rf_reconstruct.c revision 1.61 1 /* $NetBSD: rf_reconstruct.c,v 1.61 2003/12/31 03:29:11 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.61 2003/12/31 03:29:11 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105 int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115 RF_SectorNum_t * outFailedDiskSectorOffset,
116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125 RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129 RF_RowCol_t col, RF_StripeNum_t psid,
130 RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132
133 static void rf_ShutdownReconstruction(void *);
134
135 struct RF_ReconDoneProc_s {
136 void (*proc) (RF_Raid_t *, void *);
137 void *arg;
138 RF_ReconDoneProc_t *next;
139 };
140
141 /**************************************************************************
142 *
143 * sets up the parameters that will be used by the reconstruction process
144 * currently there are none, except for those that the layout-specific
145 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
146 *
147 * in the kernel, we fire off the recon thread.
148 *
149 **************************************************************************/
150 static void
151 rf_ShutdownReconstruction(void *ignored)
152 {
153 pool_destroy(&rf_recond_pool);
154 }
155
156 int
157 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
158 {
159 int rc;
160
161 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
162 "rf_recond_pl", NULL);
163 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
164 if (rc) {
165 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
166 rf_ShutdownReconstruction(NULL);
167 return (rc);
168 }
169 return (0);
170 }
171
172 static RF_RaidReconDesc_t *
173 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
174 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
175 RF_RowCol_t scol)
176 {
177
178 RF_RaidReconDesc_t *reconDesc;
179
180 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
181
182 reconDesc->raidPtr = raidPtr;
183 reconDesc->col = col;
184 reconDesc->spareDiskPtr = spareDiskPtr;
185 reconDesc->numDisksDone = numDisksDone;
186 reconDesc->scol = scol;
187 reconDesc->state = 0;
188 reconDesc->next = NULL;
189
190 return (reconDesc);
191 }
192
193 static void
194 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
195 {
196 #if RF_RECON_STATS > 0
197 printf("raid%d: %lu recon event waits, %lu recon delays\n",
198 reconDesc->raidPtr->raidid,
199 (long) reconDesc->numReconEventWaits,
200 (long) reconDesc->numReconExecDelays);
201 #endif /* RF_RECON_STATS > 0 */
202 printf("raid%d: %lu max exec ticks\n",
203 reconDesc->raidPtr->raidid,
204 (long) reconDesc->maxReconExecTicks);
205 #if (RF_RECON_STATS > 0) || defined(KERNEL)
206 printf("\n");
207 #endif /* (RF_RECON_STATS > 0) || KERNEL */
208 pool_put(&rf_recond_pool, reconDesc);
209 }
210
211
212 /*****************************************************************************
213 *
214 * primary routine to reconstruct a failed disk. This should be called from
215 * within its own thread. It won't return until reconstruction completes,
216 * fails, or is aborted.
217 *****************************************************************************/
218 int
219 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
220 {
221 const RF_LayoutSW_t *lp;
222 int rc;
223
224 lp = raidPtr->Layout.map;
225 if (lp->SubmitReconBuffer) {
226 /*
227 * The current infrastructure only supports reconstructing one
228 * disk at a time for each array.
229 */
230 RF_LOCK_MUTEX(raidPtr->mutex);
231 while (raidPtr->reconInProgress) {
232 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
233 }
234 raidPtr->reconInProgress++;
235 RF_UNLOCK_MUTEX(raidPtr->mutex);
236 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
237 RF_LOCK_MUTEX(raidPtr->mutex);
238 raidPtr->reconInProgress--;
239 RF_UNLOCK_MUTEX(raidPtr->mutex);
240 } else {
241 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
242 lp->parityConfig);
243 rc = EIO;
244 }
245 RF_SIGNAL_COND(raidPtr->waitForReconCond);
246 return (rc);
247 }
248
249 int
250 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
251 {
252 RF_ComponentLabel_t c_label;
253 RF_RaidDisk_t *spareDiskPtr = NULL;
254 RF_RaidReconDesc_t *reconDesc;
255 RF_RowCol_t scol;
256 int numDisksDone = 0, rc;
257
258 /* first look for a spare drive onto which to reconstruct the data */
259 /* spare disk descriptors are stored in row 0. This may have to
260 * change eventually */
261
262 RF_LOCK_MUTEX(raidPtr->mutex);
263 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
264
265 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
266 if (raidPtr->status != rf_rs_degraded) {
267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
268 RF_UNLOCK_MUTEX(raidPtr->mutex);
269 return (EINVAL);
270 }
271 scol = (-1);
272 } else {
273 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
274 if (raidPtr->Disks[scol].status == rf_ds_spare) {
275 spareDiskPtr = &raidPtr->Disks[scol];
276 spareDiskPtr->status = rf_ds_used_spare;
277 break;
278 }
279 }
280 if (!spareDiskPtr) {
281 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 return (ENOSPC);
284 }
285 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
286 }
287 RF_UNLOCK_MUTEX(raidPtr->mutex);
288
289 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
290 raidPtr->reconDesc = (void *) reconDesc;
291 #if RF_RECON_STATS > 0
292 reconDesc->hsStallCount = 0;
293 reconDesc->numReconExecDelays = 0;
294 reconDesc->numReconEventWaits = 0;
295 #endif /* RF_RECON_STATS > 0 */
296 reconDesc->reconExecTimerRunning = 0;
297 reconDesc->reconExecTicks = 0;
298 reconDesc->maxReconExecTicks = 0;
299 rc = rf_ContinueReconstructFailedDisk(reconDesc);
300
301 if (!rc) {
302 /* fix up the component label */
303 /* Don't actually need the read here.. */
304 raidread_component_label(
305 raidPtr->raid_cinfo[scol].ci_dev,
306 raidPtr->raid_cinfo[scol].ci_vp,
307 &c_label);
308
309 raid_init_component_label( raidPtr, &c_label);
310 c_label.row = 0;
311 c_label.column = col;
312 c_label.clean = RF_RAID_DIRTY;
313 c_label.status = rf_ds_optimal;
314 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
315
316 /* We've just done a rebuild based on all the other
317 disks, so at this point the parity is known to be
318 clean, even if it wasn't before. */
319
320 /* XXX doesn't hold for RAID 6!!*/
321
322 RF_LOCK_MUTEX(raidPtr->mutex);
323 raidPtr->parity_good = RF_RAID_CLEAN;
324 RF_UNLOCK_MUTEX(raidPtr->mutex);
325
326 /* XXXX MORE NEEDED HERE */
327
328 raidwrite_component_label(
329 raidPtr->raid_cinfo[scol].ci_dev,
330 raidPtr->raid_cinfo[scol].ci_vp,
331 &c_label);
332
333
334 rf_update_component_labels(raidPtr,
335 RF_NORMAL_COMPONENT_UPDATE);
336
337 }
338 return (rc);
339 }
340
341 /*
342
343 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
344 and you don't get a spare until the next Monday. With this function
345 (and hot-swappable drives) you can now put your new disk containing
346 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
347 rebuild the data "on the spot".
348
349 */
350
351 int
352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
353 {
354 RF_RaidDisk_t *spareDiskPtr = NULL;
355 RF_RaidReconDesc_t *reconDesc;
356 const RF_LayoutSW_t *lp;
357 RF_ComponentLabel_t c_label;
358 int numDisksDone = 0, rc;
359 struct partinfo dpart;
360 struct vnode *vp;
361 struct vattr va;
362 struct proc *proc;
363 int retcode;
364 int ac;
365
366 lp = raidPtr->Layout.map;
367 if (!lp->SubmitReconBuffer) {
368 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
369 lp->parityConfig);
370 /* wakeup anyone who might be waiting to do a reconstruct */
371 RF_SIGNAL_COND(raidPtr->waitForReconCond);
372 return(EIO);
373 } else {
374 /*
375 * The current infrastructure only supports reconstructing one
376 * disk at a time for each array.
377 */
378 RF_LOCK_MUTEX(raidPtr->mutex);
379
380 if (raidPtr->Disks[col].status != rf_ds_failed) {
381 /* "It's gone..." */
382 raidPtr->numFailures++;
383 raidPtr->Disks[col].status = rf_ds_failed;
384 raidPtr->status = rf_rs_degraded;
385 RF_UNLOCK_MUTEX(raidPtr->mutex);
386 rf_update_component_labels(raidPtr,
387 RF_NORMAL_COMPONENT_UPDATE);
388 RF_LOCK_MUTEX(raidPtr->mutex);
389 }
390
391 while (raidPtr->reconInProgress) {
392 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
393 }
394
395 raidPtr->reconInProgress++;
396
397
398 /* first look for a spare drive onto which to reconstruct
399 the data. spare disk descriptors are stored in row 0.
400 This may have to change eventually */
401
402 /* Actually, we don't care if it's failed or not...
403 On a RAID set with correct parity, this function
404 should be callable on any component without ill affects. */
405 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
406 */
407
408 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
409 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
410
411 raidPtr->reconInProgress--;
412 RF_UNLOCK_MUTEX(raidPtr->mutex);
413 return (EINVAL);
414 }
415
416 proc = raidPtr->engine_thread;
417
418 /* This device may have been opened successfully the
419 first time. Close it before trying to open it again.. */
420
421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 printf("Closed the open device: %s\n",
424 raidPtr->Disks[col].devname);
425 #endif
426 vp = raidPtr->raid_cinfo[col].ci_vp;
427 ac = raidPtr->Disks[col].auto_configured;
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 rf_close_component(raidPtr, vp, ac);
430 RF_LOCK_MUTEX(raidPtr->mutex);
431 raidPtr->raid_cinfo[col].ci_vp = NULL;
432 }
433 /* note that this disk was *not* auto_configured (any longer)*/
434 raidPtr->Disks[col].auto_configured = 0;
435
436 #if 0
437 printf("About to (re-)open the device for rebuilding: %s\n",
438 raidPtr->Disks[col].devname);
439 #endif
440 RF_UNLOCK_MUTEX(raidPtr->mutex);
441 retcode = raidlookup(raidPtr->Disks[col].devname,
442 proc, &vp);
443
444 if (retcode) {
445 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
446 raidPtr->Disks[col].devname, retcode);
447
448 /* the component isn't responding properly...
449 must be still dead :-( */
450 RF_LOCK_MUTEX(raidPtr->mutex);
451 raidPtr->reconInProgress--;
452 RF_UNLOCK_MUTEX(raidPtr->mutex);
453 return(retcode);
454
455 } else {
456
457 /* Ok, so we can at least do a lookup...
458 How about actually getting a vp for it? */
459
460 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred,
461 proc)) != 0) {
462 RF_LOCK_MUTEX(raidPtr->mutex);
463 raidPtr->reconInProgress--;
464 RF_UNLOCK_MUTEX(raidPtr->mutex);
465 return(retcode);
466 }
467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart,
468 FREAD, proc->p_ucred, proc);
469 if (retcode) {
470 RF_LOCK_MUTEX(raidPtr->mutex);
471 raidPtr->reconInProgress--;
472 RF_UNLOCK_MUTEX(raidPtr->mutex);
473 return(retcode);
474 }
475 RF_LOCK_MUTEX(raidPtr->mutex);
476 raidPtr->Disks[col].blockSize =
477 dpart.disklab->d_secsize;
478
479 raidPtr->Disks[col].numBlocks =
480 dpart.part->p_size - rf_protectedSectors;
481
482 raidPtr->raid_cinfo[col].ci_vp = vp;
483 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
484
485 raidPtr->Disks[col].dev = va.va_rdev;
486
487 /* we allow the user to specify that only a
488 fraction of the disks should be used this is
489 just for debug: it speeds up
490 * the parity scan */
491 raidPtr->Disks[col].numBlocks =
492 raidPtr->Disks[col].numBlocks *
493 rf_sizePercentage / 100;
494 RF_UNLOCK_MUTEX(raidPtr->mutex);
495 }
496
497
498
499 spareDiskPtr = &raidPtr->Disks[col];
500 spareDiskPtr->status = rf_ds_used_spare;
501
502 printf("raid%d: initiating in-place reconstruction on column %d\n", raidPtr->raidid, col);
503
504 reconDesc = AllocRaidReconDesc((void *) raidPtr, col,
505 spareDiskPtr, numDisksDone,
506 col);
507 raidPtr->reconDesc = (void *) reconDesc;
508 #if RF_RECON_STATS > 0
509 reconDesc->hsStallCount = 0;
510 reconDesc->numReconExecDelays = 0;
511 reconDesc->numReconEventWaits = 0;
512 #endif /* RF_RECON_STATS > 0 */
513 reconDesc->reconExecTimerRunning = 0;
514 reconDesc->reconExecTicks = 0;
515 reconDesc->maxReconExecTicks = 0;
516 rc = rf_ContinueReconstructFailedDisk(reconDesc);
517
518 RF_LOCK_MUTEX(raidPtr->mutex);
519 raidPtr->reconInProgress--;
520 RF_UNLOCK_MUTEX(raidPtr->mutex);
521
522 }
523
524 if (!rc) {
525 RF_LOCK_MUTEX(raidPtr->mutex);
526 /* Need to set these here, as at this point it'll be claiming
527 that the disk is in rf_ds_spared! But we know better :-) */
528
529 raidPtr->Disks[col].status = rf_ds_optimal;
530 raidPtr->status = rf_rs_optimal;
531 RF_UNLOCK_MUTEX(raidPtr->mutex);
532
533 /* fix up the component label */
534 /* Don't actually need the read here.. */
535 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
536 raidPtr->raid_cinfo[col].ci_vp,
537 &c_label);
538
539 RF_LOCK_MUTEX(raidPtr->mutex);
540 raid_init_component_label(raidPtr, &c_label);
541
542 c_label.row = 0;
543 c_label.column = col;
544
545 /* We've just done a rebuild based on all the other
546 disks, so at this point the parity is known to be
547 clean, even if it wasn't before. */
548
549 /* XXX doesn't hold for RAID 6!!*/
550
551 raidPtr->parity_good = RF_RAID_CLEAN;
552 RF_UNLOCK_MUTEX(raidPtr->mutex);
553
554 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
555 raidPtr->raid_cinfo[col].ci_vp,
556 &c_label);
557
558 rf_update_component_labels(raidPtr,
559 RF_NORMAL_COMPONENT_UPDATE);
560
561 }
562 RF_SIGNAL_COND(raidPtr->waitForReconCond);
563 return (rc);
564 }
565
566
567 int
568 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
569 {
570 RF_Raid_t *raidPtr = reconDesc->raidPtr;
571 RF_RowCol_t col = reconDesc->col;
572 RF_RowCol_t scol = reconDesc->scol;
573 RF_ReconMap_t *mapPtr;
574 RF_ReconCtrl_t *tmp_reconctrl;
575 RF_ReconEvent_t *event;
576 struct timeval etime, elpsd;
577 unsigned long xor_s, xor_resid_us;
578 int i, ds;
579
580 switch (reconDesc->state) {
581
582
583 case 0:
584
585 raidPtr->accumXorTimeUs = 0;
586
587 /* create one trace record per physical disk */
588 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
589
590 /* quiesce the array prior to starting recon. this is needed
591 * to assure no nasty interactions with pending user writes.
592 * We need to do this before we change the disk or row status. */
593 reconDesc->state = 1;
594
595 Dprintf("RECON: begin request suspend\n");
596 rf_SuspendNewRequestsAndWait(raidPtr);
597 Dprintf("RECON: end request suspend\n");
598 rf_StartUserStats(raidPtr); /* zero out the stats kept on
599 * user accs */
600
601 /* fall through to state 1 */
602
603 case 1:
604
605 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
606 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
607
608 RF_LOCK_MUTEX(raidPtr->mutex);
609
610 /* create the reconstruction control pointer and install it in
611 * the right slot */
612 raidPtr->reconControl = tmp_reconctrl;
613 mapPtr = raidPtr->reconControl->reconMap;
614 raidPtr->status = rf_rs_reconstructing;
615 raidPtr->Disks[col].status = rf_ds_reconstructing;
616 raidPtr->Disks[col].spareCol = scol;
617
618 RF_UNLOCK_MUTEX(raidPtr->mutex);
619
620 RF_GETTIME(raidPtr->reconControl->starttime);
621
622 /* now start up the actual reconstruction: issue a read for
623 * each surviving disk */
624
625 reconDesc->numDisksDone = 0;
626 for (i = 0; i < raidPtr->numCol; i++) {
627 if (i != col) {
628 /* find and issue the next I/O on the
629 * indicated disk */
630 if (IssueNextReadRequest(raidPtr, i)) {
631 Dprintf1("RECON: done issuing for c%d\n", i);
632 reconDesc->numDisksDone++;
633 }
634 }
635 }
636
637 case 2:
638 Dprintf("RECON: resume requests\n");
639 rf_ResumeNewRequests(raidPtr);
640
641
642 reconDesc->state = 3;
643
644 case 3:
645
646 /* process reconstruction events until all disks report that
647 * they've completed all work */
648 mapPtr = raidPtr->reconControl->reconMap;
649
650
651
652 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
653
654 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
655 RF_ASSERT(event);
656
657 if (ProcessReconEvent(raidPtr, event))
658 reconDesc->numDisksDone++;
659 raidPtr->reconControl->numRUsTotal =
660 mapPtr->totalRUs;
661 raidPtr->reconControl->numRUsComplete =
662 mapPtr->totalRUs -
663 rf_UnitsLeftToReconstruct(mapPtr);
664
665 raidPtr->reconControl->percentComplete =
666 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
667 #if RF_DEBUG_RECON
668 if (rf_prReconSched) {
669 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
670 }
671 #endif
672 }
673
674
675
676 reconDesc->state = 4;
677
678
679 case 4:
680 mapPtr = raidPtr->reconControl->reconMap;
681 if (rf_reconDebug) {
682 printf("RECON: all reads completed\n");
683 }
684 /* at this point all the reads have completed. We now wait
685 * for any pending writes to complete, and then we're done */
686
687 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
688
689 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
690 RF_ASSERT(event);
691
692 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
693 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
694 #if RF_DEBUG_RECON
695 if (rf_prReconSched) {
696 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
697 }
698 #endif
699 }
700 reconDesc->state = 5;
701
702 case 5:
703 /* Success: mark the dead disk as reconstructed. We quiesce
704 * the array here to assure no nasty interactions with pending
705 * user accesses when we free up the psstatus structure as
706 * part of FreeReconControl() */
707
708 reconDesc->state = 6;
709
710 rf_SuspendNewRequestsAndWait(raidPtr);
711 rf_StopUserStats(raidPtr);
712 rf_PrintUserStats(raidPtr); /* print out the stats on user
713 * accs accumulated during
714 * recon */
715
716 /* fall through to state 6 */
717 case 6:
718
719
720
721 RF_LOCK_MUTEX(raidPtr->mutex);
722 raidPtr->numFailures--;
723 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
724 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
725 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
726 RF_UNLOCK_MUTEX(raidPtr->mutex);
727 RF_GETTIME(etime);
728 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
729
730 /* XXX -- why is state 7 different from state 6 if there is no
731 * return() here? -- XXX Note that I set elpsd above & use it
732 * below, so if you put a return here you'll have to fix this.
733 * (also, FreeReconControl is called below) */
734
735 case 7:
736
737 rf_ResumeNewRequests(raidPtr);
738
739 printf("raid%d: Reconstruction of disk at col %d completed\n",
740 raidPtr->raidid, col);
741 xor_s = raidPtr->accumXorTimeUs / 1000000;
742 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
743 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
744 raidPtr->raidid,
745 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
746 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
747 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
748 raidPtr->raidid,
749 (int) raidPtr->reconControl->starttime.tv_sec,
750 (int) raidPtr->reconControl->starttime.tv_usec,
751 (int) etime.tv_sec, (int) etime.tv_usec);
752
753 #if RF_RECON_STATS > 0
754 printf("raid%d: Total head-sep stall count was %d\n",
755 raidPtr->raidid, (int) reconDesc->hsStallCount);
756 #endif /* RF_RECON_STATS > 0 */
757 rf_FreeReconControl(raidPtr);
758 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
759 FreeReconDesc(reconDesc);
760
761 }
762
763 return (0);
764 }
765 /*****************************************************************************
766 * do the right thing upon each reconstruction event.
767 * returns nonzero if and only if there is nothing left unread on the
768 * indicated disk
769 *****************************************************************************/
770 static int
771 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
772 {
773 int retcode = 0, submitblocked;
774 RF_ReconBuffer_t *rbuf;
775 RF_SectorCount_t sectorsPerRU;
776
777 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
778 switch (event->type) {
779
780 /* a read I/O has completed */
781 case RF_REVENT_READDONE:
782 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
783 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
784 event->col, rbuf->parityStripeID);
785 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
786 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
787 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
788 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
789 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
790 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
791 if (!submitblocked)
792 retcode = IssueNextReadRequest(raidPtr, event->col);
793 break;
794
795 /* a write I/O has completed */
796 case RF_REVENT_WRITEDONE:
797 #if RF_DEBUG_RECON
798 if (rf_floatingRbufDebug) {
799 rf_CheckFloatingRbufCount(raidPtr, 1);
800 }
801 #endif
802 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
803 rbuf = (RF_ReconBuffer_t *) event->arg;
804 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
805 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
806 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
807 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
808 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
809 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
810
811 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
812 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
813 raidPtr->numFullReconBuffers--;
814 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
815 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
816 } else
817 if (rbuf->type == RF_RBUF_TYPE_FORCED)
818 rf_FreeReconBuffer(rbuf);
819 else
820 RF_ASSERT(0);
821 break;
822
823 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
824 * cleared */
825 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
826 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
827 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
828 * BUFCLEAR event if we
829 * couldn't submit */
830 retcode = IssueNextReadRequest(raidPtr, event->col);
831 break;
832
833 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
834 * blockage has been cleared */
835 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
836 retcode = TryToRead(raidPtr, event->col);
837 break;
838
839 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
840 * reconstruction blockage has been
841 * cleared */
842 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
843 retcode = TryToRead(raidPtr, event->col);
844 break;
845
846 /* a buffer has become ready to write */
847 case RF_REVENT_BUFREADY:
848 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
849 retcode = IssueNextWriteRequest(raidPtr);
850 #if RF_DEBUG_RECON
851 if (rf_floatingRbufDebug) {
852 rf_CheckFloatingRbufCount(raidPtr, 1);
853 }
854 #endif
855 break;
856
857 /* we need to skip the current RU entirely because it got
858 * recon'd while we were waiting for something else to happen */
859 case RF_REVENT_SKIP:
860 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
861 retcode = IssueNextReadRequest(raidPtr, event->col);
862 break;
863
864 /* a forced-reconstruction read access has completed. Just
865 * submit the buffer */
866 case RF_REVENT_FORCEDREADDONE:
867 rbuf = (RF_ReconBuffer_t *) event->arg;
868 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
869 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
870 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
871 RF_ASSERT(!submitblocked);
872 break;
873
874 default:
875 RF_PANIC();
876 }
877 rf_FreeReconEventDesc(event);
878 return (retcode);
879 }
880 /*****************************************************************************
881 *
882 * find the next thing that's needed on the indicated disk, and issue
883 * a read request for it. We assume that the reconstruction buffer
884 * associated with this process is free to receive the data. If
885 * reconstruction is blocked on the indicated RU, we issue a
886 * blockage-release request instead of a physical disk read request.
887 * If the current disk gets too far ahead of the others, we issue a
888 * head-separation wait request and return.
889 *
890 * ctrl->{ru_count, curPSID, diskOffset} and
891 * rbuf->failedDiskSectorOffset are maintained to point to the unit
892 * we're currently accessing. Note that this deviates from the
893 * standard C idiom of having counters point to the next thing to be
894 * accessed. This allows us to easily retry when we're blocked by
895 * head separation or reconstruction-blockage events.
896 *
897 * returns nonzero if and only if there is nothing left unread on the
898 * indicated disk
899 *
900 *****************************************************************************/
901 static int
902 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
903 {
904 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
905 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
906 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
907 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
908 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
909 int do_new_check = 0, retcode = 0, status;
910
911 /* if we are currently the slowest disk, mark that we have to do a new
912 * check */
913 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
914 do_new_check = 1;
915
916 while (1) {
917
918 ctrl->ru_count++;
919 if (ctrl->ru_count < RUsPerPU) {
920 ctrl->diskOffset += sectorsPerRU;
921 rbuf->failedDiskSectorOffset += sectorsPerRU;
922 } else {
923 ctrl->curPSID++;
924 ctrl->ru_count = 0;
925 /* code left over from when head-sep was based on
926 * parity stripe id */
927 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
928 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
929 return (1); /* finito! */
930 }
931 /* find the disk offsets of the start of the parity
932 * stripe on both the current disk and the failed
933 * disk. skip this entire parity stripe if either disk
934 * does not appear in the indicated PS */
935 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
936 &rbuf->spCol, &rbuf->spOffset);
937 if (status) {
938 ctrl->ru_count = RUsPerPU - 1;
939 continue;
940 }
941 }
942 rbuf->which_ru = ctrl->ru_count;
943
944 /* skip this RU if it's already been reconstructed */
945 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
946 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
947 continue;
948 }
949 break;
950 }
951 ctrl->headSepCounter++;
952 if (do_new_check)
953 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
954
955
956 /* at this point, we have definitely decided what to do, and we have
957 * only to see if we can actually do it now */
958 rbuf->parityStripeID = ctrl->curPSID;
959 rbuf->which_ru = ctrl->ru_count;
960 memset((char *) &raidPtr->recon_tracerecs[col], 0,
961 sizeof(raidPtr->recon_tracerecs[col]));
962 raidPtr->recon_tracerecs[col].reconacc = 1;
963 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
964 retcode = TryToRead(raidPtr, col);
965 return (retcode);
966 }
967
968 /*
969 * tries to issue the next read on the indicated disk. We may be
970 * blocked by (a) the heads being too far apart, or (b) recon on the
971 * indicated RU being blocked due to a write by a user thread. In
972 * this case, we issue a head-sep or blockage wait request, which will
973 * cause this same routine to be invoked again later when the blockage
974 * has cleared.
975 */
976
977 static int
978 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
979 {
980 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
981 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
982 RF_StripeNum_t psid = ctrl->curPSID;
983 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
984 RF_DiskQueueData_t *req;
985 int status, created = 0;
986 RF_ReconParityStripeStatus_t *pssPtr;
987
988 /* if the current disk is too far ahead of the others, issue a
989 * head-separation wait and return */
990 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
991 return (0);
992 RF_LOCK_PSS_MUTEX(raidPtr, psid);
993 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
994
995 /* if recon is blocked on the indicated parity stripe, issue a
996 * block-wait request and return. this also must mark the indicated RU
997 * in the stripe as under reconstruction if not blocked. */
998 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
999 if (status == RF_PSS_RECON_BLOCKED) {
1000 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1001 goto out;
1002 } else
1003 if (status == RF_PSS_FORCED_ON_WRITE) {
1004 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1005 goto out;
1006 }
1007 /* make one last check to be sure that the indicated RU didn't get
1008 * reconstructed while we were waiting for something else to happen.
1009 * This is unfortunate in that it causes us to make this check twice
1010 * in the normal case. Might want to make some attempt to re-work
1011 * this so that we only do this check if we've definitely blocked on
1012 * one of the above checks. When this condition is detected, we may
1013 * have just created a bogus status entry, which we need to delete. */
1014 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1015 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1016 if (created)
1017 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1018 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1019 goto out;
1020 }
1021 /* found something to read. issue the I/O */
1022 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1023 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1024 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1025 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1026 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1027 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1028 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1029
1030 /* should be ok to use a NULL proc pointer here, all the bufs we use
1031 * should be in kernel space */
1032 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1033 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1034
1035 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1036
1037 ctrl->rbuf->arg = (void *) req;
1038 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1039 pssPtr->issued[col] = 1;
1040
1041 out:
1042 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1043 return (0);
1044 }
1045
1046
1047 /*
1048 * given a parity stripe ID, we want to find out whether both the
1049 * current disk and the failed disk exist in that parity stripe. If
1050 * not, we want to skip this whole PS. If so, we want to find the
1051 * disk offset of the start of the PS on both the current disk and the
1052 * failed disk.
1053 *
1054 * this works by getting a list of disks comprising the indicated
1055 * parity stripe, and searching the list for the current and failed
1056 * disks. Once we've decided they both exist in the parity stripe, we
1057 * need to decide whether each is data or parity, so that we'll know
1058 * which mapping function to call to get the corresponding disk
1059 * offsets.
1060 *
1061 * this is kind of unpleasant, but doing it this way allows the
1062 * reconstruction code to use parity stripe IDs rather than physical
1063 * disks address to march through the failed disk, which greatly
1064 * simplifies a lot of code, as well as eliminating the need for a
1065 * reverse-mapping function. I also think it will execute faster,
1066 * since the calls to the mapping module are kept to a minimum.
1067 *
1068 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1069 * THE STRIPE IN THE CORRECT ORDER
1070 *
1071 * raidPtr - raid descriptor
1072 * psid - parity stripe identifier
1073 * col - column of disk to find the offsets for
1074 * spCol - out: col of spare unit for failed unit
1075 * spOffset - out: offset into disk containing spare unit
1076 *
1077 */
1078
1079
1080 static int
1081 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1082 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1083 RF_SectorNum_t *outFailedDiskSectorOffset,
1084 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1085 {
1086 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1087 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1088 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1089 RF_RowCol_t *diskids;
1090 u_int i, j, k, i_offset, j_offset;
1091 RF_RowCol_t pcol;
1092 int testcol;
1093 RF_SectorNum_t poffset;
1094 char i_is_parity = 0, j_is_parity = 0;
1095 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1096
1097 /* get a listing of the disks comprising that stripe */
1098 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1099 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1100 RF_ASSERT(diskids);
1101
1102 /* reject this entire parity stripe if it does not contain the
1103 * indicated disk or it does not contain the failed disk */
1104
1105 for (i = 0; i < stripeWidth; i++) {
1106 if (col == diskids[i])
1107 break;
1108 }
1109 if (i == stripeWidth)
1110 goto skipit;
1111 for (j = 0; j < stripeWidth; j++) {
1112 if (fcol == diskids[j])
1113 break;
1114 }
1115 if (j == stripeWidth) {
1116 goto skipit;
1117 }
1118 /* find out which disk the parity is on */
1119 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1120
1121 /* find out if either the current RU or the failed RU is parity */
1122 /* also, if the parity occurs in this stripe prior to the data and/or
1123 * failed col, we need to decrement i and/or j */
1124 for (k = 0; k < stripeWidth; k++)
1125 if (diskids[k] == pcol)
1126 break;
1127 RF_ASSERT(k < stripeWidth);
1128 i_offset = i;
1129 j_offset = j;
1130 if (k < i)
1131 i_offset--;
1132 else
1133 if (k == i) {
1134 i_is_parity = 1;
1135 i_offset = 0;
1136 } /* set offsets to zero to disable multiply
1137 * below */
1138 if (k < j)
1139 j_offset--;
1140 else
1141 if (k == j) {
1142 j_is_parity = 1;
1143 j_offset = 0;
1144 }
1145 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1146 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1147 * tells us how far into the stripe the [current,failed] disk is. */
1148
1149 /* call the mapping routine to get the offset into the current disk,
1150 * repeat for failed disk. */
1151 if (i_is_parity)
1152 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1153 else
1154 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1155
1156 RF_ASSERT(col == testcol);
1157
1158 if (j_is_parity)
1159 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1160 else
1161 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1162 RF_ASSERT(fcol == testcol);
1163
1164 /* now locate the spare unit for the failed unit */
1165 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1166 if (j_is_parity)
1167 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1168 else
1169 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1170 } else {
1171 *spCol = raidPtr->reconControl->spareCol;
1172 *spOffset = *outFailedDiskSectorOffset;
1173 }
1174
1175 return (0);
1176
1177 skipit:
1178 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1179 psid, col);
1180 return (1);
1181 }
1182 /* this is called when a buffer has become ready to write to the replacement disk */
1183 static int
1184 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1185 {
1186 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1187 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1188 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1189 RF_ReconBuffer_t *rbuf;
1190 RF_DiskQueueData_t *req;
1191
1192 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1193 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1194 * have gotten the event that sent us here */
1195 RF_ASSERT(rbuf->pssPtr);
1196
1197 rbuf->pssPtr->writeRbuf = rbuf;
1198 rbuf->pssPtr = NULL;
1199
1200 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1201 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1202 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1203 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1204 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1205 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1206
1207 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1208 * kernel space */
1209 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1210 sectorsPerRU, rbuf->buffer,
1211 rbuf->parityStripeID, rbuf->which_ru,
1212 ReconWriteDoneProc, (void *) rbuf, NULL,
1213 &raidPtr->recon_tracerecs[fcol],
1214 (void *) raidPtr, 0, NULL);
1215
1216 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1217
1218 rbuf->arg = (void *) req;
1219 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1220
1221 return (0);
1222 }
1223
1224 /*
1225 * this gets called upon the completion of a reconstruction read
1226 * operation the arg is a pointer to the per-disk reconstruction
1227 * control structure for the process that just finished a read.
1228 *
1229 * called at interrupt context in the kernel, so don't do anything
1230 * illegal here.
1231 */
1232 static int
1233 ReconReadDoneProc(void *arg, int status)
1234 {
1235 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1236 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1237
1238 if (status) {
1239 /*
1240 * XXX
1241 */
1242 printf("Recon read failed!\n");
1243 RF_PANIC();
1244 }
1245 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1246 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1247 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1248 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1249 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1250
1251 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1252 return (0);
1253 }
1254 /* this gets called upon the completion of a reconstruction write operation.
1255 * the arg is a pointer to the rbuf that was just written
1256 *
1257 * called at interrupt context in the kernel, so don't do anything illegal here.
1258 */
1259 static int
1260 ReconWriteDoneProc(void *arg, int status)
1261 {
1262 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1263
1264 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1265 if (status) {
1266 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1267 * write failed!\n"); */
1268 RF_PANIC();
1269 }
1270 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1271 return (0);
1272 }
1273
1274
1275 /*
1276 * computes a new minimum head sep, and wakes up anyone who needs to
1277 * be woken as a result
1278 */
1279 static void
1280 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1281 {
1282 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1283 RF_HeadSepLimit_t new_min;
1284 RF_RowCol_t i;
1285 RF_CallbackDesc_t *p;
1286 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1287 * of a minimum */
1288
1289
1290 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1291
1292 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1293 for (i = 0; i < raidPtr->numCol; i++)
1294 if (i != reconCtrlPtr->fcol) {
1295 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1296 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1297 }
1298 /* set the new minimum and wake up anyone who can now run again */
1299 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1300 reconCtrlPtr->minHeadSepCounter = new_min;
1301 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1302 while (reconCtrlPtr->headSepCBList) {
1303 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1304 break;
1305 p = reconCtrlPtr->headSepCBList;
1306 reconCtrlPtr->headSepCBList = p->next;
1307 p->next = NULL;
1308 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1309 rf_FreeCallbackDesc(p);
1310 }
1311
1312 }
1313 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1314 }
1315
1316 /*
1317 * checks to see that the maximum head separation will not be violated
1318 * if we initiate a reconstruction I/O on the indicated disk.
1319 * Limiting the maximum head separation between two disks eliminates
1320 * the nasty buffer-stall conditions that occur when one disk races
1321 * ahead of the others and consumes all of the floating recon buffers.
1322 * This code is complex and unpleasant but it's necessary to avoid
1323 * some very nasty, albeit fairly rare, reconstruction behavior.
1324 *
1325 * returns non-zero if and only if we have to stop working on the
1326 * indicated disk due to a head-separation delay.
1327 */
1328 static int
1329 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1330 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1331 RF_ReconUnitNum_t which_ru)
1332 {
1333 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1334 RF_CallbackDesc_t *cb, *p, *pt;
1335 int retval = 0;
1336
1337 /* if we're too far ahead of the slowest disk, stop working on this
1338 * disk until the slower ones catch up. We do this by scheduling a
1339 * wakeup callback for the time when the slowest disk has caught up.
1340 * We define "caught up" with 20% hysteresis, i.e. the head separation
1341 * must have fallen to at most 80% of the max allowable head
1342 * separation before we'll wake up.
1343 *
1344 */
1345 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1346 if ((raidPtr->headSepLimit >= 0) &&
1347 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1348 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1349 raidPtr->raidid, col, ctrl->headSepCounter,
1350 reconCtrlPtr->minHeadSepCounter,
1351 raidPtr->headSepLimit);
1352 cb = rf_AllocCallbackDesc();
1353 /* the minHeadSepCounter value we have to get to before we'll
1354 * wake up. build in 20% hysteresis. */
1355 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1356 cb->col = col;
1357 cb->next = NULL;
1358
1359 /* insert this callback descriptor into the sorted list of
1360 * pending head-sep callbacks */
1361 p = reconCtrlPtr->headSepCBList;
1362 if (!p)
1363 reconCtrlPtr->headSepCBList = cb;
1364 else
1365 if (cb->callbackArg.v < p->callbackArg.v) {
1366 cb->next = reconCtrlPtr->headSepCBList;
1367 reconCtrlPtr->headSepCBList = cb;
1368 } else {
1369 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1370 cb->next = p;
1371 pt->next = cb;
1372 }
1373 retval = 1;
1374 #if RF_RECON_STATS > 0
1375 ctrl->reconCtrl->reconDesc->hsStallCount++;
1376 #endif /* RF_RECON_STATS > 0 */
1377 }
1378 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1379
1380 return (retval);
1381 }
1382 /*
1383 * checks to see if reconstruction has been either forced or blocked
1384 * by a user operation. if forced, we skip this RU entirely. else if
1385 * blocked, put ourselves on the wait list. else return 0.
1386 *
1387 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1388 */
1389 static int
1390 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1391 RF_ReconParityStripeStatus_t *pssPtr,
1392 RF_PerDiskReconCtrl_t *ctrl,
1393 RF_RowCol_t col, RF_StripeNum_t psid,
1394 RF_ReconUnitNum_t which_ru)
1395 {
1396 RF_CallbackDesc_t *cb;
1397 int retcode = 0;
1398
1399 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1400 retcode = RF_PSS_FORCED_ON_WRITE;
1401 else
1402 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1403 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1404 cb = rf_AllocCallbackDesc(); /* append ourselves to
1405 * the blockage-wait
1406 * list */
1407 cb->col = col;
1408 cb->next = pssPtr->blockWaitList;
1409 pssPtr->blockWaitList = cb;
1410 retcode = RF_PSS_RECON_BLOCKED;
1411 }
1412 if (!retcode)
1413 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1414 * reconstruction */
1415
1416 return (retcode);
1417 }
1418 /*
1419 * if reconstruction is currently ongoing for the indicated stripeID,
1420 * reconstruction is forced to completion and we return non-zero to
1421 * indicate that the caller must wait. If not, then reconstruction is
1422 * blocked on the indicated stripe and the routine returns zero. If
1423 * and only if we return non-zero, we'll cause the cbFunc to get
1424 * invoked with the cbArg when the reconstruction has completed.
1425 */
1426 int
1427 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1428 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1429 {
1430 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1431 * forcing recon on */
1432 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1433 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1434 * stripe status structure */
1435 RF_StripeNum_t psid; /* parity stripe id */
1436 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1437 * offset */
1438 RF_RowCol_t *diskids;
1439 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1440 RF_RowCol_t fcol, diskno, i;
1441 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1442 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1443 RF_CallbackDesc_t *cb;
1444 int created = 0, nPromoted;
1445
1446 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1447
1448 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1449
1450 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1451
1452 /* if recon is not ongoing on this PS, just return */
1453 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1454 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1455 return (0);
1456 }
1457 /* otherwise, we have to wait for reconstruction to complete on this
1458 * RU. */
1459 /* In order to avoid waiting for a potentially large number of
1460 * low-priority accesses to complete, we force a normal-priority (i.e.
1461 * not low-priority) reconstruction on this RU. */
1462 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1463 DDprintf1("Forcing recon on psid %ld\n", psid);
1464 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1465 * forced recon */
1466 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1467 * that we just set */
1468 fcol = raidPtr->reconControl->fcol;
1469
1470 /* get a listing of the disks comprising the indicated stripe */
1471 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1472
1473 /* For previously issued reads, elevate them to normal
1474 * priority. If the I/O has already completed, it won't be
1475 * found in the queue, and hence this will be a no-op. For
1476 * unissued reads, allocate buffers and issue new reads. The
1477 * fact that we've set the FORCED bit means that the regular
1478 * recon procs will not re-issue these reqs */
1479 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1480 if ((diskno = diskids[i]) != fcol) {
1481 if (pssPtr->issued[diskno]) {
1482 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1483 if (rf_reconDebug && nPromoted)
1484 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1485 } else {
1486 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1487 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1488 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1489 * location */
1490 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1491 new_rbuf->which_ru = which_ru;
1492 new_rbuf->failedDiskSectorOffset = fd_offset;
1493 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1494
1495 /* use NULL b_proc b/c all addrs
1496 * should be in kernel space */
1497 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1498 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1499 NULL, (void *) raidPtr, 0, NULL);
1500
1501 RF_ASSERT(req); /* XXX -- fix this --
1502 * XXX */
1503
1504 new_rbuf->arg = req;
1505 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1506 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1507 }
1508 }
1509 /* if the write is sitting in the disk queue, elevate its
1510 * priority */
1511 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1512 printf("raid%d: promoted write to col %d\n",
1513 raidPtr->raidid, fcol);
1514 }
1515 /* install a callback descriptor to be invoked when recon completes on
1516 * this parity stripe. */
1517 cb = rf_AllocCallbackDesc();
1518 /* XXX the following is bogus.. These functions don't really match!!
1519 * GO */
1520 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1521 cb->callbackArg.p = (void *) cbArg;
1522 cb->next = pssPtr->procWaitList;
1523 pssPtr->procWaitList = cb;
1524 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1525 raidPtr->raidid, psid);
1526
1527 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1528 return (1);
1529 }
1530 /* called upon the completion of a forced reconstruction read.
1531 * all we do is schedule the FORCEDREADONE event.
1532 * called at interrupt context in the kernel, so don't do anything illegal here.
1533 */
1534 static void
1535 ForceReconReadDoneProc(void *arg, int status)
1536 {
1537 RF_ReconBuffer_t *rbuf = arg;
1538
1539 if (status) {
1540 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1541 * recon read
1542 * failed!\n"); */
1543 RF_PANIC();
1544 }
1545 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1546 }
1547 /* releases a block on the reconstruction of the indicated stripe */
1548 int
1549 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1550 {
1551 RF_StripeNum_t stripeID = asmap->stripeID;
1552 RF_ReconParityStripeStatus_t *pssPtr;
1553 RF_ReconUnitNum_t which_ru;
1554 RF_StripeNum_t psid;
1555 int created = 0;
1556 RF_CallbackDesc_t *cb;
1557
1558 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1559 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1560 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1561
1562 /* When recon is forced, the pss desc can get deleted before we get
1563 * back to unblock recon. But, this can _only_ happen when recon is
1564 * forced. It would be good to put some kind of sanity check here, but
1565 * how to decide if recon was just forced or not? */
1566 if (!pssPtr) {
1567 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1568 * RU %d\n",psid,which_ru); */
1569 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1570 if (rf_reconDebug || rf_pssDebug)
1571 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1572 #endif
1573 goto out;
1574 }
1575 pssPtr->blockCount--;
1576 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1577 raidPtr->raidid, psid, pssPtr->blockCount);
1578 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1579
1580 /* unblock recon before calling CauseReconEvent in case
1581 * CauseReconEvent causes us to try to issue a new read before
1582 * returning here. */
1583 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1584
1585
1586 while (pssPtr->blockWaitList) {
1587 /* spin through the block-wait list and
1588 release all the waiters */
1589 cb = pssPtr->blockWaitList;
1590 pssPtr->blockWaitList = cb->next;
1591 cb->next = NULL;
1592 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1593 rf_FreeCallbackDesc(cb);
1594 }
1595 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1596 /* if no recon was requested while recon was blocked */
1597 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1598 }
1599 }
1600 out:
1601 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1602 return (0);
1603 }
1604