405 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1406 cb->next = p;
1407 pt->next = cb;
1408 }
1409 retval = 1;
1410 #if RF_RECON_STATS > 0
1411 ctrl->reconCtrl->reconDesc->hsStallCount++;
1412 #endif /* RF_RECON_STATS > 0 */
1413 }
1414 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1415
1416 return (retval);
1417 }
1418 /*
1419 * checks to see if reconstruction has been either forced or blocked
1420 * by a user operation. if forced, we skip this RU entirely. else if
1421 * blocked, put ourselves on the wait list. else return 0.
1422 *
1423 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1424 */
1425 static int
1426 CheckForcedOrBlockedReconstruction(
1427 RF_Raid_t * raidPtr,
1428 RF_ReconParityStripeStatus_t * pssPtr,
1429 RF_PerDiskReconCtrl_t * ctrl,
1430 RF_RowCol_t col,
1431 RF_StripeNum_t psid,
1432 RF_ReconUnitNum_t which_ru)
1433 {
1434 RF_CallbackDesc_t *cb;
1435 int retcode = 0;
1436
1437 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1438 retcode = RF_PSS_FORCED_ON_WRITE;
1439 else
1440 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1441 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1442 cb = rf_AllocCallbackDesc(); /* append ourselves to
1443 * the blockage-wait
1444 * list */
1445 cb->col = col;
1446 cb->next = pssPtr->blockWaitList;
1447 pssPtr->blockWaitList = cb;
1448 retcode = RF_PSS_RECON_BLOCKED;
1449 }
1450 if (!retcode)
1451 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1452 * reconstruction */
1453
1454 return (retcode);
1455 }
1456 /*
1457 * if reconstruction is currently ongoing for the indicated stripeID,
1458 * reconstruction is forced to completion and we return non-zero to
1459 * indicate that the caller must wait. If not, then reconstruction is
1460 * blocked on the indicated stripe and the routine returns zero. If
1461 * and only if we return non-zero, we'll cause the cbFunc to get
1462 * invoked with the cbArg when the reconstruction has completed.
1463 */
1464 int
1465 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1466 RF_Raid_t *raidPtr;
1467 RF_AccessStripeMap_t *asmap;
1468 void (*cbFunc) (RF_Raid_t *, void *);
1469 void *cbArg;
1470 {
1471 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1472 * forcing recon on */
1473 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1474 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1475 * stripe status structure */
1476 RF_StripeNum_t psid; /* parity stripe id */
1477 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1478 * offset */
1479 RF_RowCol_t *diskids;
1480 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1481 RF_RowCol_t fcol, diskno, i;
1482 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1483 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1484 RF_CallbackDesc_t *cb;
1485 int created = 0, nPromoted;
1486
1487 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1488
1489 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1490
1491 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1492
1493 /* if recon is not ongoing on this PS, just return */
1494 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1495 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1496 return (0);
1497 }
1498 /* otherwise, we have to wait for reconstruction to complete on this
1499 * RU. */
1500 /* In order to avoid waiting for a potentially large number of
1501 * low-priority accesses to complete, we force a normal-priority (i.e.
1502 * not low-priority) reconstruction on this RU. */
1503 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1504 DDprintf1("Forcing recon on psid %ld\n", psid);
1505 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1506 * forced recon */
1507 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1508 * that we just set */
1509 fcol = raidPtr->reconControl->fcol;
1510
1511 /* get a listing of the disks comprising the indicated stripe */
1512 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1513
1514 /* For previously issued reads, elevate them to normal
1515 * priority. If the I/O has already completed, it won't be
1516 * found in the queue, and hence this will be a no-op. For
1517 * unissued reads, allocate buffers and issue new reads. The
1518 * fact that we've set the FORCED bit means that the regular
1519 * recon procs will not re-issue these reqs */
1520 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1521 if ((diskno = diskids[i]) != fcol) {
1522 if (pssPtr->issued[diskno]) {
1523 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1524 if (rf_reconDebug && nPromoted)
1525 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1526 } else {
1527 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1528 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1529 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1530 * location */
1531 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1532 new_rbuf->which_ru = which_ru;
1533 new_rbuf->failedDiskSectorOffset = fd_offset;
1534 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1535
1536 /* use NULL b_proc b/c all addrs
1537 * should be in kernel space */
1538 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1539 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1540 NULL, (void *) raidPtr, 0, NULL);
1541
1542 RF_ASSERT(req); /* XXX -- fix this --
1543 * XXX */
1544
1545 new_rbuf->arg = req;
1546 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1547 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1548 }
1549 }
1550 /* if the write is sitting in the disk queue, elevate its
1551 * priority */
1552 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1553 printf("raid%d: promoted write to col %d\n",
1554 raidPtr->raidid, fcol);
1555 }
1556 /* install a callback descriptor to be invoked when recon completes on
1557 * this parity stripe. */
1558 cb = rf_AllocCallbackDesc();
1559 /* XXX the following is bogus.. These functions don't really match!!
1560 * GO */
1561 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1562 cb->callbackArg.p = (void *) cbArg;
1563 cb->next = pssPtr->procWaitList;
1564 pssPtr->procWaitList = cb;
1565 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1566 raidPtr->raidid, psid);
1567
1568 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1569 return (1);
1570 }
1571 /* called upon the completion of a forced reconstruction read.
1572 * all we do is schedule the FORCEDREADONE event.
1573 * called at interrupt context in the kernel, so don't do anything illegal here.
1574 */
1575 static void
1576 ForceReconReadDoneProc(arg, status)
1577 void *arg;
1578 int status;
1579 {
1580 RF_ReconBuffer_t *rbuf = arg;
1581
1582 if (status) {
1583 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1584 * recon read
1585 * failed!\n"); */
1586 RF_PANIC();
1587 }
1588 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1589 }
1590 /* releases a block on the reconstruction of the indicated stripe */
1591 int
1592 rf_UnblockRecon(raidPtr, asmap)
1593 RF_Raid_t *raidPtr;
1594 RF_AccessStripeMap_t *asmap;
1595 {
1596 RF_StripeNum_t stripeID = asmap->stripeID;
1597 RF_ReconParityStripeStatus_t *pssPtr;
1598 RF_ReconUnitNum_t which_ru;
1599 RF_StripeNum_t psid;
1600 int created = 0;
1601 RF_CallbackDesc_t *cb;
1602
1603 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1604 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1605 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1606
1607 /* When recon is forced, the pss desc can get deleted before we get
1608 * back to unblock recon. But, this can _only_ happen when recon is
1609 * forced. It would be good to put some kind of sanity check here, but
1610 * how to decide if recon was just forced or not? */
1611 if (!pssPtr) {
1612 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1613 * RU %d\n",psid,which_ru); */
1614 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1615 if (rf_reconDebug || rf_pssDebug)
1616 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1617 #endif
1618 goto out;
1619 }
1620 pssPtr->blockCount--;
1621 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1622 raidPtr->raidid, psid, pssPtr->blockCount);
1623 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1624
1625 /* unblock recon before calling CauseReconEvent in case
1626 * CauseReconEvent causes us to try to issue a new read before
1627 * returning here. */
1628 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1629
1630
1631 while (pssPtr->blockWaitList) {
1632 /* spin through the block-wait list and
1633 release all the waiters */
1634 cb = pssPtr->blockWaitList;
1635 pssPtr->blockWaitList = cb->next;
1636 cb->next = NULL;
1637 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1638 rf_FreeCallbackDesc(cb);
1639 }
1640 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1641 /* if no recon was requested while recon was blocked */
1642 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1643 }
1644 }
1645 out:
1646 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1647 return (0);
1648 }
1649