rf_reconstruct.c revision 1.59 1 /* $NetBSD: rf_reconstruct.c,v 1.59 2003/12/29 05:58:34 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.59 2003/12/29 05:58:34 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105 int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115 RF_SectorNum_t * outFailedDiskSectorOffset,
116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125 RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129 RF_RowCol_t col, RF_StripeNum_t psid,
130 RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132
133 static void rf_ShutdownReconstruction(void *);
134
135 struct RF_ReconDoneProc_s {
136 void (*proc) (RF_Raid_t *, void *);
137 void *arg;
138 RF_ReconDoneProc_t *next;
139 };
140
141 /**************************************************************************
142 *
143 * sets up the parameters that will be used by the reconstruction process
144 * currently there are none, except for those that the layout-specific
145 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
146 *
147 * in the kernel, we fire off the recon thread.
148 *
149 **************************************************************************/
150 static void
151 rf_ShutdownReconstruction(ignored)
152 void *ignored;
153 {
154 pool_destroy(&rf_recond_pool);
155 }
156
157 int
158 rf_ConfigureReconstruction(listp)
159 RF_ShutdownList_t **listp;
160 {
161 int rc;
162
163 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
164 "rf_recond_pl", NULL);
165 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
166 if (rc) {
167 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
168 rf_ShutdownReconstruction(NULL);
169 return (rc);
170 }
171 return (0);
172 }
173
174 static RF_RaidReconDesc_t *
175 AllocRaidReconDesc(raidPtr, col, spareDiskPtr, numDisksDone, scol)
176 RF_Raid_t *raidPtr;
177 RF_RowCol_t col;
178 RF_RaidDisk_t *spareDiskPtr;
179 int numDisksDone;
180 RF_RowCol_t scol;
181 {
182
183 RF_RaidReconDesc_t *reconDesc;
184
185 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
186
187 reconDesc->raidPtr = raidPtr;
188 reconDesc->col = col;
189 reconDesc->spareDiskPtr = spareDiskPtr;
190 reconDesc->numDisksDone = numDisksDone;
191 reconDesc->scol = scol;
192 reconDesc->state = 0;
193 reconDesc->next = NULL;
194
195 return (reconDesc);
196 }
197
198 static void
199 FreeReconDesc(reconDesc)
200 RF_RaidReconDesc_t *reconDesc;
201 {
202 #if RF_RECON_STATS > 0
203 printf("raid%d: %lu recon event waits, %lu recon delays\n",
204 reconDesc->raidPtr->raidid,
205 (long) reconDesc->numReconEventWaits,
206 (long) reconDesc->numReconExecDelays);
207 #endif /* RF_RECON_STATS > 0 */
208 printf("raid%d: %lu max exec ticks\n",
209 reconDesc->raidPtr->raidid,
210 (long) reconDesc->maxReconExecTicks);
211 #if (RF_RECON_STATS > 0) || defined(KERNEL)
212 printf("\n");
213 #endif /* (RF_RECON_STATS > 0) || KERNEL */
214 pool_put(&rf_recond_pool, reconDesc);
215 }
216
217
218 /*****************************************************************************
219 *
220 * primary routine to reconstruct a failed disk. This should be called from
221 * within its own thread. It won't return until reconstruction completes,
222 * fails, or is aborted.
223 *****************************************************************************/
224 int
225 rf_ReconstructFailedDisk(raidPtr, col)
226 RF_Raid_t *raidPtr;
227 RF_RowCol_t col;
228 {
229 const RF_LayoutSW_t *lp;
230 int rc;
231
232 lp = raidPtr->Layout.map;
233 if (lp->SubmitReconBuffer) {
234 /*
235 * The current infrastructure only supports reconstructing one
236 * disk at a time for each array.
237 */
238 RF_LOCK_MUTEX(raidPtr->mutex);
239 while (raidPtr->reconInProgress) {
240 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
241 }
242 raidPtr->reconInProgress++;
243 RF_UNLOCK_MUTEX(raidPtr->mutex);
244 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
245 RF_LOCK_MUTEX(raidPtr->mutex);
246 raidPtr->reconInProgress--;
247 RF_UNLOCK_MUTEX(raidPtr->mutex);
248 } else {
249 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
250 lp->parityConfig);
251 rc = EIO;
252 }
253 RF_SIGNAL_COND(raidPtr->waitForReconCond);
254 return (rc);
255 }
256
257 int
258 rf_ReconstructFailedDiskBasic(raidPtr, col)
259 RF_Raid_t *raidPtr;
260 RF_RowCol_t col;
261 {
262 RF_ComponentLabel_t c_label;
263 RF_RaidDisk_t *spareDiskPtr = NULL;
264 RF_RaidReconDesc_t *reconDesc;
265 RF_RowCol_t scol;
266 int numDisksDone = 0, rc;
267
268 /* first look for a spare drive onto which to reconstruct the data */
269 /* spare disk descriptors are stored in row 0. This may have to
270 * change eventually */
271
272 RF_LOCK_MUTEX(raidPtr->mutex);
273 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
274
275 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
276 if (raidPtr->status != rf_rs_degraded) {
277 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279 return (EINVAL);
280 }
281 scol = (-1);
282 } else {
283 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
284 if (raidPtr->Disks[scol].status == rf_ds_spare) {
285 spareDiskPtr = &raidPtr->Disks[scol];
286 spareDiskPtr->status = rf_ds_used_spare;
287 break;
288 }
289 }
290 if (!spareDiskPtr) {
291 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
292 RF_UNLOCK_MUTEX(raidPtr->mutex);
293 return (ENOSPC);
294 }
295 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
296 }
297 RF_UNLOCK_MUTEX(raidPtr->mutex);
298
299 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
300 raidPtr->reconDesc = (void *) reconDesc;
301 #if RF_RECON_STATS > 0
302 reconDesc->hsStallCount = 0;
303 reconDesc->numReconExecDelays = 0;
304 reconDesc->numReconEventWaits = 0;
305 #endif /* RF_RECON_STATS > 0 */
306 reconDesc->reconExecTimerRunning = 0;
307 reconDesc->reconExecTicks = 0;
308 reconDesc->maxReconExecTicks = 0;
309 rc = rf_ContinueReconstructFailedDisk(reconDesc);
310
311 if (!rc) {
312 /* fix up the component label */
313 /* Don't actually need the read here.. */
314 raidread_component_label(
315 raidPtr->raid_cinfo[scol].ci_dev,
316 raidPtr->raid_cinfo[scol].ci_vp,
317 &c_label);
318
319 raid_init_component_label( raidPtr, &c_label);
320 c_label.row = 0;
321 c_label.column = col;
322 c_label.clean = RF_RAID_DIRTY;
323 c_label.status = rf_ds_optimal;
324 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
325
326 /* We've just done a rebuild based on all the other
327 disks, so at this point the parity is known to be
328 clean, even if it wasn't before. */
329
330 /* XXX doesn't hold for RAID 6!!*/
331
332 RF_LOCK_MUTEX(raidPtr->mutex);
333 raidPtr->parity_good = RF_RAID_CLEAN;
334 RF_UNLOCK_MUTEX(raidPtr->mutex);
335
336 /* XXXX MORE NEEDED HERE */
337
338 raidwrite_component_label(
339 raidPtr->raid_cinfo[scol].ci_dev,
340 raidPtr->raid_cinfo[scol].ci_vp,
341 &c_label);
342
343
344 rf_update_component_labels(raidPtr,
345 RF_NORMAL_COMPONENT_UPDATE);
346
347 }
348 return (rc);
349 }
350
351 /*
352
353 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
354 and you don't get a spare until the next Monday. With this function
355 (and hot-swappable drives) you can now put your new disk containing
356 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
357 rebuild the data "on the spot".
358
359 */
360
361 int
362 rf_ReconstructInPlace(raidPtr, col)
363 RF_Raid_t *raidPtr;
364 RF_RowCol_t col;
365 {
366 RF_RaidDisk_t *spareDiskPtr = NULL;
367 RF_RaidReconDesc_t *reconDesc;
368 const RF_LayoutSW_t *lp;
369 RF_ComponentLabel_t c_label;
370 int numDisksDone = 0, rc;
371 struct partinfo dpart;
372 struct vnode *vp;
373 struct vattr va;
374 struct proc *proc;
375 int retcode;
376 int ac;
377
378 lp = raidPtr->Layout.map;
379 if (lp->SubmitReconBuffer) {
380 /*
381 * The current infrastructure only supports reconstructing one
382 * disk at a time for each array.
383 */
384 RF_LOCK_MUTEX(raidPtr->mutex);
385
386 if (raidPtr->Disks[col].status != rf_ds_failed) {
387 /* "It's gone..." */
388 raidPtr->numFailures++;
389 raidPtr->Disks[col].status = rf_ds_failed;
390 raidPtr->status = rf_rs_degraded;
391 RF_UNLOCK_MUTEX(raidPtr->mutex);
392 rf_update_component_labels(raidPtr,
393 RF_NORMAL_COMPONENT_UPDATE);
394 RF_LOCK_MUTEX(raidPtr->mutex);
395 }
396
397 while (raidPtr->reconInProgress) {
398 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
399 }
400
401 raidPtr->reconInProgress++;
402
403
404 /* first look for a spare drive onto which to reconstruct
405 the data. spare disk descriptors are stored in row 0.
406 This may have to change eventually */
407
408 /* Actually, we don't care if it's failed or not...
409 On a RAID set with correct parity, this function
410 should be callable on any component without ill affects. */
411 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
412 */
413
414 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
415 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
416
417 raidPtr->reconInProgress--;
418 RF_UNLOCK_MUTEX(raidPtr->mutex);
419 return (EINVAL);
420 }
421
422 proc = raidPtr->engine_thread;
423
424 /* This device may have been opened successfully the
425 first time. Close it before trying to open it again.. */
426
427 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
428 #if 0
429 printf("Closed the open device: %s\n",
430 raidPtr->Disks[col].devname);
431 #endif
432 vp = raidPtr->raid_cinfo[col].ci_vp;
433 ac = raidPtr->Disks[col].auto_configured;
434 RF_UNLOCK_MUTEX(raidPtr->mutex);
435 rf_close_component(raidPtr, vp, ac);
436 RF_LOCK_MUTEX(raidPtr->mutex);
437 raidPtr->raid_cinfo[col].ci_vp = NULL;
438 }
439 /* note that this disk was *not* auto_configured (any longer)*/
440 raidPtr->Disks[col].auto_configured = 0;
441
442 #if 0
443 printf("About to (re-)open the device for rebuilding: %s\n",
444 raidPtr->Disks[col].devname);
445 #endif
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 retcode = raidlookup(raidPtr->Disks[col].devname,
448 proc, &vp);
449
450 if (retcode) {
451 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
452 raidPtr->Disks[col].devname, retcode);
453
454 /* the component isn't responding properly...
455 must be still dead :-( */
456 RF_LOCK_MUTEX(raidPtr->mutex);
457 raidPtr->reconInProgress--;
458 RF_UNLOCK_MUTEX(raidPtr->mutex);
459 return(retcode);
460
461 } else {
462
463 /* Ok, so we can at least do a lookup...
464 How about actually getting a vp for it? */
465
466 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
467 proc)) != 0) {
468 RF_LOCK_MUTEX(raidPtr->mutex);
469 raidPtr->reconInProgress--;
470 RF_UNLOCK_MUTEX(raidPtr->mutex);
471 return(retcode);
472 }
473 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart,
474 FREAD, proc->p_ucred, proc);
475 if (retcode) {
476 RF_LOCK_MUTEX(raidPtr->mutex);
477 raidPtr->reconInProgress--;
478 RF_UNLOCK_MUTEX(raidPtr->mutex);
479 return(retcode);
480 }
481 RF_LOCK_MUTEX(raidPtr->mutex);
482 raidPtr->Disks[col].blockSize =
483 dpart.disklab->d_secsize;
484
485 raidPtr->Disks[col].numBlocks =
486 dpart.part->p_size - rf_protectedSectors;
487
488 raidPtr->raid_cinfo[col].ci_vp = vp;
489 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
490
491 raidPtr->Disks[col].dev = va.va_rdev;
492
493 /* we allow the user to specify that only a
494 fraction of the disks should be used this is
495 just for debug: it speeds up
496 * the parity scan */
497 raidPtr->Disks[col].numBlocks =
498 raidPtr->Disks[col].numBlocks *
499 rf_sizePercentage / 100;
500 RF_UNLOCK_MUTEX(raidPtr->mutex);
501 }
502
503
504
505 spareDiskPtr = &raidPtr->Disks[col];
506 spareDiskPtr->status = rf_ds_used_spare;
507
508 printf("raid%d: initiating in-place reconstruction on column %d\n", raidPtr->raidid, col);
509
510 reconDesc = AllocRaidReconDesc((void *) raidPtr, col,
511 spareDiskPtr, numDisksDone,
512 col);
513 raidPtr->reconDesc = (void *) reconDesc;
514 #if RF_RECON_STATS > 0
515 reconDesc->hsStallCount = 0;
516 reconDesc->numReconExecDelays = 0;
517 reconDesc->numReconEventWaits = 0;
518 #endif /* RF_RECON_STATS > 0 */
519 reconDesc->reconExecTimerRunning = 0;
520 reconDesc->reconExecTicks = 0;
521 reconDesc->maxReconExecTicks = 0;
522 rc = rf_ContinueReconstructFailedDisk(reconDesc);
523
524 RF_LOCK_MUTEX(raidPtr->mutex);
525 raidPtr->reconInProgress--;
526 RF_UNLOCK_MUTEX(raidPtr->mutex);
527
528 } else {
529 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
530 lp->parityConfig);
531 rc = EIO;
532 }
533
534 if (!rc) {
535 RF_LOCK_MUTEX(raidPtr->mutex);
536 /* Need to set these here, as at this point it'll be claiming
537 that the disk is in rf_ds_spared! But we know better :-) */
538
539 raidPtr->Disks[col].status = rf_ds_optimal;
540 raidPtr->status = rf_rs_optimal;
541 RF_UNLOCK_MUTEX(raidPtr->mutex);
542
543 /* fix up the component label */
544 /* Don't actually need the read here.. */
545 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
546 raidPtr->raid_cinfo[col].ci_vp,
547 &c_label);
548
549 RF_LOCK_MUTEX(raidPtr->mutex);
550 raid_init_component_label(raidPtr, &c_label);
551
552 c_label.row = 0;
553 c_label.column = col;
554
555 /* We've just done a rebuild based on all the other
556 disks, so at this point the parity is known to be
557 clean, even if it wasn't before. */
558
559 /* XXX doesn't hold for RAID 6!!*/
560
561 raidPtr->parity_good = RF_RAID_CLEAN;
562 RF_UNLOCK_MUTEX(raidPtr->mutex);
563
564 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
565 raidPtr->raid_cinfo[col].ci_vp,
566 &c_label);
567
568 rf_update_component_labels(raidPtr,
569 RF_NORMAL_COMPONENT_UPDATE);
570
571 }
572 RF_SIGNAL_COND(raidPtr->waitForReconCond);
573 return (rc);
574 }
575
576
577 int
578 rf_ContinueReconstructFailedDisk(reconDesc)
579 RF_RaidReconDesc_t *reconDesc;
580 {
581 RF_Raid_t *raidPtr = reconDesc->raidPtr;
582 RF_RowCol_t col = reconDesc->col;
583 RF_RowCol_t scol = reconDesc->scol;
584 RF_ReconMap_t *mapPtr;
585 RF_ReconCtrl_t *tmp_reconctrl;
586 RF_ReconEvent_t *event;
587 struct timeval etime, elpsd;
588 unsigned long xor_s, xor_resid_us;
589 int i, ds;
590
591 switch (reconDesc->state) {
592
593
594 case 0:
595
596 raidPtr->accumXorTimeUs = 0;
597
598 /* create one trace record per physical disk */
599 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
600
601 /* quiesce the array prior to starting recon. this is needed
602 * to assure no nasty interactions with pending user writes.
603 * We need to do this before we change the disk or row status. */
604 reconDesc->state = 1;
605
606 Dprintf("RECON: begin request suspend\n");
607 rf_SuspendNewRequestsAndWait(raidPtr);
608 Dprintf("RECON: end request suspend\n");
609 rf_StartUserStats(raidPtr); /* zero out the stats kept on
610 * user accs */
611
612 /* fall through to state 1 */
613
614 case 1:
615
616 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
617 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
618
619 RF_LOCK_MUTEX(raidPtr->mutex);
620
621 /* create the reconstruction control pointer and install it in
622 * the right slot */
623 raidPtr->reconControl = tmp_reconctrl;
624 mapPtr = raidPtr->reconControl->reconMap;
625 raidPtr->status = rf_rs_reconstructing;
626 raidPtr->Disks[col].status = rf_ds_reconstructing;
627 raidPtr->Disks[col].spareCol = scol;
628
629 RF_UNLOCK_MUTEX(raidPtr->mutex);
630
631 RF_GETTIME(raidPtr->reconControl->starttime);
632
633 /* now start up the actual reconstruction: issue a read for
634 * each surviving disk */
635
636 reconDesc->numDisksDone = 0;
637 for (i = 0; i < raidPtr->numCol; i++) {
638 if (i != col) {
639 /* find and issue the next I/O on the
640 * indicated disk */
641 if (IssueNextReadRequest(raidPtr, i)) {
642 Dprintf1("RECON: done issuing for c%d\n", i);
643 reconDesc->numDisksDone++;
644 }
645 }
646 }
647
648 case 2:
649 Dprintf("RECON: resume requests\n");
650 rf_ResumeNewRequests(raidPtr);
651
652
653 reconDesc->state = 3;
654
655 case 3:
656
657 /* process reconstruction events until all disks report that
658 * they've completed all work */
659 mapPtr = raidPtr->reconControl->reconMap;
660
661
662
663 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
664
665 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
666 RF_ASSERT(event);
667
668 if (ProcessReconEvent(raidPtr, event))
669 reconDesc->numDisksDone++;
670 raidPtr->reconControl->numRUsTotal =
671 mapPtr->totalRUs;
672 raidPtr->reconControl->numRUsComplete =
673 mapPtr->totalRUs -
674 rf_UnitsLeftToReconstruct(mapPtr);
675
676 raidPtr->reconControl->percentComplete =
677 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
678 #if RF_DEBUG_RECON
679 if (rf_prReconSched) {
680 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
681 }
682 #endif
683 }
684
685
686
687 reconDesc->state = 4;
688
689
690 case 4:
691 mapPtr = raidPtr->reconControl->reconMap;
692 if (rf_reconDebug) {
693 printf("RECON: all reads completed\n");
694 }
695 /* at this point all the reads have completed. We now wait
696 * for any pending writes to complete, and then we're done */
697
698 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
699
700 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
701 RF_ASSERT(event);
702
703 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
704 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
705 #if RF_DEBUG_RECON
706 if (rf_prReconSched) {
707 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
708 }
709 #endif
710 }
711 reconDesc->state = 5;
712
713 case 5:
714 /* Success: mark the dead disk as reconstructed. We quiesce
715 * the array here to assure no nasty interactions with pending
716 * user accesses when we free up the psstatus structure as
717 * part of FreeReconControl() */
718
719 reconDesc->state = 6;
720
721 rf_SuspendNewRequestsAndWait(raidPtr);
722 rf_StopUserStats(raidPtr);
723 rf_PrintUserStats(raidPtr); /* print out the stats on user
724 * accs accumulated during
725 * recon */
726
727 /* fall through to state 6 */
728 case 6:
729
730
731
732 RF_LOCK_MUTEX(raidPtr->mutex);
733 raidPtr->numFailures--;
734 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
735 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
736 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
737 RF_UNLOCK_MUTEX(raidPtr->mutex);
738 RF_GETTIME(etime);
739 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
740
741 /* XXX -- why is state 7 different from state 6 if there is no
742 * return() here? -- XXX Note that I set elpsd above & use it
743 * below, so if you put a return here you'll have to fix this.
744 * (also, FreeReconControl is called below) */
745
746 case 7:
747
748 rf_ResumeNewRequests(raidPtr);
749
750 printf("raid%d: Reconstruction of disk at col %d completed\n",
751 raidPtr->raidid, col);
752 xor_s = raidPtr->accumXorTimeUs / 1000000;
753 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
754 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
755 raidPtr->raidid,
756 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
757 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
758 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
759 raidPtr->raidid,
760 (int) raidPtr->reconControl->starttime.tv_sec,
761 (int) raidPtr->reconControl->starttime.tv_usec,
762 (int) etime.tv_sec, (int) etime.tv_usec);
763
764 #if RF_RECON_STATS > 0
765 printf("raid%d: Total head-sep stall count was %d\n",
766 raidPtr->raidid, (int) reconDesc->hsStallCount);
767 #endif /* RF_RECON_STATS > 0 */
768 rf_FreeReconControl(raidPtr);
769 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
770 FreeReconDesc(reconDesc);
771
772 }
773
774 return (0);
775 }
776 /*****************************************************************************
777 * do the right thing upon each reconstruction event.
778 * returns nonzero if and only if there is nothing left unread on the
779 * indicated disk
780 *****************************************************************************/
781 static int
782 ProcessReconEvent(raidPtr, event)
783 RF_Raid_t *raidPtr;
784 RF_ReconEvent_t *event;
785 {
786 int retcode = 0, submitblocked;
787 RF_ReconBuffer_t *rbuf;
788 RF_SectorCount_t sectorsPerRU;
789
790 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
791 switch (event->type) {
792
793 /* a read I/O has completed */
794 case RF_REVENT_READDONE:
795 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
796 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
797 event->col, rbuf->parityStripeID);
798 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
799 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
800 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
801 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
802 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
803 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
804 if (!submitblocked)
805 retcode = IssueNextReadRequest(raidPtr, event->col);
806 break;
807
808 /* a write I/O has completed */
809 case RF_REVENT_WRITEDONE:
810 #if RF_DEBUG_RECON
811 if (rf_floatingRbufDebug) {
812 rf_CheckFloatingRbufCount(raidPtr, 1);
813 }
814 #endif
815 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
816 rbuf = (RF_ReconBuffer_t *) event->arg;
817 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
818 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
819 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
820 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
821 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
822 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
823
824 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
825 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
826 raidPtr->numFullReconBuffers--;
827 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
828 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
829 } else
830 if (rbuf->type == RF_RBUF_TYPE_FORCED)
831 rf_FreeReconBuffer(rbuf);
832 else
833 RF_ASSERT(0);
834 break;
835
836 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
837 * cleared */
838 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
839 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
840 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
841 * BUFCLEAR event if we
842 * couldn't submit */
843 retcode = IssueNextReadRequest(raidPtr, event->col);
844 break;
845
846 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
847 * blockage has been cleared */
848 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
849 retcode = TryToRead(raidPtr, event->col);
850 break;
851
852 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
853 * reconstruction blockage has been
854 * cleared */
855 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
856 retcode = TryToRead(raidPtr, event->col);
857 break;
858
859 /* a buffer has become ready to write */
860 case RF_REVENT_BUFREADY:
861 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
862 retcode = IssueNextWriteRequest(raidPtr);
863 #if RF_DEBUG_RECON
864 if (rf_floatingRbufDebug) {
865 rf_CheckFloatingRbufCount(raidPtr, 1);
866 }
867 #endif
868 break;
869
870 /* we need to skip the current RU entirely because it got
871 * recon'd while we were waiting for something else to happen */
872 case RF_REVENT_SKIP:
873 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
874 retcode = IssueNextReadRequest(raidPtr, event->col);
875 break;
876
877 /* a forced-reconstruction read access has completed. Just
878 * submit the buffer */
879 case RF_REVENT_FORCEDREADDONE:
880 rbuf = (RF_ReconBuffer_t *) event->arg;
881 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
882 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
883 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
884 RF_ASSERT(!submitblocked);
885 break;
886
887 default:
888 RF_PANIC();
889 }
890 rf_FreeReconEventDesc(event);
891 return (retcode);
892 }
893 /*****************************************************************************
894 *
895 * find the next thing that's needed on the indicated disk, and issue
896 * a read request for it. We assume that the reconstruction buffer
897 * associated with this process is free to receive the data. If
898 * reconstruction is blocked on the indicated RU, we issue a
899 * blockage-release request instead of a physical disk read request.
900 * If the current disk gets too far ahead of the others, we issue a
901 * head-separation wait request and return.
902 *
903 * ctrl->{ru_count, curPSID, diskOffset} and
904 * rbuf->failedDiskSectorOffset are maintained to point to the unit
905 * we're currently accessing. Note that this deviates from the
906 * standard C idiom of having counters point to the next thing to be
907 * accessed. This allows us to easily retry when we're blocked by
908 * head separation or reconstruction-blockage events.
909 *
910 * returns nonzero if and only if there is nothing left unread on the
911 * indicated disk
912 *
913 *****************************************************************************/
914 static int
915 IssueNextReadRequest(raidPtr, col)
916 RF_Raid_t *raidPtr;
917 RF_RowCol_t col;
918 {
919 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
920 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
921 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
922 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
923 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
924 int do_new_check = 0, retcode = 0, status;
925
926 /* if we are currently the slowest disk, mark that we have to do a new
927 * check */
928 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
929 do_new_check = 1;
930
931 while (1) {
932
933 ctrl->ru_count++;
934 if (ctrl->ru_count < RUsPerPU) {
935 ctrl->diskOffset += sectorsPerRU;
936 rbuf->failedDiskSectorOffset += sectorsPerRU;
937 } else {
938 ctrl->curPSID++;
939 ctrl->ru_count = 0;
940 /* code left over from when head-sep was based on
941 * parity stripe id */
942 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
943 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
944 return (1); /* finito! */
945 }
946 /* find the disk offsets of the start of the parity
947 * stripe on both the current disk and the failed
948 * disk. skip this entire parity stripe if either disk
949 * does not appear in the indicated PS */
950 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
951 &rbuf->spCol, &rbuf->spOffset);
952 if (status) {
953 ctrl->ru_count = RUsPerPU - 1;
954 continue;
955 }
956 }
957 rbuf->which_ru = ctrl->ru_count;
958
959 /* skip this RU if it's already been reconstructed */
960 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
961 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
962 continue;
963 }
964 break;
965 }
966 ctrl->headSepCounter++;
967 if (do_new_check)
968 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
969
970
971 /* at this point, we have definitely decided what to do, and we have
972 * only to see if we can actually do it now */
973 rbuf->parityStripeID = ctrl->curPSID;
974 rbuf->which_ru = ctrl->ru_count;
975 memset((char *) &raidPtr->recon_tracerecs[col], 0,
976 sizeof(raidPtr->recon_tracerecs[col]));
977 raidPtr->recon_tracerecs[col].reconacc = 1;
978 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
979 retcode = TryToRead(raidPtr, col);
980 return (retcode);
981 }
982
983 /*
984 * tries to issue the next read on the indicated disk. We may be
985 * blocked by (a) the heads being too far apart, or (b) recon on the
986 * indicated RU being blocked due to a write by a user thread. In
987 * this case, we issue a head-sep or blockage wait request, which will
988 * cause this same routine to be invoked again later when the blockage
989 * has cleared.
990 */
991
992 static int
993 TryToRead(raidPtr, col)
994 RF_Raid_t *raidPtr;
995 RF_RowCol_t col;
996 {
997 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
998 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
999 RF_StripeNum_t psid = ctrl->curPSID;
1000 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1001 RF_DiskQueueData_t *req;
1002 int status, created = 0;
1003 RF_ReconParityStripeStatus_t *pssPtr;
1004
1005 /* if the current disk is too far ahead of the others, issue a
1006 * head-separation wait and return */
1007 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1008 return (0);
1009 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1010 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
1011
1012 /* if recon is blocked on the indicated parity stripe, issue a
1013 * block-wait request and return. this also must mark the indicated RU
1014 * in the stripe as under reconstruction if not blocked. */
1015 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1016 if (status == RF_PSS_RECON_BLOCKED) {
1017 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1018 goto out;
1019 } else
1020 if (status == RF_PSS_FORCED_ON_WRITE) {
1021 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1022 goto out;
1023 }
1024 /* make one last check to be sure that the indicated RU didn't get
1025 * reconstructed while we were waiting for something else to happen.
1026 * This is unfortunate in that it causes us to make this check twice
1027 * in the normal case. Might want to make some attempt to re-work
1028 * this so that we only do this check if we've definitely blocked on
1029 * one of the above checks. When this condition is detected, we may
1030 * have just created a bogus status entry, which we need to delete. */
1031 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1032 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1033 if (created)
1034 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1035 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1036 goto out;
1037 }
1038 /* found something to read. issue the I/O */
1039 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1040 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1041 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1042 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1043 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1044 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1045 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1046
1047 /* should be ok to use a NULL proc pointer here, all the bufs we use
1048 * should be in kernel space */
1049 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1050 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1051
1052 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1053
1054 ctrl->rbuf->arg = (void *) req;
1055 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1056 pssPtr->issued[col] = 1;
1057
1058 out:
1059 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1060 return (0);
1061 }
1062
1063
1064 /*
1065 * given a parity stripe ID, we want to find out whether both the
1066 * current disk and the failed disk exist in that parity stripe. If
1067 * not, we want to skip this whole PS. If so, we want to find the
1068 * disk offset of the start of the PS on both the current disk and the
1069 * failed disk.
1070 *
1071 * this works by getting a list of disks comprising the indicated
1072 * parity stripe, and searching the list for the current and failed
1073 * disks. Once we've decided they both exist in the parity stripe, we
1074 * need to decide whether each is data or parity, so that we'll know
1075 * which mapping function to call to get the corresponding disk
1076 * offsets.
1077 *
1078 * this is kind of unpleasant, but doing it this way allows the
1079 * reconstruction code to use parity stripe IDs rather than physical
1080 * disks address to march through the failed disk, which greatly
1081 * simplifies a lot of code, as well as eliminating the need for a
1082 * reverse-mapping function. I also think it will execute faster,
1083 * since the calls to the mapping module are kept to a minimum.
1084 *
1085 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1086 * THE STRIPE IN THE CORRECT ORDER */
1087
1088
1089 static int
1090 ComputePSDiskOffsets(
1091 RF_Raid_t * raidPtr, /* raid descriptor */
1092 RF_StripeNum_t psid, /* parity stripe identifier */
1093 RF_RowCol_t col, /* column of disk to find the offsets for */
1094 RF_SectorNum_t * outDiskOffset,
1095 RF_SectorNum_t * outFailedDiskSectorOffset,
1096 RF_RowCol_t * spCol, /* OUT: col of spare unit for failed unit */
1097 RF_SectorNum_t * spOffset)
1098 { /* OUT: offset into disk containing spare unit */
1099 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1100 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1101 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1102 RF_RowCol_t *diskids;
1103 u_int i, j, k, i_offset, j_offset;
1104 RF_RowCol_t pcol;
1105 int testcol;
1106 RF_SectorNum_t poffset;
1107 char i_is_parity = 0, j_is_parity = 0;
1108 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1109
1110 /* get a listing of the disks comprising that stripe */
1111 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1112 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1113 RF_ASSERT(diskids);
1114
1115 /* reject this entire parity stripe if it does not contain the
1116 * indicated disk or it does not contain the failed disk */
1117
1118 for (i = 0; i < stripeWidth; i++) {
1119 if (col == diskids[i])
1120 break;
1121 }
1122 if (i == stripeWidth)
1123 goto skipit;
1124 for (j = 0; j < stripeWidth; j++) {
1125 if (fcol == diskids[j])
1126 break;
1127 }
1128 if (j == stripeWidth) {
1129 goto skipit;
1130 }
1131 /* find out which disk the parity is on */
1132 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1133
1134 /* find out if either the current RU or the failed RU is parity */
1135 /* also, if the parity occurs in this stripe prior to the data and/or
1136 * failed col, we need to decrement i and/or j */
1137 for (k = 0; k < stripeWidth; k++)
1138 if (diskids[k] == pcol)
1139 break;
1140 RF_ASSERT(k < stripeWidth);
1141 i_offset = i;
1142 j_offset = j;
1143 if (k < i)
1144 i_offset--;
1145 else
1146 if (k == i) {
1147 i_is_parity = 1;
1148 i_offset = 0;
1149 } /* set offsets to zero to disable multiply
1150 * below */
1151 if (k < j)
1152 j_offset--;
1153 else
1154 if (k == j) {
1155 j_is_parity = 1;
1156 j_offset = 0;
1157 }
1158 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1159 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1160 * tells us how far into the stripe the [current,failed] disk is. */
1161
1162 /* call the mapping routine to get the offset into the current disk,
1163 * repeat for failed disk. */
1164 if (i_is_parity)
1165 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1166 else
1167 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1168
1169 RF_ASSERT(col == testcol);
1170
1171 if (j_is_parity)
1172 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1173 else
1174 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1175 RF_ASSERT(fcol == testcol);
1176
1177 /* now locate the spare unit for the failed unit */
1178 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1179 if (j_is_parity)
1180 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1181 else
1182 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1183 } else {
1184 *spCol = raidPtr->reconControl->spareCol;
1185 *spOffset = *outFailedDiskSectorOffset;
1186 }
1187
1188 return (0);
1189
1190 skipit:
1191 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1192 psid, col);
1193 return (1);
1194 }
1195 /* this is called when a buffer has become ready to write to the replacement disk */
1196 static int
1197 IssueNextWriteRequest(raidPtr)
1198 RF_Raid_t *raidPtr;
1199 {
1200 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1201 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1202 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1203 RF_ReconBuffer_t *rbuf;
1204 RF_DiskQueueData_t *req;
1205
1206 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1207 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1208 * have gotten the event that sent us here */
1209 RF_ASSERT(rbuf->pssPtr);
1210
1211 rbuf->pssPtr->writeRbuf = rbuf;
1212 rbuf->pssPtr = NULL;
1213
1214 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1215 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1216 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1217 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1218 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1219 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1220
1221 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1222 * kernel space */
1223 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1224 sectorsPerRU, rbuf->buffer,
1225 rbuf->parityStripeID, rbuf->which_ru,
1226 ReconWriteDoneProc, (void *) rbuf, NULL,
1227 &raidPtr->recon_tracerecs[fcol],
1228 (void *) raidPtr, 0, NULL);
1229
1230 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1231
1232 rbuf->arg = (void *) req;
1233 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1234
1235 return (0);
1236 }
1237
1238 /*
1239 * this gets called upon the completion of a reconstruction read
1240 * operation the arg is a pointer to the per-disk reconstruction
1241 * control structure for the process that just finished a read.
1242 *
1243 * called at interrupt context in the kernel, so don't do anything
1244 * illegal here.
1245 */
1246 static int
1247 ReconReadDoneProc(arg, status)
1248 void *arg;
1249 int status;
1250 {
1251 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1252 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1253
1254 if (status) {
1255 /*
1256 * XXX
1257 */
1258 printf("Recon read failed!\n");
1259 RF_PANIC();
1260 }
1261 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1262 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1263 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1264 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1265 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1266
1267 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1268 return (0);
1269 }
1270 /* this gets called upon the completion of a reconstruction write operation.
1271 * the arg is a pointer to the rbuf that was just written
1272 *
1273 * called at interrupt context in the kernel, so don't do anything illegal here.
1274 */
1275 static int
1276 ReconWriteDoneProc(arg, status)
1277 void *arg;
1278 int status;
1279 {
1280 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1281
1282 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1283 if (status) {
1284 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1285 * write failed!\n"); */
1286 RF_PANIC();
1287 }
1288 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1289 return (0);
1290 }
1291
1292
1293 /*
1294 * computes a new minimum head sep, and wakes up anyone who needs to
1295 * be woken as a result
1296 */
1297 static void
1298 CheckForNewMinHeadSep(raidPtr, hsCtr)
1299 RF_Raid_t *raidPtr;
1300 RF_HeadSepLimit_t hsCtr;
1301 {
1302 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1303 RF_HeadSepLimit_t new_min;
1304 RF_RowCol_t i;
1305 RF_CallbackDesc_t *p;
1306 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1307 * of a minimum */
1308
1309
1310 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1311
1312 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1313 for (i = 0; i < raidPtr->numCol; i++)
1314 if (i != reconCtrlPtr->fcol) {
1315 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1316 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1317 }
1318 /* set the new minimum and wake up anyone who can now run again */
1319 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1320 reconCtrlPtr->minHeadSepCounter = new_min;
1321 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1322 while (reconCtrlPtr->headSepCBList) {
1323 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1324 break;
1325 p = reconCtrlPtr->headSepCBList;
1326 reconCtrlPtr->headSepCBList = p->next;
1327 p->next = NULL;
1328 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1329 rf_FreeCallbackDesc(p);
1330 }
1331
1332 }
1333 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1334 }
1335
1336 /*
1337 * checks to see that the maximum head separation will not be violated
1338 * if we initiate a reconstruction I/O on the indicated disk.
1339 * Limiting the maximum head separation between two disks eliminates
1340 * the nasty buffer-stall conditions that occur when one disk races
1341 * ahead of the others and consumes all of the floating recon buffers.
1342 * This code is complex and unpleasant but it's necessary to avoid
1343 * some very nasty, albeit fairly rare, reconstruction behavior.
1344 *
1345 * returns non-zero if and only if we have to stop working on the
1346 * indicated disk due to a head-separation delay.
1347 */
1348 static int
1349 CheckHeadSeparation(
1350 RF_Raid_t * raidPtr,
1351 RF_PerDiskReconCtrl_t * ctrl,
1352 RF_RowCol_t col,
1353 RF_HeadSepLimit_t hsCtr,
1354 RF_ReconUnitNum_t which_ru)
1355 {
1356 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1357 RF_CallbackDesc_t *cb, *p, *pt;
1358 int retval = 0;
1359
1360 /* if we're too far ahead of the slowest disk, stop working on this
1361 * disk until the slower ones catch up. We do this by scheduling a
1362 * wakeup callback for the time when the slowest disk has caught up.
1363 * We define "caught up" with 20% hysteresis, i.e. the head separation
1364 * must have fallen to at most 80% of the max allowable head
1365 * separation before we'll wake up.
1366 *
1367 */
1368 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1369 if ((raidPtr->headSepLimit >= 0) &&
1370 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1371 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1372 raidPtr->raidid, col, ctrl->headSepCounter,
1373 reconCtrlPtr->minHeadSepCounter,
1374 raidPtr->headSepLimit);
1375 cb = rf_AllocCallbackDesc();
1376 /* the minHeadSepCounter value we have to get to before we'll
1377 * wake up. build in 20% hysteresis. */
1378 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1379 cb->col = col;
1380 cb->next = NULL;
1381
1382 /* insert this callback descriptor into the sorted list of
1383 * pending head-sep callbacks */
1384 p = reconCtrlPtr->headSepCBList;
1385 if (!p)
1386 reconCtrlPtr->headSepCBList = cb;
1387 else
1388 if (cb->callbackArg.v < p->callbackArg.v) {
1389 cb->next = reconCtrlPtr->headSepCBList;
1390 reconCtrlPtr->headSepCBList = cb;
1391 } else {
1392 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1393 cb->next = p;
1394 pt->next = cb;
1395 }
1396 retval = 1;
1397 #if RF_RECON_STATS > 0
1398 ctrl->reconCtrl->reconDesc->hsStallCount++;
1399 #endif /* RF_RECON_STATS > 0 */
1400 }
1401 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1402
1403 return (retval);
1404 }
1405 /*
1406 * checks to see if reconstruction has been either forced or blocked
1407 * by a user operation. if forced, we skip this RU entirely. else if
1408 * blocked, put ourselves on the wait list. else return 0.
1409 *
1410 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1411 */
1412 static int
1413 CheckForcedOrBlockedReconstruction(
1414 RF_Raid_t * raidPtr,
1415 RF_ReconParityStripeStatus_t * pssPtr,
1416 RF_PerDiskReconCtrl_t * ctrl,
1417 RF_RowCol_t col,
1418 RF_StripeNum_t psid,
1419 RF_ReconUnitNum_t which_ru)
1420 {
1421 RF_CallbackDesc_t *cb;
1422 int retcode = 0;
1423
1424 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1425 retcode = RF_PSS_FORCED_ON_WRITE;
1426 else
1427 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1428 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1429 cb = rf_AllocCallbackDesc(); /* append ourselves to
1430 * the blockage-wait
1431 * list */
1432 cb->col = col;
1433 cb->next = pssPtr->blockWaitList;
1434 pssPtr->blockWaitList = cb;
1435 retcode = RF_PSS_RECON_BLOCKED;
1436 }
1437 if (!retcode)
1438 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1439 * reconstruction */
1440
1441 return (retcode);
1442 }
1443 /*
1444 * if reconstruction is currently ongoing for the indicated stripeID,
1445 * reconstruction is forced to completion and we return non-zero to
1446 * indicate that the caller must wait. If not, then reconstruction is
1447 * blocked on the indicated stripe and the routine returns zero. If
1448 * and only if we return non-zero, we'll cause the cbFunc to get
1449 * invoked with the cbArg when the reconstruction has completed.
1450 */
1451 int
1452 rf_ForceOrBlockRecon(raidPtr, asmap, cbFunc, cbArg)
1453 RF_Raid_t *raidPtr;
1454 RF_AccessStripeMap_t *asmap;
1455 void (*cbFunc) (RF_Raid_t *, void *);
1456 void *cbArg;
1457 {
1458 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1459 * forcing recon on */
1460 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1461 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1462 * stripe status structure */
1463 RF_StripeNum_t psid; /* parity stripe id */
1464 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1465 * offset */
1466 RF_RowCol_t *diskids;
1467 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1468 RF_RowCol_t fcol, diskno, i;
1469 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1470 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1471 RF_CallbackDesc_t *cb;
1472 int created = 0, nPromoted;
1473
1474 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1475
1476 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1477
1478 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1479
1480 /* if recon is not ongoing on this PS, just return */
1481 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1482 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1483 return (0);
1484 }
1485 /* otherwise, we have to wait for reconstruction to complete on this
1486 * RU. */
1487 /* In order to avoid waiting for a potentially large number of
1488 * low-priority accesses to complete, we force a normal-priority (i.e.
1489 * not low-priority) reconstruction on this RU. */
1490 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1491 DDprintf1("Forcing recon on psid %ld\n", psid);
1492 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1493 * forced recon */
1494 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1495 * that we just set */
1496 fcol = raidPtr->reconControl->fcol;
1497
1498 /* get a listing of the disks comprising the indicated stripe */
1499 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1500
1501 /* For previously issued reads, elevate them to normal
1502 * priority. If the I/O has already completed, it won't be
1503 * found in the queue, and hence this will be a no-op. For
1504 * unissued reads, allocate buffers and issue new reads. The
1505 * fact that we've set the FORCED bit means that the regular
1506 * recon procs will not re-issue these reqs */
1507 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1508 if ((diskno = diskids[i]) != fcol) {
1509 if (pssPtr->issued[diskno]) {
1510 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1511 if (rf_reconDebug && nPromoted)
1512 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1513 } else {
1514 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1515 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1516 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1517 * location */
1518 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1519 new_rbuf->which_ru = which_ru;
1520 new_rbuf->failedDiskSectorOffset = fd_offset;
1521 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1522
1523 /* use NULL b_proc b/c all addrs
1524 * should be in kernel space */
1525 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1526 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1527 NULL, (void *) raidPtr, 0, NULL);
1528
1529 RF_ASSERT(req); /* XXX -- fix this --
1530 * XXX */
1531
1532 new_rbuf->arg = req;
1533 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1534 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1535 }
1536 }
1537 /* if the write is sitting in the disk queue, elevate its
1538 * priority */
1539 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1540 printf("raid%d: promoted write to col %d\n",
1541 raidPtr->raidid, fcol);
1542 }
1543 /* install a callback descriptor to be invoked when recon completes on
1544 * this parity stripe. */
1545 cb = rf_AllocCallbackDesc();
1546 /* XXX the following is bogus.. These functions don't really match!!
1547 * GO */
1548 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1549 cb->callbackArg.p = (void *) cbArg;
1550 cb->next = pssPtr->procWaitList;
1551 pssPtr->procWaitList = cb;
1552 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1553 raidPtr->raidid, psid);
1554
1555 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1556 return (1);
1557 }
1558 /* called upon the completion of a forced reconstruction read.
1559 * all we do is schedule the FORCEDREADONE event.
1560 * called at interrupt context in the kernel, so don't do anything illegal here.
1561 */
1562 static void
1563 ForceReconReadDoneProc(arg, status)
1564 void *arg;
1565 int status;
1566 {
1567 RF_ReconBuffer_t *rbuf = arg;
1568
1569 if (status) {
1570 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1571 * recon read
1572 * failed!\n"); */
1573 RF_PANIC();
1574 }
1575 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1576 }
1577 /* releases a block on the reconstruction of the indicated stripe */
1578 int
1579 rf_UnblockRecon(raidPtr, asmap)
1580 RF_Raid_t *raidPtr;
1581 RF_AccessStripeMap_t *asmap;
1582 {
1583 RF_StripeNum_t stripeID = asmap->stripeID;
1584 RF_ReconParityStripeStatus_t *pssPtr;
1585 RF_ReconUnitNum_t which_ru;
1586 RF_StripeNum_t psid;
1587 int created = 0;
1588 RF_CallbackDesc_t *cb;
1589
1590 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1591 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1592 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1593
1594 /* When recon is forced, the pss desc can get deleted before we get
1595 * back to unblock recon. But, this can _only_ happen when recon is
1596 * forced. It would be good to put some kind of sanity check here, but
1597 * how to decide if recon was just forced or not? */
1598 if (!pssPtr) {
1599 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1600 * RU %d\n",psid,which_ru); */
1601 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1602 if (rf_reconDebug || rf_pssDebug)
1603 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1604 #endif
1605 goto out;
1606 }
1607 pssPtr->blockCount--;
1608 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1609 raidPtr->raidid, psid, pssPtr->blockCount);
1610 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1611
1612 /* unblock recon before calling CauseReconEvent in case
1613 * CauseReconEvent causes us to try to issue a new read before
1614 * returning here. */
1615 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1616
1617
1618 while (pssPtr->blockWaitList) {
1619 /* spin through the block-wait list and
1620 release all the waiters */
1621 cb = pssPtr->blockWaitList;
1622 pssPtr->blockWaitList = cb->next;
1623 cb->next = NULL;
1624 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1625 rf_FreeCallbackDesc(cb);
1626 }
1627 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1628 /* if no recon was requested while recon was blocked */
1629 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1630 }
1631 }
1632 out:
1633 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1634 return (0);
1635 }
1636