rf_reconstruct.c revision 1.60 1 /* $NetBSD: rf_reconstruct.c,v 1.60 2003/12/30 21:59:03 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.60 2003/12/30 21:59:03 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105 int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115 RF_SectorNum_t * outFailedDiskSectorOffset,
116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125 RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129 RF_RowCol_t col, RF_StripeNum_t psid,
130 RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132
133 static void rf_ShutdownReconstruction(void *);
134
135 struct RF_ReconDoneProc_s {
136 void (*proc) (RF_Raid_t *, void *);
137 void *arg;
138 RF_ReconDoneProc_t *next;
139 };
140
141 /**************************************************************************
142 *
143 * sets up the parameters that will be used by the reconstruction process
144 * currently there are none, except for those that the layout-specific
145 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
146 *
147 * in the kernel, we fire off the recon thread.
148 *
149 **************************************************************************/
150 static void
151 rf_ShutdownReconstruction(void *ignored)
152 {
153 pool_destroy(&rf_recond_pool);
154 }
155
156 int
157 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
158 {
159 int rc;
160
161 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
162 "rf_recond_pl", NULL);
163 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
164 if (rc) {
165 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
166 rf_ShutdownReconstruction(NULL);
167 return (rc);
168 }
169 return (0);
170 }
171
172 static RF_RaidReconDesc_t *
173 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
174 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
175 RF_RowCol_t scol)
176 {
177
178 RF_RaidReconDesc_t *reconDesc;
179
180 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
181
182 reconDesc->raidPtr = raidPtr;
183 reconDesc->col = col;
184 reconDesc->spareDiskPtr = spareDiskPtr;
185 reconDesc->numDisksDone = numDisksDone;
186 reconDesc->scol = scol;
187 reconDesc->state = 0;
188 reconDesc->next = NULL;
189
190 return (reconDesc);
191 }
192
193 static void
194 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
195 {
196 #if RF_RECON_STATS > 0
197 printf("raid%d: %lu recon event waits, %lu recon delays\n",
198 reconDesc->raidPtr->raidid,
199 (long) reconDesc->numReconEventWaits,
200 (long) reconDesc->numReconExecDelays);
201 #endif /* RF_RECON_STATS > 0 */
202 printf("raid%d: %lu max exec ticks\n",
203 reconDesc->raidPtr->raidid,
204 (long) reconDesc->maxReconExecTicks);
205 #if (RF_RECON_STATS > 0) || defined(KERNEL)
206 printf("\n");
207 #endif /* (RF_RECON_STATS > 0) || KERNEL */
208 pool_put(&rf_recond_pool, reconDesc);
209 }
210
211
212 /*****************************************************************************
213 *
214 * primary routine to reconstruct a failed disk. This should be called from
215 * within its own thread. It won't return until reconstruction completes,
216 * fails, or is aborted.
217 *****************************************************************************/
218 int
219 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
220 {
221 const RF_LayoutSW_t *lp;
222 int rc;
223
224 lp = raidPtr->Layout.map;
225 if (lp->SubmitReconBuffer) {
226 /*
227 * The current infrastructure only supports reconstructing one
228 * disk at a time for each array.
229 */
230 RF_LOCK_MUTEX(raidPtr->mutex);
231 while (raidPtr->reconInProgress) {
232 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
233 }
234 raidPtr->reconInProgress++;
235 RF_UNLOCK_MUTEX(raidPtr->mutex);
236 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
237 RF_LOCK_MUTEX(raidPtr->mutex);
238 raidPtr->reconInProgress--;
239 RF_UNLOCK_MUTEX(raidPtr->mutex);
240 } else {
241 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
242 lp->parityConfig);
243 rc = EIO;
244 }
245 RF_SIGNAL_COND(raidPtr->waitForReconCond);
246 return (rc);
247 }
248
249 int
250 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
251 {
252 RF_ComponentLabel_t c_label;
253 RF_RaidDisk_t *spareDiskPtr = NULL;
254 RF_RaidReconDesc_t *reconDesc;
255 RF_RowCol_t scol;
256 int numDisksDone = 0, rc;
257
258 /* first look for a spare drive onto which to reconstruct the data */
259 /* spare disk descriptors are stored in row 0. This may have to
260 * change eventually */
261
262 RF_LOCK_MUTEX(raidPtr->mutex);
263 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
264
265 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
266 if (raidPtr->status != rf_rs_degraded) {
267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
268 RF_UNLOCK_MUTEX(raidPtr->mutex);
269 return (EINVAL);
270 }
271 scol = (-1);
272 } else {
273 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
274 if (raidPtr->Disks[scol].status == rf_ds_spare) {
275 spareDiskPtr = &raidPtr->Disks[scol];
276 spareDiskPtr->status = rf_ds_used_spare;
277 break;
278 }
279 }
280 if (!spareDiskPtr) {
281 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 return (ENOSPC);
284 }
285 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
286 }
287 RF_UNLOCK_MUTEX(raidPtr->mutex);
288
289 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
290 raidPtr->reconDesc = (void *) reconDesc;
291 #if RF_RECON_STATS > 0
292 reconDesc->hsStallCount = 0;
293 reconDesc->numReconExecDelays = 0;
294 reconDesc->numReconEventWaits = 0;
295 #endif /* RF_RECON_STATS > 0 */
296 reconDesc->reconExecTimerRunning = 0;
297 reconDesc->reconExecTicks = 0;
298 reconDesc->maxReconExecTicks = 0;
299 rc = rf_ContinueReconstructFailedDisk(reconDesc);
300
301 if (!rc) {
302 /* fix up the component label */
303 /* Don't actually need the read here.. */
304 raidread_component_label(
305 raidPtr->raid_cinfo[scol].ci_dev,
306 raidPtr->raid_cinfo[scol].ci_vp,
307 &c_label);
308
309 raid_init_component_label( raidPtr, &c_label);
310 c_label.row = 0;
311 c_label.column = col;
312 c_label.clean = RF_RAID_DIRTY;
313 c_label.status = rf_ds_optimal;
314 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
315
316 /* We've just done a rebuild based on all the other
317 disks, so at this point the parity is known to be
318 clean, even if it wasn't before. */
319
320 /* XXX doesn't hold for RAID 6!!*/
321
322 RF_LOCK_MUTEX(raidPtr->mutex);
323 raidPtr->parity_good = RF_RAID_CLEAN;
324 RF_UNLOCK_MUTEX(raidPtr->mutex);
325
326 /* XXXX MORE NEEDED HERE */
327
328 raidwrite_component_label(
329 raidPtr->raid_cinfo[scol].ci_dev,
330 raidPtr->raid_cinfo[scol].ci_vp,
331 &c_label);
332
333
334 rf_update_component_labels(raidPtr,
335 RF_NORMAL_COMPONENT_UPDATE);
336
337 }
338 return (rc);
339 }
340
341 /*
342
343 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
344 and you don't get a spare until the next Monday. With this function
345 (and hot-swappable drives) you can now put your new disk containing
346 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
347 rebuild the data "on the spot".
348
349 */
350
351 int
352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
353 {
354 RF_RaidDisk_t *spareDiskPtr = NULL;
355 RF_RaidReconDesc_t *reconDesc;
356 const RF_LayoutSW_t *lp;
357 RF_ComponentLabel_t c_label;
358 int numDisksDone = 0, rc;
359 struct partinfo dpart;
360 struct vnode *vp;
361 struct vattr va;
362 struct proc *proc;
363 int retcode;
364 int ac;
365
366 lp = raidPtr->Layout.map;
367 if (lp->SubmitReconBuffer) {
368 /*
369 * The current infrastructure only supports reconstructing one
370 * disk at a time for each array.
371 */
372 RF_LOCK_MUTEX(raidPtr->mutex);
373
374 if (raidPtr->Disks[col].status != rf_ds_failed) {
375 /* "It's gone..." */
376 raidPtr->numFailures++;
377 raidPtr->Disks[col].status = rf_ds_failed;
378 raidPtr->status = rf_rs_degraded;
379 RF_UNLOCK_MUTEX(raidPtr->mutex);
380 rf_update_component_labels(raidPtr,
381 RF_NORMAL_COMPONENT_UPDATE);
382 RF_LOCK_MUTEX(raidPtr->mutex);
383 }
384
385 while (raidPtr->reconInProgress) {
386 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
387 }
388
389 raidPtr->reconInProgress++;
390
391
392 /* first look for a spare drive onto which to reconstruct
393 the data. spare disk descriptors are stored in row 0.
394 This may have to change eventually */
395
396 /* Actually, we don't care if it's failed or not...
397 On a RAID set with correct parity, this function
398 should be callable on any component without ill affects. */
399 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
400 */
401
402 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
403 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
404
405 raidPtr->reconInProgress--;
406 RF_UNLOCK_MUTEX(raidPtr->mutex);
407 return (EINVAL);
408 }
409
410 proc = raidPtr->engine_thread;
411
412 /* This device may have been opened successfully the
413 first time. Close it before trying to open it again.. */
414
415 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
416 #if 0
417 printf("Closed the open device: %s\n",
418 raidPtr->Disks[col].devname);
419 #endif
420 vp = raidPtr->raid_cinfo[col].ci_vp;
421 ac = raidPtr->Disks[col].auto_configured;
422 RF_UNLOCK_MUTEX(raidPtr->mutex);
423 rf_close_component(raidPtr, vp, ac);
424 RF_LOCK_MUTEX(raidPtr->mutex);
425 raidPtr->raid_cinfo[col].ci_vp = NULL;
426 }
427 /* note that this disk was *not* auto_configured (any longer)*/
428 raidPtr->Disks[col].auto_configured = 0;
429
430 #if 0
431 printf("About to (re-)open the device for rebuilding: %s\n",
432 raidPtr->Disks[col].devname);
433 #endif
434 RF_UNLOCK_MUTEX(raidPtr->mutex);
435 retcode = raidlookup(raidPtr->Disks[col].devname,
436 proc, &vp);
437
438 if (retcode) {
439 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
440 raidPtr->Disks[col].devname, retcode);
441
442 /* the component isn't responding properly...
443 must be still dead :-( */
444 RF_LOCK_MUTEX(raidPtr->mutex);
445 raidPtr->reconInProgress--;
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 return(retcode);
448
449 } else {
450
451 /* Ok, so we can at least do a lookup...
452 How about actually getting a vp for it? */
453
454 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
455 proc)) != 0) {
456 RF_LOCK_MUTEX(raidPtr->mutex);
457 raidPtr->reconInProgress--;
458 RF_UNLOCK_MUTEX(raidPtr->mutex);
459 return(retcode);
460 }
461 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart,
462 FREAD, proc->p_ucred, proc);
463 if (retcode) {
464 RF_LOCK_MUTEX(raidPtr->mutex);
465 raidPtr->reconInProgress--;
466 RF_UNLOCK_MUTEX(raidPtr->mutex);
467 return(retcode);
468 }
469 RF_LOCK_MUTEX(raidPtr->mutex);
470 raidPtr->Disks[col].blockSize =
471 dpart.disklab->d_secsize;
472
473 raidPtr->Disks[col].numBlocks =
474 dpart.part->p_size - rf_protectedSectors;
475
476 raidPtr->raid_cinfo[col].ci_vp = vp;
477 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
478
479 raidPtr->Disks[col].dev = va.va_rdev;
480
481 /* we allow the user to specify that only a
482 fraction of the disks should be used this is
483 just for debug: it speeds up
484 * the parity scan */
485 raidPtr->Disks[col].numBlocks =
486 raidPtr->Disks[col].numBlocks *
487 rf_sizePercentage / 100;
488 RF_UNLOCK_MUTEX(raidPtr->mutex);
489 }
490
491
492
493 spareDiskPtr = &raidPtr->Disks[col];
494 spareDiskPtr->status = rf_ds_used_spare;
495
496 printf("raid%d: initiating in-place reconstruction on column %d\n", raidPtr->raidid, col);
497
498 reconDesc = AllocRaidReconDesc((void *) raidPtr, col,
499 spareDiskPtr, numDisksDone,
500 col);
501 raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 reconDesc->hsStallCount = 0;
504 reconDesc->numReconExecDelays = 0;
505 reconDesc->numReconEventWaits = 0;
506 #endif /* RF_RECON_STATS > 0 */
507 reconDesc->reconExecTimerRunning = 0;
508 reconDesc->reconExecTicks = 0;
509 reconDesc->maxReconExecTicks = 0;
510 rc = rf_ContinueReconstructFailedDisk(reconDesc);
511
512 RF_LOCK_MUTEX(raidPtr->mutex);
513 raidPtr->reconInProgress--;
514 RF_UNLOCK_MUTEX(raidPtr->mutex);
515
516 } else {
517 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
518 lp->parityConfig);
519 rc = EIO;
520 }
521
522 if (!rc) {
523 RF_LOCK_MUTEX(raidPtr->mutex);
524 /* Need to set these here, as at this point it'll be claiming
525 that the disk is in rf_ds_spared! But we know better :-) */
526
527 raidPtr->Disks[col].status = rf_ds_optimal;
528 raidPtr->status = rf_rs_optimal;
529 RF_UNLOCK_MUTEX(raidPtr->mutex);
530
531 /* fix up the component label */
532 /* Don't actually need the read here.. */
533 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
534 raidPtr->raid_cinfo[col].ci_vp,
535 &c_label);
536
537 RF_LOCK_MUTEX(raidPtr->mutex);
538 raid_init_component_label(raidPtr, &c_label);
539
540 c_label.row = 0;
541 c_label.column = col;
542
543 /* We've just done a rebuild based on all the other
544 disks, so at this point the parity is known to be
545 clean, even if it wasn't before. */
546
547 /* XXX doesn't hold for RAID 6!!*/
548
549 raidPtr->parity_good = RF_RAID_CLEAN;
550 RF_UNLOCK_MUTEX(raidPtr->mutex);
551
552 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
553 raidPtr->raid_cinfo[col].ci_vp,
554 &c_label);
555
556 rf_update_component_labels(raidPtr,
557 RF_NORMAL_COMPONENT_UPDATE);
558
559 }
560 RF_SIGNAL_COND(raidPtr->waitForReconCond);
561 return (rc);
562 }
563
564
565 int
566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
567 {
568 RF_Raid_t *raidPtr = reconDesc->raidPtr;
569 RF_RowCol_t col = reconDesc->col;
570 RF_RowCol_t scol = reconDesc->scol;
571 RF_ReconMap_t *mapPtr;
572 RF_ReconCtrl_t *tmp_reconctrl;
573 RF_ReconEvent_t *event;
574 struct timeval etime, elpsd;
575 unsigned long xor_s, xor_resid_us;
576 int i, ds;
577
578 switch (reconDesc->state) {
579
580
581 case 0:
582
583 raidPtr->accumXorTimeUs = 0;
584
585 /* create one trace record per physical disk */
586 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
587
588 /* quiesce the array prior to starting recon. this is needed
589 * to assure no nasty interactions with pending user writes.
590 * We need to do this before we change the disk or row status. */
591 reconDesc->state = 1;
592
593 Dprintf("RECON: begin request suspend\n");
594 rf_SuspendNewRequestsAndWait(raidPtr);
595 Dprintf("RECON: end request suspend\n");
596 rf_StartUserStats(raidPtr); /* zero out the stats kept on
597 * user accs */
598
599 /* fall through to state 1 */
600
601 case 1:
602
603 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
604 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
605
606 RF_LOCK_MUTEX(raidPtr->mutex);
607
608 /* create the reconstruction control pointer and install it in
609 * the right slot */
610 raidPtr->reconControl = tmp_reconctrl;
611 mapPtr = raidPtr->reconControl->reconMap;
612 raidPtr->status = rf_rs_reconstructing;
613 raidPtr->Disks[col].status = rf_ds_reconstructing;
614 raidPtr->Disks[col].spareCol = scol;
615
616 RF_UNLOCK_MUTEX(raidPtr->mutex);
617
618 RF_GETTIME(raidPtr->reconControl->starttime);
619
620 /* now start up the actual reconstruction: issue a read for
621 * each surviving disk */
622
623 reconDesc->numDisksDone = 0;
624 for (i = 0; i < raidPtr->numCol; i++) {
625 if (i != col) {
626 /* find and issue the next I/O on the
627 * indicated disk */
628 if (IssueNextReadRequest(raidPtr, i)) {
629 Dprintf1("RECON: done issuing for c%d\n", i);
630 reconDesc->numDisksDone++;
631 }
632 }
633 }
634
635 case 2:
636 Dprintf("RECON: resume requests\n");
637 rf_ResumeNewRequests(raidPtr);
638
639
640 reconDesc->state = 3;
641
642 case 3:
643
644 /* process reconstruction events until all disks report that
645 * they've completed all work */
646 mapPtr = raidPtr->reconControl->reconMap;
647
648
649
650 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
651
652 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
653 RF_ASSERT(event);
654
655 if (ProcessReconEvent(raidPtr, event))
656 reconDesc->numDisksDone++;
657 raidPtr->reconControl->numRUsTotal =
658 mapPtr->totalRUs;
659 raidPtr->reconControl->numRUsComplete =
660 mapPtr->totalRUs -
661 rf_UnitsLeftToReconstruct(mapPtr);
662
663 raidPtr->reconControl->percentComplete =
664 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
665 #if RF_DEBUG_RECON
666 if (rf_prReconSched) {
667 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
668 }
669 #endif
670 }
671
672
673
674 reconDesc->state = 4;
675
676
677 case 4:
678 mapPtr = raidPtr->reconControl->reconMap;
679 if (rf_reconDebug) {
680 printf("RECON: all reads completed\n");
681 }
682 /* at this point all the reads have completed. We now wait
683 * for any pending writes to complete, and then we're done */
684
685 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
686
687 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
688 RF_ASSERT(event);
689
690 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
691 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
692 #if RF_DEBUG_RECON
693 if (rf_prReconSched) {
694 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
695 }
696 #endif
697 }
698 reconDesc->state = 5;
699
700 case 5:
701 /* Success: mark the dead disk as reconstructed. We quiesce
702 * the array here to assure no nasty interactions with pending
703 * user accesses when we free up the psstatus structure as
704 * part of FreeReconControl() */
705
706 reconDesc->state = 6;
707
708 rf_SuspendNewRequestsAndWait(raidPtr);
709 rf_StopUserStats(raidPtr);
710 rf_PrintUserStats(raidPtr); /* print out the stats on user
711 * accs accumulated during
712 * recon */
713
714 /* fall through to state 6 */
715 case 6:
716
717
718
719 RF_LOCK_MUTEX(raidPtr->mutex);
720 raidPtr->numFailures--;
721 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
722 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
723 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
724 RF_UNLOCK_MUTEX(raidPtr->mutex);
725 RF_GETTIME(etime);
726 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
727
728 /* XXX -- why is state 7 different from state 6 if there is no
729 * return() here? -- XXX Note that I set elpsd above & use it
730 * below, so if you put a return here you'll have to fix this.
731 * (also, FreeReconControl is called below) */
732
733 case 7:
734
735 rf_ResumeNewRequests(raidPtr);
736
737 printf("raid%d: Reconstruction of disk at col %d completed\n",
738 raidPtr->raidid, col);
739 xor_s = raidPtr->accumXorTimeUs / 1000000;
740 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
741 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
742 raidPtr->raidid,
743 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
744 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
745 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
746 raidPtr->raidid,
747 (int) raidPtr->reconControl->starttime.tv_sec,
748 (int) raidPtr->reconControl->starttime.tv_usec,
749 (int) etime.tv_sec, (int) etime.tv_usec);
750
751 #if RF_RECON_STATS > 0
752 printf("raid%d: Total head-sep stall count was %d\n",
753 raidPtr->raidid, (int) reconDesc->hsStallCount);
754 #endif /* RF_RECON_STATS > 0 */
755 rf_FreeReconControl(raidPtr);
756 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
757 FreeReconDesc(reconDesc);
758
759 }
760
761 return (0);
762 }
763 /*****************************************************************************
764 * do the right thing upon each reconstruction event.
765 * returns nonzero if and only if there is nothing left unread on the
766 * indicated disk
767 *****************************************************************************/
768 static int
769 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
770 {
771 int retcode = 0, submitblocked;
772 RF_ReconBuffer_t *rbuf;
773 RF_SectorCount_t sectorsPerRU;
774
775 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
776 switch (event->type) {
777
778 /* a read I/O has completed */
779 case RF_REVENT_READDONE:
780 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
781 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
782 event->col, rbuf->parityStripeID);
783 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
784 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
785 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
786 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
787 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
788 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
789 if (!submitblocked)
790 retcode = IssueNextReadRequest(raidPtr, event->col);
791 break;
792
793 /* a write I/O has completed */
794 case RF_REVENT_WRITEDONE:
795 #if RF_DEBUG_RECON
796 if (rf_floatingRbufDebug) {
797 rf_CheckFloatingRbufCount(raidPtr, 1);
798 }
799 #endif
800 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
801 rbuf = (RF_ReconBuffer_t *) event->arg;
802 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
803 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
804 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
805 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
806 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
807 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
808
809 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
810 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
811 raidPtr->numFullReconBuffers--;
812 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
813 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
814 } else
815 if (rbuf->type == RF_RBUF_TYPE_FORCED)
816 rf_FreeReconBuffer(rbuf);
817 else
818 RF_ASSERT(0);
819 break;
820
821 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
822 * cleared */
823 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
824 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
825 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
826 * BUFCLEAR event if we
827 * couldn't submit */
828 retcode = IssueNextReadRequest(raidPtr, event->col);
829 break;
830
831 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
832 * blockage has been cleared */
833 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
834 retcode = TryToRead(raidPtr, event->col);
835 break;
836
837 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
838 * reconstruction blockage has been
839 * cleared */
840 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
841 retcode = TryToRead(raidPtr, event->col);
842 break;
843
844 /* a buffer has become ready to write */
845 case RF_REVENT_BUFREADY:
846 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
847 retcode = IssueNextWriteRequest(raidPtr);
848 #if RF_DEBUG_RECON
849 if (rf_floatingRbufDebug) {
850 rf_CheckFloatingRbufCount(raidPtr, 1);
851 }
852 #endif
853 break;
854
855 /* we need to skip the current RU entirely because it got
856 * recon'd while we were waiting for something else to happen */
857 case RF_REVENT_SKIP:
858 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
859 retcode = IssueNextReadRequest(raidPtr, event->col);
860 break;
861
862 /* a forced-reconstruction read access has completed. Just
863 * submit the buffer */
864 case RF_REVENT_FORCEDREADDONE:
865 rbuf = (RF_ReconBuffer_t *) event->arg;
866 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
867 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
868 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
869 RF_ASSERT(!submitblocked);
870 break;
871
872 default:
873 RF_PANIC();
874 }
875 rf_FreeReconEventDesc(event);
876 return (retcode);
877 }
878 /*****************************************************************************
879 *
880 * find the next thing that's needed on the indicated disk, and issue
881 * a read request for it. We assume that the reconstruction buffer
882 * associated with this process is free to receive the data. If
883 * reconstruction is blocked on the indicated RU, we issue a
884 * blockage-release request instead of a physical disk read request.
885 * If the current disk gets too far ahead of the others, we issue a
886 * head-separation wait request and return.
887 *
888 * ctrl->{ru_count, curPSID, diskOffset} and
889 * rbuf->failedDiskSectorOffset are maintained to point to the unit
890 * we're currently accessing. Note that this deviates from the
891 * standard C idiom of having counters point to the next thing to be
892 * accessed. This allows us to easily retry when we're blocked by
893 * head separation or reconstruction-blockage events.
894 *
895 * returns nonzero if and only if there is nothing left unread on the
896 * indicated disk
897 *
898 *****************************************************************************/
899 static int
900 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
901 {
902 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
903 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
904 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
905 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
906 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
907 int do_new_check = 0, retcode = 0, status;
908
909 /* if we are currently the slowest disk, mark that we have to do a new
910 * check */
911 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
912 do_new_check = 1;
913
914 while (1) {
915
916 ctrl->ru_count++;
917 if (ctrl->ru_count < RUsPerPU) {
918 ctrl->diskOffset += sectorsPerRU;
919 rbuf->failedDiskSectorOffset += sectorsPerRU;
920 } else {
921 ctrl->curPSID++;
922 ctrl->ru_count = 0;
923 /* code left over from when head-sep was based on
924 * parity stripe id */
925 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
926 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
927 return (1); /* finito! */
928 }
929 /* find the disk offsets of the start of the parity
930 * stripe on both the current disk and the failed
931 * disk. skip this entire parity stripe if either disk
932 * does not appear in the indicated PS */
933 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
934 &rbuf->spCol, &rbuf->spOffset);
935 if (status) {
936 ctrl->ru_count = RUsPerPU - 1;
937 continue;
938 }
939 }
940 rbuf->which_ru = ctrl->ru_count;
941
942 /* skip this RU if it's already been reconstructed */
943 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
944 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
945 continue;
946 }
947 break;
948 }
949 ctrl->headSepCounter++;
950 if (do_new_check)
951 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
952
953
954 /* at this point, we have definitely decided what to do, and we have
955 * only to see if we can actually do it now */
956 rbuf->parityStripeID = ctrl->curPSID;
957 rbuf->which_ru = ctrl->ru_count;
958 memset((char *) &raidPtr->recon_tracerecs[col], 0,
959 sizeof(raidPtr->recon_tracerecs[col]));
960 raidPtr->recon_tracerecs[col].reconacc = 1;
961 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
962 retcode = TryToRead(raidPtr, col);
963 return (retcode);
964 }
965
966 /*
967 * tries to issue the next read on the indicated disk. We may be
968 * blocked by (a) the heads being too far apart, or (b) recon on the
969 * indicated RU being blocked due to a write by a user thread. In
970 * this case, we issue a head-sep or blockage wait request, which will
971 * cause this same routine to be invoked again later when the blockage
972 * has cleared.
973 */
974
975 static int
976 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
977 {
978 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
979 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
980 RF_StripeNum_t psid = ctrl->curPSID;
981 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
982 RF_DiskQueueData_t *req;
983 int status, created = 0;
984 RF_ReconParityStripeStatus_t *pssPtr;
985
986 /* if the current disk is too far ahead of the others, issue a
987 * head-separation wait and return */
988 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
989 return (0);
990 RF_LOCK_PSS_MUTEX(raidPtr, psid);
991 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
992
993 /* if recon is blocked on the indicated parity stripe, issue a
994 * block-wait request and return. this also must mark the indicated RU
995 * in the stripe as under reconstruction if not blocked. */
996 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
997 if (status == RF_PSS_RECON_BLOCKED) {
998 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
999 goto out;
1000 } else
1001 if (status == RF_PSS_FORCED_ON_WRITE) {
1002 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1003 goto out;
1004 }
1005 /* make one last check to be sure that the indicated RU didn't get
1006 * reconstructed while we were waiting for something else to happen.
1007 * This is unfortunate in that it causes us to make this check twice
1008 * in the normal case. Might want to make some attempt to re-work
1009 * this so that we only do this check if we've definitely blocked on
1010 * one of the above checks. When this condition is detected, we may
1011 * have just created a bogus status entry, which we need to delete. */
1012 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1013 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1014 if (created)
1015 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1016 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1017 goto out;
1018 }
1019 /* found something to read. issue the I/O */
1020 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1021 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1022 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1023 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1024 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1025 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1026 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1027
1028 /* should be ok to use a NULL proc pointer here, all the bufs we use
1029 * should be in kernel space */
1030 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1031 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1032
1033 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1034
1035 ctrl->rbuf->arg = (void *) req;
1036 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1037 pssPtr->issued[col] = 1;
1038
1039 out:
1040 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1041 return (0);
1042 }
1043
1044
1045 /*
1046 * given a parity stripe ID, we want to find out whether both the
1047 * current disk and the failed disk exist in that parity stripe. If
1048 * not, we want to skip this whole PS. If so, we want to find the
1049 * disk offset of the start of the PS on both the current disk and the
1050 * failed disk.
1051 *
1052 * this works by getting a list of disks comprising the indicated
1053 * parity stripe, and searching the list for the current and failed
1054 * disks. Once we've decided they both exist in the parity stripe, we
1055 * need to decide whether each is data or parity, so that we'll know
1056 * which mapping function to call to get the corresponding disk
1057 * offsets.
1058 *
1059 * this is kind of unpleasant, but doing it this way allows the
1060 * reconstruction code to use parity stripe IDs rather than physical
1061 * disks address to march through the failed disk, which greatly
1062 * simplifies a lot of code, as well as eliminating the need for a
1063 * reverse-mapping function. I also think it will execute faster,
1064 * since the calls to the mapping module are kept to a minimum.
1065 *
1066 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1067 * THE STRIPE IN THE CORRECT ORDER
1068 *
1069 * raidPtr - raid descriptor
1070 * psid - parity stripe identifier
1071 * col - column of disk to find the offsets for
1072 * spCol - out: col of spare unit for failed unit
1073 * spOffset - out: offset into disk containing spare unit
1074 *
1075 */
1076
1077
1078 static int
1079 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1080 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1081 RF_SectorNum_t *outFailedDiskSectorOffset,
1082 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1083 {
1084 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1085 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1086 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1087 RF_RowCol_t *diskids;
1088 u_int i, j, k, i_offset, j_offset;
1089 RF_RowCol_t pcol;
1090 int testcol;
1091 RF_SectorNum_t poffset;
1092 char i_is_parity = 0, j_is_parity = 0;
1093 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1094
1095 /* get a listing of the disks comprising that stripe */
1096 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1097 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1098 RF_ASSERT(diskids);
1099
1100 /* reject this entire parity stripe if it does not contain the
1101 * indicated disk or it does not contain the failed disk */
1102
1103 for (i = 0; i < stripeWidth; i++) {
1104 if (col == diskids[i])
1105 break;
1106 }
1107 if (i == stripeWidth)
1108 goto skipit;
1109 for (j = 0; j < stripeWidth; j++) {
1110 if (fcol == diskids[j])
1111 break;
1112 }
1113 if (j == stripeWidth) {
1114 goto skipit;
1115 }
1116 /* find out which disk the parity is on */
1117 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1118
1119 /* find out if either the current RU or the failed RU is parity */
1120 /* also, if the parity occurs in this stripe prior to the data and/or
1121 * failed col, we need to decrement i and/or j */
1122 for (k = 0; k < stripeWidth; k++)
1123 if (diskids[k] == pcol)
1124 break;
1125 RF_ASSERT(k < stripeWidth);
1126 i_offset = i;
1127 j_offset = j;
1128 if (k < i)
1129 i_offset--;
1130 else
1131 if (k == i) {
1132 i_is_parity = 1;
1133 i_offset = 0;
1134 } /* set offsets to zero to disable multiply
1135 * below */
1136 if (k < j)
1137 j_offset--;
1138 else
1139 if (k == j) {
1140 j_is_parity = 1;
1141 j_offset = 0;
1142 }
1143 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1144 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1145 * tells us how far into the stripe the [current,failed] disk is. */
1146
1147 /* call the mapping routine to get the offset into the current disk,
1148 * repeat for failed disk. */
1149 if (i_is_parity)
1150 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1151 else
1152 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1153
1154 RF_ASSERT(col == testcol);
1155
1156 if (j_is_parity)
1157 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1158 else
1159 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1160 RF_ASSERT(fcol == testcol);
1161
1162 /* now locate the spare unit for the failed unit */
1163 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1164 if (j_is_parity)
1165 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1166 else
1167 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1168 } else {
1169 *spCol = raidPtr->reconControl->spareCol;
1170 *spOffset = *outFailedDiskSectorOffset;
1171 }
1172
1173 return (0);
1174
1175 skipit:
1176 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1177 psid, col);
1178 return (1);
1179 }
1180 /* this is called when a buffer has become ready to write to the replacement disk */
1181 static int
1182 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1183 {
1184 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1185 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1186 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1187 RF_ReconBuffer_t *rbuf;
1188 RF_DiskQueueData_t *req;
1189
1190 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1191 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1192 * have gotten the event that sent us here */
1193 RF_ASSERT(rbuf->pssPtr);
1194
1195 rbuf->pssPtr->writeRbuf = rbuf;
1196 rbuf->pssPtr = NULL;
1197
1198 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1199 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1200 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1201 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1202 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1203 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1204
1205 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1206 * kernel space */
1207 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1208 sectorsPerRU, rbuf->buffer,
1209 rbuf->parityStripeID, rbuf->which_ru,
1210 ReconWriteDoneProc, (void *) rbuf, NULL,
1211 &raidPtr->recon_tracerecs[fcol],
1212 (void *) raidPtr, 0, NULL);
1213
1214 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1215
1216 rbuf->arg = (void *) req;
1217 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1218
1219 return (0);
1220 }
1221
1222 /*
1223 * this gets called upon the completion of a reconstruction read
1224 * operation the arg is a pointer to the per-disk reconstruction
1225 * control structure for the process that just finished a read.
1226 *
1227 * called at interrupt context in the kernel, so don't do anything
1228 * illegal here.
1229 */
1230 static int
1231 ReconReadDoneProc(void *arg, int status)
1232 {
1233 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1234 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1235
1236 if (status) {
1237 /*
1238 * XXX
1239 */
1240 printf("Recon read failed!\n");
1241 RF_PANIC();
1242 }
1243 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1244 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1245 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1246 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1247 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1248
1249 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1250 return (0);
1251 }
1252 /* this gets called upon the completion of a reconstruction write operation.
1253 * the arg is a pointer to the rbuf that was just written
1254 *
1255 * called at interrupt context in the kernel, so don't do anything illegal here.
1256 */
1257 static int
1258 ReconWriteDoneProc(void *arg, int status)
1259 {
1260 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1261
1262 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1263 if (status) {
1264 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1265 * write failed!\n"); */
1266 RF_PANIC();
1267 }
1268 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1269 return (0);
1270 }
1271
1272
1273 /*
1274 * computes a new minimum head sep, and wakes up anyone who needs to
1275 * be woken as a result
1276 */
1277 static void
1278 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1279 {
1280 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1281 RF_HeadSepLimit_t new_min;
1282 RF_RowCol_t i;
1283 RF_CallbackDesc_t *p;
1284 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1285 * of a minimum */
1286
1287
1288 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1289
1290 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1291 for (i = 0; i < raidPtr->numCol; i++)
1292 if (i != reconCtrlPtr->fcol) {
1293 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1294 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1295 }
1296 /* set the new minimum and wake up anyone who can now run again */
1297 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1298 reconCtrlPtr->minHeadSepCounter = new_min;
1299 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1300 while (reconCtrlPtr->headSepCBList) {
1301 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1302 break;
1303 p = reconCtrlPtr->headSepCBList;
1304 reconCtrlPtr->headSepCBList = p->next;
1305 p->next = NULL;
1306 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1307 rf_FreeCallbackDesc(p);
1308 }
1309
1310 }
1311 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1312 }
1313
1314 /*
1315 * checks to see that the maximum head separation will not be violated
1316 * if we initiate a reconstruction I/O on the indicated disk.
1317 * Limiting the maximum head separation between two disks eliminates
1318 * the nasty buffer-stall conditions that occur when one disk races
1319 * ahead of the others and consumes all of the floating recon buffers.
1320 * This code is complex and unpleasant but it's necessary to avoid
1321 * some very nasty, albeit fairly rare, reconstruction behavior.
1322 *
1323 * returns non-zero if and only if we have to stop working on the
1324 * indicated disk due to a head-separation delay.
1325 */
1326 static int
1327 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1328 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1329 RF_ReconUnitNum_t which_ru)
1330 {
1331 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1332 RF_CallbackDesc_t *cb, *p, *pt;
1333 int retval = 0;
1334
1335 /* if we're too far ahead of the slowest disk, stop working on this
1336 * disk until the slower ones catch up. We do this by scheduling a
1337 * wakeup callback for the time when the slowest disk has caught up.
1338 * We define "caught up" with 20% hysteresis, i.e. the head separation
1339 * must have fallen to at most 80% of the max allowable head
1340 * separation before we'll wake up.
1341 *
1342 */
1343 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1344 if ((raidPtr->headSepLimit >= 0) &&
1345 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1346 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1347 raidPtr->raidid, col, ctrl->headSepCounter,
1348 reconCtrlPtr->minHeadSepCounter,
1349 raidPtr->headSepLimit);
1350 cb = rf_AllocCallbackDesc();
1351 /* the minHeadSepCounter value we have to get to before we'll
1352 * wake up. build in 20% hysteresis. */
1353 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1354 cb->col = col;
1355 cb->next = NULL;
1356
1357 /* insert this callback descriptor into the sorted list of
1358 * pending head-sep callbacks */
1359 p = reconCtrlPtr->headSepCBList;
1360 if (!p)
1361 reconCtrlPtr->headSepCBList = cb;
1362 else
1363 if (cb->callbackArg.v < p->callbackArg.v) {
1364 cb->next = reconCtrlPtr->headSepCBList;
1365 reconCtrlPtr->headSepCBList = cb;
1366 } else {
1367 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1368 cb->next = p;
1369 pt->next = cb;
1370 }
1371 retval = 1;
1372 #if RF_RECON_STATS > 0
1373 ctrl->reconCtrl->reconDesc->hsStallCount++;
1374 #endif /* RF_RECON_STATS > 0 */
1375 }
1376 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1377
1378 return (retval);
1379 }
1380 /*
1381 * checks to see if reconstruction has been either forced or blocked
1382 * by a user operation. if forced, we skip this RU entirely. else if
1383 * blocked, put ourselves on the wait list. else return 0.
1384 *
1385 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1386 */
1387 static int
1388 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1389 RF_ReconParityStripeStatus_t *pssPtr,
1390 RF_PerDiskReconCtrl_t *ctrl,
1391 RF_RowCol_t col, RF_StripeNum_t psid,
1392 RF_ReconUnitNum_t which_ru)
1393 {
1394 RF_CallbackDesc_t *cb;
1395 int retcode = 0;
1396
1397 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1398 retcode = RF_PSS_FORCED_ON_WRITE;
1399 else
1400 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1401 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1402 cb = rf_AllocCallbackDesc(); /* append ourselves to
1403 * the blockage-wait
1404 * list */
1405 cb->col = col;
1406 cb->next = pssPtr->blockWaitList;
1407 pssPtr->blockWaitList = cb;
1408 retcode = RF_PSS_RECON_BLOCKED;
1409 }
1410 if (!retcode)
1411 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1412 * reconstruction */
1413
1414 return (retcode);
1415 }
1416 /*
1417 * if reconstruction is currently ongoing for the indicated stripeID,
1418 * reconstruction is forced to completion and we return non-zero to
1419 * indicate that the caller must wait. If not, then reconstruction is
1420 * blocked on the indicated stripe and the routine returns zero. If
1421 * and only if we return non-zero, we'll cause the cbFunc to get
1422 * invoked with the cbArg when the reconstruction has completed.
1423 */
1424 int
1425 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1426 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1427 {
1428 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1429 * forcing recon on */
1430 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1431 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1432 * stripe status structure */
1433 RF_StripeNum_t psid; /* parity stripe id */
1434 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1435 * offset */
1436 RF_RowCol_t *diskids;
1437 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1438 RF_RowCol_t fcol, diskno, i;
1439 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1440 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1441 RF_CallbackDesc_t *cb;
1442 int created = 0, nPromoted;
1443
1444 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1445
1446 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1447
1448 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1449
1450 /* if recon is not ongoing on this PS, just return */
1451 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1452 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1453 return (0);
1454 }
1455 /* otherwise, we have to wait for reconstruction to complete on this
1456 * RU. */
1457 /* In order to avoid waiting for a potentially large number of
1458 * low-priority accesses to complete, we force a normal-priority (i.e.
1459 * not low-priority) reconstruction on this RU. */
1460 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1461 DDprintf1("Forcing recon on psid %ld\n", psid);
1462 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1463 * forced recon */
1464 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1465 * that we just set */
1466 fcol = raidPtr->reconControl->fcol;
1467
1468 /* get a listing of the disks comprising the indicated stripe */
1469 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1470
1471 /* For previously issued reads, elevate them to normal
1472 * priority. If the I/O has already completed, it won't be
1473 * found in the queue, and hence this will be a no-op. For
1474 * unissued reads, allocate buffers and issue new reads. The
1475 * fact that we've set the FORCED bit means that the regular
1476 * recon procs will not re-issue these reqs */
1477 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1478 if ((diskno = diskids[i]) != fcol) {
1479 if (pssPtr->issued[diskno]) {
1480 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1481 if (rf_reconDebug && nPromoted)
1482 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1483 } else {
1484 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1485 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1486 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1487 * location */
1488 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1489 new_rbuf->which_ru = which_ru;
1490 new_rbuf->failedDiskSectorOffset = fd_offset;
1491 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1492
1493 /* use NULL b_proc b/c all addrs
1494 * should be in kernel space */
1495 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1496 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1497 NULL, (void *) raidPtr, 0, NULL);
1498
1499 RF_ASSERT(req); /* XXX -- fix this --
1500 * XXX */
1501
1502 new_rbuf->arg = req;
1503 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1504 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1505 }
1506 }
1507 /* if the write is sitting in the disk queue, elevate its
1508 * priority */
1509 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1510 printf("raid%d: promoted write to col %d\n",
1511 raidPtr->raidid, fcol);
1512 }
1513 /* install a callback descriptor to be invoked when recon completes on
1514 * this parity stripe. */
1515 cb = rf_AllocCallbackDesc();
1516 /* XXX the following is bogus.. These functions don't really match!!
1517 * GO */
1518 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1519 cb->callbackArg.p = (void *) cbArg;
1520 cb->next = pssPtr->procWaitList;
1521 pssPtr->procWaitList = cb;
1522 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1523 raidPtr->raidid, psid);
1524
1525 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1526 return (1);
1527 }
1528 /* called upon the completion of a forced reconstruction read.
1529 * all we do is schedule the FORCEDREADONE event.
1530 * called at interrupt context in the kernel, so don't do anything illegal here.
1531 */
1532 static void
1533 ForceReconReadDoneProc(void *arg, int status)
1534 {
1535 RF_ReconBuffer_t *rbuf = arg;
1536
1537 if (status) {
1538 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1539 * recon read
1540 * failed!\n"); */
1541 RF_PANIC();
1542 }
1543 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1544 }
1545 /* releases a block on the reconstruction of the indicated stripe */
1546 int
1547 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1548 {
1549 RF_StripeNum_t stripeID = asmap->stripeID;
1550 RF_ReconParityStripeStatus_t *pssPtr;
1551 RF_ReconUnitNum_t which_ru;
1552 RF_StripeNum_t psid;
1553 int created = 0;
1554 RF_CallbackDesc_t *cb;
1555
1556 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1557 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1558 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1559
1560 /* When recon is forced, the pss desc can get deleted before we get
1561 * back to unblock recon. But, this can _only_ happen when recon is
1562 * forced. It would be good to put some kind of sanity check here, but
1563 * how to decide if recon was just forced or not? */
1564 if (!pssPtr) {
1565 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1566 * RU %d\n",psid,which_ru); */
1567 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1568 if (rf_reconDebug || rf_pssDebug)
1569 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1570 #endif
1571 goto out;
1572 }
1573 pssPtr->blockCount--;
1574 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1575 raidPtr->raidid, psid, pssPtr->blockCount);
1576 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1577
1578 /* unblock recon before calling CauseReconEvent in case
1579 * CauseReconEvent causes us to try to issue a new read before
1580 * returning here. */
1581 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1582
1583
1584 while (pssPtr->blockWaitList) {
1585 /* spin through the block-wait list and
1586 release all the waiters */
1587 cb = pssPtr->blockWaitList;
1588 pssPtr->blockWaitList = cb->next;
1589 cb->next = NULL;
1590 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1591 rf_FreeCallbackDesc(cb);
1592 }
1593 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1594 /* if no recon was requested while recon was blocked */
1595 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1596 }
1597 }
1598 out:
1599 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1600 return (0);
1601 }
1602