rf_reconstruct.c revision 1.65 1 /* $NetBSD: rf_reconstruct.c,v 1.65 2004/01/04 21:06:04 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.65 2004/01/04 21:06:04 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105 int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115 RF_SectorNum_t * outFailedDiskSectorOffset,
116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125 RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129 RF_RowCol_t col, RF_StripeNum_t psid,
130 RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132
133 static void rf_ShutdownReconstruction(void *);
134
135 struct RF_ReconDoneProc_s {
136 void (*proc) (RF_Raid_t *, void *);
137 void *arg;
138 RF_ReconDoneProc_t *next;
139 };
140
141 /**************************************************************************
142 *
143 * sets up the parameters that will be used by the reconstruction process
144 * currently there are none, except for those that the layout-specific
145 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
146 *
147 * in the kernel, we fire off the recon thread.
148 *
149 **************************************************************************/
150 static void
151 rf_ShutdownReconstruction(void *ignored)
152 {
153 pool_destroy(&rf_recond_pool);
154 }
155
156 int
157 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
158 {
159 int rc;
160
161 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
162 "rf_recond_pl", NULL);
163 rc = rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
164 if (rc) {
165 rf_print_unable_to_add_shutdown(__FILE__, __LINE__, rc);
166 rf_ShutdownReconstruction(NULL);
167 return (rc);
168 }
169 return (0);
170 }
171
172 static RF_RaidReconDesc_t *
173 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
174 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
175 RF_RowCol_t scol)
176 {
177
178 RF_RaidReconDesc_t *reconDesc;
179
180 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
181
182 reconDesc->raidPtr = raidPtr;
183 reconDesc->col = col;
184 reconDesc->spareDiskPtr = spareDiskPtr;
185 reconDesc->numDisksDone = numDisksDone;
186 reconDesc->scol = scol;
187 reconDesc->state = 0;
188 reconDesc->next = NULL;
189
190 return (reconDesc);
191 }
192
193 static void
194 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
195 {
196 #if RF_RECON_STATS > 0
197 printf("raid%d: %lu recon event waits, %lu recon delays\n",
198 reconDesc->raidPtr->raidid,
199 (long) reconDesc->numReconEventWaits,
200 (long) reconDesc->numReconExecDelays);
201 #endif /* RF_RECON_STATS > 0 */
202 printf("raid%d: %lu max exec ticks\n",
203 reconDesc->raidPtr->raidid,
204 (long) reconDesc->maxReconExecTicks);
205 #if (RF_RECON_STATS > 0) || defined(KERNEL)
206 printf("\n");
207 #endif /* (RF_RECON_STATS > 0) || KERNEL */
208 pool_put(&rf_recond_pool, reconDesc);
209 }
210
211
212 /*****************************************************************************
213 *
214 * primary routine to reconstruct a failed disk. This should be called from
215 * within its own thread. It won't return until reconstruction completes,
216 * fails, or is aborted.
217 *****************************************************************************/
218 int
219 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
220 {
221 const RF_LayoutSW_t *lp;
222 int rc;
223
224 lp = raidPtr->Layout.map;
225 if (lp->SubmitReconBuffer) {
226 /*
227 * The current infrastructure only supports reconstructing one
228 * disk at a time for each array.
229 */
230 RF_LOCK_MUTEX(raidPtr->mutex);
231 while (raidPtr->reconInProgress) {
232 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
233 }
234 raidPtr->reconInProgress++;
235 RF_UNLOCK_MUTEX(raidPtr->mutex);
236 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
237 RF_LOCK_MUTEX(raidPtr->mutex);
238 raidPtr->reconInProgress--;
239 RF_UNLOCK_MUTEX(raidPtr->mutex);
240 } else {
241 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
242 lp->parityConfig);
243 rc = EIO;
244 }
245 RF_SIGNAL_COND(raidPtr->waitForReconCond);
246 return (rc);
247 }
248
249 int
250 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
251 {
252 RF_ComponentLabel_t c_label;
253 RF_RaidDisk_t *spareDiskPtr = NULL;
254 RF_RaidReconDesc_t *reconDesc;
255 RF_RowCol_t scol;
256 int numDisksDone = 0, rc;
257
258 /* first look for a spare drive onto which to reconstruct the data */
259 /* spare disk descriptors are stored in row 0. This may have to
260 * change eventually */
261
262 RF_LOCK_MUTEX(raidPtr->mutex);
263 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
264
265 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
266 if (raidPtr->status != rf_rs_degraded) {
267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
268 RF_UNLOCK_MUTEX(raidPtr->mutex);
269 return (EINVAL);
270 }
271 scol = (-1);
272 } else {
273 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
274 if (raidPtr->Disks[scol].status == rf_ds_spare) {
275 spareDiskPtr = &raidPtr->Disks[scol];
276 spareDiskPtr->status = rf_ds_used_spare;
277 break;
278 }
279 }
280 if (!spareDiskPtr) {
281 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283 return (ENOSPC);
284 }
285 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
286 }
287 RF_UNLOCK_MUTEX(raidPtr->mutex);
288
289 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
290 raidPtr->reconDesc = (void *) reconDesc;
291 #if RF_RECON_STATS > 0
292 reconDesc->hsStallCount = 0;
293 reconDesc->numReconExecDelays = 0;
294 reconDesc->numReconEventWaits = 0;
295 #endif /* RF_RECON_STATS > 0 */
296 reconDesc->reconExecTimerRunning = 0;
297 reconDesc->reconExecTicks = 0;
298 reconDesc->maxReconExecTicks = 0;
299 rc = rf_ContinueReconstructFailedDisk(reconDesc);
300
301 if (!rc) {
302 /* fix up the component label */
303 /* Don't actually need the read here.. */
304 raidread_component_label(
305 raidPtr->raid_cinfo[scol].ci_dev,
306 raidPtr->raid_cinfo[scol].ci_vp,
307 &c_label);
308
309 raid_init_component_label( raidPtr, &c_label);
310 c_label.row = 0;
311 c_label.column = col;
312 c_label.clean = RF_RAID_DIRTY;
313 c_label.status = rf_ds_optimal;
314 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
315
316 /* We've just done a rebuild based on all the other
317 disks, so at this point the parity is known to be
318 clean, even if it wasn't before. */
319
320 /* XXX doesn't hold for RAID 6!!*/
321
322 RF_LOCK_MUTEX(raidPtr->mutex);
323 raidPtr->parity_good = RF_RAID_CLEAN;
324 RF_UNLOCK_MUTEX(raidPtr->mutex);
325
326 /* XXXX MORE NEEDED HERE */
327
328 raidwrite_component_label(
329 raidPtr->raid_cinfo[scol].ci_dev,
330 raidPtr->raid_cinfo[scol].ci_vp,
331 &c_label);
332
333
334 rf_update_component_labels(raidPtr,
335 RF_NORMAL_COMPONENT_UPDATE);
336
337 }
338 return (rc);
339 }
340
341 /*
342
343 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
344 and you don't get a spare until the next Monday. With this function
345 (and hot-swappable drives) you can now put your new disk containing
346 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
347 rebuild the data "on the spot".
348
349 */
350
351 int
352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
353 {
354 RF_RaidDisk_t *spareDiskPtr = NULL;
355 RF_RaidReconDesc_t *reconDesc;
356 const RF_LayoutSW_t *lp;
357 RF_ComponentLabel_t c_label;
358 int numDisksDone = 0, rc;
359 struct partinfo dpart;
360 struct vnode *vp;
361 struct vattr va;
362 struct proc *proc;
363 int retcode;
364 int ac;
365
366 lp = raidPtr->Layout.map;
367 if (!lp->SubmitReconBuffer) {
368 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
369 lp->parityConfig);
370 /* wakeup anyone who might be waiting to do a reconstruct */
371 RF_SIGNAL_COND(raidPtr->waitForReconCond);
372 return(EIO);
373 }
374
375 /*
376 * The current infrastructure only supports reconstructing one
377 * disk at a time for each array.
378 */
379 RF_LOCK_MUTEX(raidPtr->mutex);
380
381 if (raidPtr->Disks[col].status != rf_ds_failed) {
382 /* "It's gone..." */
383 raidPtr->numFailures++;
384 raidPtr->Disks[col].status = rf_ds_failed;
385 raidPtr->status = rf_rs_degraded;
386 RF_UNLOCK_MUTEX(raidPtr->mutex);
387 rf_update_component_labels(raidPtr,
388 RF_NORMAL_COMPONENT_UPDATE);
389 RF_LOCK_MUTEX(raidPtr->mutex);
390 }
391
392 while (raidPtr->reconInProgress) {
393 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
394 }
395
396 raidPtr->reconInProgress++;
397
398 /* first look for a spare drive onto which to reconstruct the
399 data. spare disk descriptors are stored in row 0. This
400 may have to change eventually */
401
402 /* Actually, we don't care if it's failed or not... On a RAID
403 set with correct parity, this function should be callable
404 on any component without ill affects. */
405 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
406
407 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
408 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
409
410 raidPtr->reconInProgress--;
411 RF_UNLOCK_MUTEX(raidPtr->mutex);
412 RF_SIGNAL_COND(raidPtr->waitForReconCond);
413 return (EINVAL);
414 }
415
416 proc = raidPtr->engine_thread;
417
418 /* This device may have been opened successfully the
419 first time. Close it before trying to open it again.. */
420
421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 printf("Closed the open device: %s\n",
424 raidPtr->Disks[col].devname);
425 #endif
426 vp = raidPtr->raid_cinfo[col].ci_vp;
427 ac = raidPtr->Disks[col].auto_configured;
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 rf_close_component(raidPtr, vp, ac);
430 RF_LOCK_MUTEX(raidPtr->mutex);
431 raidPtr->raid_cinfo[col].ci_vp = NULL;
432 }
433 /* note that this disk was *not* auto_configured (any longer)*/
434 raidPtr->Disks[col].auto_configured = 0;
435
436 #if 0
437 printf("About to (re-)open the device for rebuilding: %s\n",
438 raidPtr->Disks[col].devname);
439 #endif
440 RF_UNLOCK_MUTEX(raidPtr->mutex);
441 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
442
443 if (retcode) {
444 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
445 raidPtr->Disks[col].devname, retcode);
446
447 /* the component isn't responding properly...
448 must be still dead :-( */
449 RF_LOCK_MUTEX(raidPtr->mutex);
450 raidPtr->reconInProgress--;
451 RF_UNLOCK_MUTEX(raidPtr->mutex);
452 RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 return(retcode);
454 }
455
456 /* Ok, so we can at least do a lookup...
457 How about actually getting a vp for it? */
458
459 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
460 RF_LOCK_MUTEX(raidPtr->mutex);
461 raidPtr->reconInProgress--;
462 RF_UNLOCK_MUTEX(raidPtr->mutex);
463 RF_SIGNAL_COND(raidPtr->waitForReconCond);
464 return(retcode);
465 }
466
467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
468 if (retcode) {
469 RF_LOCK_MUTEX(raidPtr->mutex);
470 raidPtr->reconInProgress--;
471 RF_UNLOCK_MUTEX(raidPtr->mutex);
472 RF_SIGNAL_COND(raidPtr->waitForReconCond);
473 return(retcode);
474 }
475 RF_LOCK_MUTEX(raidPtr->mutex);
476 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
477
478 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
479 rf_protectedSectors;
480
481 raidPtr->raid_cinfo[col].ci_vp = vp;
482 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
483
484 raidPtr->Disks[col].dev = va.va_rdev;
485
486 /* we allow the user to specify that only a fraction
487 of the disks should be used this is just for debug:
488 it speeds up * the parity scan */
489 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
490 rf_sizePercentage / 100;
491 RF_UNLOCK_MUTEX(raidPtr->mutex);
492
493 spareDiskPtr = &raidPtr->Disks[col];
494 spareDiskPtr->status = rf_ds_used_spare;
495
496 printf("raid%d: initiating in-place reconstruction on column %d\n",
497 raidPtr->raidid, col);
498
499 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
500 numDisksDone, col);
501 raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 reconDesc->hsStallCount = 0;
504 reconDesc->numReconExecDelays = 0;
505 reconDesc->numReconEventWaits = 0;
506 #endif /* RF_RECON_STATS > 0 */
507 reconDesc->reconExecTimerRunning = 0;
508 reconDesc->reconExecTicks = 0;
509 reconDesc->maxReconExecTicks = 0;
510 rc = rf_ContinueReconstructFailedDisk(reconDesc);
511
512 RF_LOCK_MUTEX(raidPtr->mutex);
513 raidPtr->reconInProgress--;
514 RF_UNLOCK_MUTEX(raidPtr->mutex);
515
516 if (!rc) {
517 RF_LOCK_MUTEX(raidPtr->mutex);
518 /* Need to set these here, as at this point it'll be claiming
519 that the disk is in rf_ds_spared! But we know better :-) */
520
521 raidPtr->Disks[col].status = rf_ds_optimal;
522 raidPtr->status = rf_rs_optimal;
523 RF_UNLOCK_MUTEX(raidPtr->mutex);
524
525 /* fix up the component label */
526 /* Don't actually need the read here.. */
527 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
528 raidPtr->raid_cinfo[col].ci_vp,
529 &c_label);
530
531 RF_LOCK_MUTEX(raidPtr->mutex);
532 raid_init_component_label(raidPtr, &c_label);
533
534 c_label.row = 0;
535 c_label.column = col;
536
537 /* We've just done a rebuild based on all the other
538 disks, so at this point the parity is known to be
539 clean, even if it wasn't before. */
540
541 /* XXX doesn't hold for RAID 6!!*/
542
543 raidPtr->parity_good = RF_RAID_CLEAN;
544 RF_UNLOCK_MUTEX(raidPtr->mutex);
545
546 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
547 raidPtr->raid_cinfo[col].ci_vp,
548 &c_label);
549
550 rf_update_component_labels(raidPtr,
551 RF_NORMAL_COMPONENT_UPDATE);
552
553 }
554 RF_SIGNAL_COND(raidPtr->waitForReconCond);
555 return (rc);
556 }
557
558
559 int
560 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
561 {
562 RF_Raid_t *raidPtr = reconDesc->raidPtr;
563 RF_RowCol_t col = reconDesc->col;
564 RF_RowCol_t scol = reconDesc->scol;
565 RF_ReconMap_t *mapPtr;
566 RF_ReconCtrl_t *tmp_reconctrl;
567 RF_ReconEvent_t *event;
568 struct timeval etime, elpsd;
569 unsigned long xor_s, xor_resid_us;
570 int i, ds;
571
572 switch (reconDesc->state) {
573
574
575 case 0:
576
577 raidPtr->accumXorTimeUs = 0;
578
579 /* create one trace record per physical disk */
580 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
581
582 /* quiesce the array prior to starting recon. this is needed
583 * to assure no nasty interactions with pending user writes.
584 * We need to do this before we change the disk or row status. */
585 reconDesc->state = 1;
586
587 Dprintf("RECON: begin request suspend\n");
588 rf_SuspendNewRequestsAndWait(raidPtr);
589 Dprintf("RECON: end request suspend\n");
590 rf_StartUserStats(raidPtr); /* zero out the stats kept on
591 * user accs */
592
593 /* fall through to state 1 */
594
595 case 1:
596
597 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
598 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
599
600 RF_LOCK_MUTEX(raidPtr->mutex);
601
602 /* create the reconstruction control pointer and install it in
603 * the right slot */
604 raidPtr->reconControl = tmp_reconctrl;
605 mapPtr = raidPtr->reconControl->reconMap;
606 raidPtr->status = rf_rs_reconstructing;
607 raidPtr->Disks[col].status = rf_ds_reconstructing;
608 raidPtr->Disks[col].spareCol = scol;
609
610 RF_UNLOCK_MUTEX(raidPtr->mutex);
611
612 RF_GETTIME(raidPtr->reconControl->starttime);
613
614 /* now start up the actual reconstruction: issue a read for
615 * each surviving disk */
616
617 reconDesc->numDisksDone = 0;
618 for (i = 0; i < raidPtr->numCol; i++) {
619 if (i != col) {
620 /* find and issue the next I/O on the
621 * indicated disk */
622 if (IssueNextReadRequest(raidPtr, i)) {
623 Dprintf1("RECON: done issuing for c%d\n", i);
624 reconDesc->numDisksDone++;
625 }
626 }
627 }
628
629 case 2:
630 Dprintf("RECON: resume requests\n");
631 rf_ResumeNewRequests(raidPtr);
632
633
634 reconDesc->state = 3;
635
636 case 3:
637
638 /* process reconstruction events until all disks report that
639 * they've completed all work */
640 mapPtr = raidPtr->reconControl->reconMap;
641
642
643
644 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
645
646 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
647 RF_ASSERT(event);
648
649 if (ProcessReconEvent(raidPtr, event))
650 reconDesc->numDisksDone++;
651 raidPtr->reconControl->numRUsTotal =
652 mapPtr->totalRUs;
653 raidPtr->reconControl->numRUsComplete =
654 mapPtr->totalRUs -
655 rf_UnitsLeftToReconstruct(mapPtr);
656 #if RF_DEBUG_RECON
657 raidPtr->reconControl->percentComplete =
658 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
659 if (rf_prReconSched) {
660 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
661 }
662 #endif
663 }
664
665
666
667 reconDesc->state = 4;
668
669
670 case 4:
671 mapPtr = raidPtr->reconControl->reconMap;
672 if (rf_reconDebug) {
673 printf("RECON: all reads completed\n");
674 }
675 /* at this point all the reads have completed. We now wait
676 * for any pending writes to complete, and then we're done */
677
678 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
679
680 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
681 RF_ASSERT(event);
682
683 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
684 #if RF_DEBUG_RECON
685 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
686 if (rf_prReconSched) {
687 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
688 }
689 #endif
690 }
691 reconDesc->state = 5;
692
693 case 5:
694 /* Success: mark the dead disk as reconstructed. We quiesce
695 * the array here to assure no nasty interactions with pending
696 * user accesses when we free up the psstatus structure as
697 * part of FreeReconControl() */
698
699 reconDesc->state = 6;
700
701 rf_SuspendNewRequestsAndWait(raidPtr);
702 rf_StopUserStats(raidPtr);
703 rf_PrintUserStats(raidPtr); /* print out the stats on user
704 * accs accumulated during
705 * recon */
706
707 /* fall through to state 6 */
708 case 6:
709
710
711
712 RF_LOCK_MUTEX(raidPtr->mutex);
713 raidPtr->numFailures--;
714 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
715 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
716 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
717 RF_UNLOCK_MUTEX(raidPtr->mutex);
718 RF_GETTIME(etime);
719 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
720
721 /* XXX -- why is state 7 different from state 6 if there is no
722 * return() here? -- XXX Note that I set elpsd above & use it
723 * below, so if you put a return here you'll have to fix this.
724 * (also, FreeReconControl is called below) */
725
726 case 7:
727
728 rf_ResumeNewRequests(raidPtr);
729
730 printf("raid%d: Reconstruction of disk at col %d completed\n",
731 raidPtr->raidid, col);
732 xor_s = raidPtr->accumXorTimeUs / 1000000;
733 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
734 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
735 raidPtr->raidid,
736 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
737 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
738 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
739 raidPtr->raidid,
740 (int) raidPtr->reconControl->starttime.tv_sec,
741 (int) raidPtr->reconControl->starttime.tv_usec,
742 (int) etime.tv_sec, (int) etime.tv_usec);
743
744 #if RF_RECON_STATS > 0
745 printf("raid%d: Total head-sep stall count was %d\n",
746 raidPtr->raidid, (int) reconDesc->hsStallCount);
747 #endif /* RF_RECON_STATS > 0 */
748 rf_FreeReconControl(raidPtr);
749 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
750 FreeReconDesc(reconDesc);
751
752 }
753
754 return (0);
755 }
756 /*****************************************************************************
757 * do the right thing upon each reconstruction event.
758 * returns nonzero if and only if there is nothing left unread on the
759 * indicated disk
760 *****************************************************************************/
761 static int
762 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
763 {
764 int retcode = 0, submitblocked;
765 RF_ReconBuffer_t *rbuf;
766 RF_SectorCount_t sectorsPerRU;
767
768 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
769 switch (event->type) {
770
771 /* a read I/O has completed */
772 case RF_REVENT_READDONE:
773 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
774 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
775 event->col, rbuf->parityStripeID);
776 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
777 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
778 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
779 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
780 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
781 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
782 if (!submitblocked)
783 retcode = IssueNextReadRequest(raidPtr, event->col);
784 break;
785
786 /* a write I/O has completed */
787 case RF_REVENT_WRITEDONE:
788 #if RF_DEBUG_RECON
789 if (rf_floatingRbufDebug) {
790 rf_CheckFloatingRbufCount(raidPtr, 1);
791 }
792 #endif
793 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
794 rbuf = (RF_ReconBuffer_t *) event->arg;
795 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
796 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
797 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
798 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
799 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
800 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
801
802 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
803 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
804 raidPtr->numFullReconBuffers--;
805 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
806 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
807 } else
808 if (rbuf->type == RF_RBUF_TYPE_FORCED)
809 rf_FreeReconBuffer(rbuf);
810 else
811 RF_ASSERT(0);
812 break;
813
814 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
815 * cleared */
816 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
817 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
818 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
819 * BUFCLEAR event if we
820 * couldn't submit */
821 retcode = IssueNextReadRequest(raidPtr, event->col);
822 break;
823
824 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
825 * blockage has been cleared */
826 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
827 retcode = TryToRead(raidPtr, event->col);
828 break;
829
830 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
831 * reconstruction blockage has been
832 * cleared */
833 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
834 retcode = TryToRead(raidPtr, event->col);
835 break;
836
837 /* a buffer has become ready to write */
838 case RF_REVENT_BUFREADY:
839 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
840 retcode = IssueNextWriteRequest(raidPtr);
841 #if RF_DEBUG_RECON
842 if (rf_floatingRbufDebug) {
843 rf_CheckFloatingRbufCount(raidPtr, 1);
844 }
845 #endif
846 break;
847
848 /* we need to skip the current RU entirely because it got
849 * recon'd while we were waiting for something else to happen */
850 case RF_REVENT_SKIP:
851 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
852 retcode = IssueNextReadRequest(raidPtr, event->col);
853 break;
854
855 /* a forced-reconstruction read access has completed. Just
856 * submit the buffer */
857 case RF_REVENT_FORCEDREADDONE:
858 rbuf = (RF_ReconBuffer_t *) event->arg;
859 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
860 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
861 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
862 RF_ASSERT(!submitblocked);
863 break;
864
865 default:
866 RF_PANIC();
867 }
868 rf_FreeReconEventDesc(event);
869 return (retcode);
870 }
871 /*****************************************************************************
872 *
873 * find the next thing that's needed on the indicated disk, and issue
874 * a read request for it. We assume that the reconstruction buffer
875 * associated with this process is free to receive the data. If
876 * reconstruction is blocked on the indicated RU, we issue a
877 * blockage-release request instead of a physical disk read request.
878 * If the current disk gets too far ahead of the others, we issue a
879 * head-separation wait request and return.
880 *
881 * ctrl->{ru_count, curPSID, diskOffset} and
882 * rbuf->failedDiskSectorOffset are maintained to point to the unit
883 * we're currently accessing. Note that this deviates from the
884 * standard C idiom of having counters point to the next thing to be
885 * accessed. This allows us to easily retry when we're blocked by
886 * head separation or reconstruction-blockage events.
887 *
888 * returns nonzero if and only if there is nothing left unread on the
889 * indicated disk
890 *
891 *****************************************************************************/
892 static int
893 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
894 {
895 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
896 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
897 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
898 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
899 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
900 int do_new_check = 0, retcode = 0, status;
901
902 /* if we are currently the slowest disk, mark that we have to do a new
903 * check */
904 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
905 do_new_check = 1;
906
907 while (1) {
908
909 ctrl->ru_count++;
910 if (ctrl->ru_count < RUsPerPU) {
911 ctrl->diskOffset += sectorsPerRU;
912 rbuf->failedDiskSectorOffset += sectorsPerRU;
913 } else {
914 ctrl->curPSID++;
915 ctrl->ru_count = 0;
916 /* code left over from when head-sep was based on
917 * parity stripe id */
918 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
919 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
920 return (1); /* finito! */
921 }
922 /* find the disk offsets of the start of the parity
923 * stripe on both the current disk and the failed
924 * disk. skip this entire parity stripe if either disk
925 * does not appear in the indicated PS */
926 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
927 &rbuf->spCol, &rbuf->spOffset);
928 if (status) {
929 ctrl->ru_count = RUsPerPU - 1;
930 continue;
931 }
932 }
933 rbuf->which_ru = ctrl->ru_count;
934
935 /* skip this RU if it's already been reconstructed */
936 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
937 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
938 continue;
939 }
940 break;
941 }
942 ctrl->headSepCounter++;
943 if (do_new_check)
944 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
945
946
947 /* at this point, we have definitely decided what to do, and we have
948 * only to see if we can actually do it now */
949 rbuf->parityStripeID = ctrl->curPSID;
950 rbuf->which_ru = ctrl->ru_count;
951 memset((char *) &raidPtr->recon_tracerecs[col], 0,
952 sizeof(raidPtr->recon_tracerecs[col]));
953 raidPtr->recon_tracerecs[col].reconacc = 1;
954 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
955 retcode = TryToRead(raidPtr, col);
956 return (retcode);
957 }
958
959 /*
960 * tries to issue the next read on the indicated disk. We may be
961 * blocked by (a) the heads being too far apart, or (b) recon on the
962 * indicated RU being blocked due to a write by a user thread. In
963 * this case, we issue a head-sep or blockage wait request, which will
964 * cause this same routine to be invoked again later when the blockage
965 * has cleared.
966 */
967
968 static int
969 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
970 {
971 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
972 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
973 RF_StripeNum_t psid = ctrl->curPSID;
974 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
975 RF_DiskQueueData_t *req;
976 int status, created = 0;
977 RF_ReconParityStripeStatus_t *pssPtr;
978
979 /* if the current disk is too far ahead of the others, issue a
980 * head-separation wait and return */
981 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
982 return (0);
983 RF_LOCK_PSS_MUTEX(raidPtr, psid);
984 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
985
986 /* if recon is blocked on the indicated parity stripe, issue a
987 * block-wait request and return. this also must mark the indicated RU
988 * in the stripe as under reconstruction if not blocked. */
989 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
990 if (status == RF_PSS_RECON_BLOCKED) {
991 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
992 goto out;
993 } else
994 if (status == RF_PSS_FORCED_ON_WRITE) {
995 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
996 goto out;
997 }
998 /* make one last check to be sure that the indicated RU didn't get
999 * reconstructed while we were waiting for something else to happen.
1000 * This is unfortunate in that it causes us to make this check twice
1001 * in the normal case. Might want to make some attempt to re-work
1002 * this so that we only do this check if we've definitely blocked on
1003 * one of the above checks. When this condition is detected, we may
1004 * have just created a bogus status entry, which we need to delete. */
1005 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1006 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1007 if (created)
1008 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1009 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1010 goto out;
1011 }
1012 /* found something to read. issue the I/O */
1013 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1014 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1015 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1016 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1017 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1018 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1019 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1020
1021 /* should be ok to use a NULL proc pointer here, all the bufs we use
1022 * should be in kernel space */
1023 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1024 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1025
1026 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1027
1028 ctrl->rbuf->arg = (void *) req;
1029 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1030 pssPtr->issued[col] = 1;
1031
1032 out:
1033 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1034 return (0);
1035 }
1036
1037
1038 /*
1039 * given a parity stripe ID, we want to find out whether both the
1040 * current disk and the failed disk exist in that parity stripe. If
1041 * not, we want to skip this whole PS. If so, we want to find the
1042 * disk offset of the start of the PS on both the current disk and the
1043 * failed disk.
1044 *
1045 * this works by getting a list of disks comprising the indicated
1046 * parity stripe, and searching the list for the current and failed
1047 * disks. Once we've decided they both exist in the parity stripe, we
1048 * need to decide whether each is data or parity, so that we'll know
1049 * which mapping function to call to get the corresponding disk
1050 * offsets.
1051 *
1052 * this is kind of unpleasant, but doing it this way allows the
1053 * reconstruction code to use parity stripe IDs rather than physical
1054 * disks address to march through the failed disk, which greatly
1055 * simplifies a lot of code, as well as eliminating the need for a
1056 * reverse-mapping function. I also think it will execute faster,
1057 * since the calls to the mapping module are kept to a minimum.
1058 *
1059 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1060 * THE STRIPE IN THE CORRECT ORDER
1061 *
1062 * raidPtr - raid descriptor
1063 * psid - parity stripe identifier
1064 * col - column of disk to find the offsets for
1065 * spCol - out: col of spare unit for failed unit
1066 * spOffset - out: offset into disk containing spare unit
1067 *
1068 */
1069
1070
1071 static int
1072 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1073 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1074 RF_SectorNum_t *outFailedDiskSectorOffset,
1075 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1076 {
1077 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1078 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1079 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1080 RF_RowCol_t *diskids;
1081 u_int i, j, k, i_offset, j_offset;
1082 RF_RowCol_t pcol;
1083 int testcol;
1084 RF_SectorNum_t poffset;
1085 char i_is_parity = 0, j_is_parity = 0;
1086 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1087
1088 /* get a listing of the disks comprising that stripe */
1089 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1090 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1091 RF_ASSERT(diskids);
1092
1093 /* reject this entire parity stripe if it does not contain the
1094 * indicated disk or it does not contain the failed disk */
1095
1096 for (i = 0; i < stripeWidth; i++) {
1097 if (col == diskids[i])
1098 break;
1099 }
1100 if (i == stripeWidth)
1101 goto skipit;
1102 for (j = 0; j < stripeWidth; j++) {
1103 if (fcol == diskids[j])
1104 break;
1105 }
1106 if (j == stripeWidth) {
1107 goto skipit;
1108 }
1109 /* find out which disk the parity is on */
1110 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1111
1112 /* find out if either the current RU or the failed RU is parity */
1113 /* also, if the parity occurs in this stripe prior to the data and/or
1114 * failed col, we need to decrement i and/or j */
1115 for (k = 0; k < stripeWidth; k++)
1116 if (diskids[k] == pcol)
1117 break;
1118 RF_ASSERT(k < stripeWidth);
1119 i_offset = i;
1120 j_offset = j;
1121 if (k < i)
1122 i_offset--;
1123 else
1124 if (k == i) {
1125 i_is_parity = 1;
1126 i_offset = 0;
1127 } /* set offsets to zero to disable multiply
1128 * below */
1129 if (k < j)
1130 j_offset--;
1131 else
1132 if (k == j) {
1133 j_is_parity = 1;
1134 j_offset = 0;
1135 }
1136 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1137 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1138 * tells us how far into the stripe the [current,failed] disk is. */
1139
1140 /* call the mapping routine to get the offset into the current disk,
1141 * repeat for failed disk. */
1142 if (i_is_parity)
1143 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1144 else
1145 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1146
1147 RF_ASSERT(col == testcol);
1148
1149 if (j_is_parity)
1150 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1151 else
1152 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1153 RF_ASSERT(fcol == testcol);
1154
1155 /* now locate the spare unit for the failed unit */
1156 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1157 if (j_is_parity)
1158 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1159 else
1160 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1161 } else {
1162 *spCol = raidPtr->reconControl->spareCol;
1163 *spOffset = *outFailedDiskSectorOffset;
1164 }
1165
1166 return (0);
1167
1168 skipit:
1169 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1170 psid, col);
1171 return (1);
1172 }
1173 /* this is called when a buffer has become ready to write to the replacement disk */
1174 static int
1175 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1176 {
1177 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1178 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1179 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1180 RF_ReconBuffer_t *rbuf;
1181 RF_DiskQueueData_t *req;
1182
1183 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1184 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1185 * have gotten the event that sent us here */
1186 RF_ASSERT(rbuf->pssPtr);
1187
1188 rbuf->pssPtr->writeRbuf = rbuf;
1189 rbuf->pssPtr = NULL;
1190
1191 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1192 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1193 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1194 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1195 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1196 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1197
1198 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1199 * kernel space */
1200 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1201 sectorsPerRU, rbuf->buffer,
1202 rbuf->parityStripeID, rbuf->which_ru,
1203 ReconWriteDoneProc, (void *) rbuf, NULL,
1204 &raidPtr->recon_tracerecs[fcol],
1205 (void *) raidPtr, 0, NULL);
1206
1207 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1208
1209 rbuf->arg = (void *) req;
1210 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1211
1212 return (0);
1213 }
1214
1215 /*
1216 * this gets called upon the completion of a reconstruction read
1217 * operation the arg is a pointer to the per-disk reconstruction
1218 * control structure for the process that just finished a read.
1219 *
1220 * called at interrupt context in the kernel, so don't do anything
1221 * illegal here.
1222 */
1223 static int
1224 ReconReadDoneProc(void *arg, int status)
1225 {
1226 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1227 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1228
1229 if (status) {
1230 /*
1231 * XXX
1232 */
1233 printf("Recon read failed!\n");
1234 RF_PANIC();
1235 }
1236 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1237 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1238 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1239 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1240 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1241
1242 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1243 return (0);
1244 }
1245 /* this gets called upon the completion of a reconstruction write operation.
1246 * the arg is a pointer to the rbuf that was just written
1247 *
1248 * called at interrupt context in the kernel, so don't do anything illegal here.
1249 */
1250 static int
1251 ReconWriteDoneProc(void *arg, int status)
1252 {
1253 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1254
1255 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1256 if (status) {
1257 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1258 * write failed!\n"); */
1259 RF_PANIC();
1260 }
1261 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1262 return (0);
1263 }
1264
1265
1266 /*
1267 * computes a new minimum head sep, and wakes up anyone who needs to
1268 * be woken as a result
1269 */
1270 static void
1271 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1272 {
1273 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1274 RF_HeadSepLimit_t new_min;
1275 RF_RowCol_t i;
1276 RF_CallbackDesc_t *p;
1277 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1278 * of a minimum */
1279
1280
1281 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1282
1283 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1284 for (i = 0; i < raidPtr->numCol; i++)
1285 if (i != reconCtrlPtr->fcol) {
1286 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1287 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1288 }
1289 /* set the new minimum and wake up anyone who can now run again */
1290 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1291 reconCtrlPtr->minHeadSepCounter = new_min;
1292 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1293 while (reconCtrlPtr->headSepCBList) {
1294 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1295 break;
1296 p = reconCtrlPtr->headSepCBList;
1297 reconCtrlPtr->headSepCBList = p->next;
1298 p->next = NULL;
1299 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1300 rf_FreeCallbackDesc(p);
1301 }
1302
1303 }
1304 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1305 }
1306
1307 /*
1308 * checks to see that the maximum head separation will not be violated
1309 * if we initiate a reconstruction I/O on the indicated disk.
1310 * Limiting the maximum head separation between two disks eliminates
1311 * the nasty buffer-stall conditions that occur when one disk races
1312 * ahead of the others and consumes all of the floating recon buffers.
1313 * This code is complex and unpleasant but it's necessary to avoid
1314 * some very nasty, albeit fairly rare, reconstruction behavior.
1315 *
1316 * returns non-zero if and only if we have to stop working on the
1317 * indicated disk due to a head-separation delay.
1318 */
1319 static int
1320 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1321 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1322 RF_ReconUnitNum_t which_ru)
1323 {
1324 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1325 RF_CallbackDesc_t *cb, *p, *pt;
1326 int retval = 0;
1327
1328 /* if we're too far ahead of the slowest disk, stop working on this
1329 * disk until the slower ones catch up. We do this by scheduling a
1330 * wakeup callback for the time when the slowest disk has caught up.
1331 * We define "caught up" with 20% hysteresis, i.e. the head separation
1332 * must have fallen to at most 80% of the max allowable head
1333 * separation before we'll wake up.
1334 *
1335 */
1336 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1337 if ((raidPtr->headSepLimit >= 0) &&
1338 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1339 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1340 raidPtr->raidid, col, ctrl->headSepCounter,
1341 reconCtrlPtr->minHeadSepCounter,
1342 raidPtr->headSepLimit);
1343 cb = rf_AllocCallbackDesc();
1344 /* the minHeadSepCounter value we have to get to before we'll
1345 * wake up. build in 20% hysteresis. */
1346 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1347 cb->col = col;
1348 cb->next = NULL;
1349
1350 /* insert this callback descriptor into the sorted list of
1351 * pending head-sep callbacks */
1352 p = reconCtrlPtr->headSepCBList;
1353 if (!p)
1354 reconCtrlPtr->headSepCBList = cb;
1355 else
1356 if (cb->callbackArg.v < p->callbackArg.v) {
1357 cb->next = reconCtrlPtr->headSepCBList;
1358 reconCtrlPtr->headSepCBList = cb;
1359 } else {
1360 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1361 cb->next = p;
1362 pt->next = cb;
1363 }
1364 retval = 1;
1365 #if RF_RECON_STATS > 0
1366 ctrl->reconCtrl->reconDesc->hsStallCount++;
1367 #endif /* RF_RECON_STATS > 0 */
1368 }
1369 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1370
1371 return (retval);
1372 }
1373 /*
1374 * checks to see if reconstruction has been either forced or blocked
1375 * by a user operation. if forced, we skip this RU entirely. else if
1376 * blocked, put ourselves on the wait list. else return 0.
1377 *
1378 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1379 */
1380 static int
1381 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1382 RF_ReconParityStripeStatus_t *pssPtr,
1383 RF_PerDiskReconCtrl_t *ctrl,
1384 RF_RowCol_t col, RF_StripeNum_t psid,
1385 RF_ReconUnitNum_t which_ru)
1386 {
1387 RF_CallbackDesc_t *cb;
1388 int retcode = 0;
1389
1390 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1391 retcode = RF_PSS_FORCED_ON_WRITE;
1392 else
1393 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1394 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1395 cb = rf_AllocCallbackDesc(); /* append ourselves to
1396 * the blockage-wait
1397 * list */
1398 cb->col = col;
1399 cb->next = pssPtr->blockWaitList;
1400 pssPtr->blockWaitList = cb;
1401 retcode = RF_PSS_RECON_BLOCKED;
1402 }
1403 if (!retcode)
1404 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1405 * reconstruction */
1406
1407 return (retcode);
1408 }
1409 /*
1410 * if reconstruction is currently ongoing for the indicated stripeID,
1411 * reconstruction is forced to completion and we return non-zero to
1412 * indicate that the caller must wait. If not, then reconstruction is
1413 * blocked on the indicated stripe and the routine returns zero. If
1414 * and only if we return non-zero, we'll cause the cbFunc to get
1415 * invoked with the cbArg when the reconstruction has completed.
1416 */
1417 int
1418 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1419 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1420 {
1421 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1422 * forcing recon on */
1423 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1424 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1425 * stripe status structure */
1426 RF_StripeNum_t psid; /* parity stripe id */
1427 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1428 * offset */
1429 RF_RowCol_t *diskids;
1430 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1431 RF_RowCol_t fcol, diskno, i;
1432 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1433 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1434 RF_CallbackDesc_t *cb;
1435 int created = 0, nPromoted;
1436
1437 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1438
1439 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1440
1441 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1442
1443 /* if recon is not ongoing on this PS, just return */
1444 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1445 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1446 return (0);
1447 }
1448 /* otherwise, we have to wait for reconstruction to complete on this
1449 * RU. */
1450 /* In order to avoid waiting for a potentially large number of
1451 * low-priority accesses to complete, we force a normal-priority (i.e.
1452 * not low-priority) reconstruction on this RU. */
1453 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1454 DDprintf1("Forcing recon on psid %ld\n", psid);
1455 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1456 * forced recon */
1457 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1458 * that we just set */
1459 fcol = raidPtr->reconControl->fcol;
1460
1461 /* get a listing of the disks comprising the indicated stripe */
1462 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1463
1464 /* For previously issued reads, elevate them to normal
1465 * priority. If the I/O has already completed, it won't be
1466 * found in the queue, and hence this will be a no-op. For
1467 * unissued reads, allocate buffers and issue new reads. The
1468 * fact that we've set the FORCED bit means that the regular
1469 * recon procs will not re-issue these reqs */
1470 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1471 if ((diskno = diskids[i]) != fcol) {
1472 if (pssPtr->issued[diskno]) {
1473 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1474 if (rf_reconDebug && nPromoted)
1475 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1476 } else {
1477 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1478 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1479 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1480 * location */
1481 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1482 new_rbuf->which_ru = which_ru;
1483 new_rbuf->failedDiskSectorOffset = fd_offset;
1484 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1485
1486 /* use NULL b_proc b/c all addrs
1487 * should be in kernel space */
1488 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1489 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1490 NULL, (void *) raidPtr, 0, NULL);
1491
1492 RF_ASSERT(req); /* XXX -- fix this --
1493 * XXX */
1494
1495 new_rbuf->arg = req;
1496 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1497 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1498 }
1499 }
1500 /* if the write is sitting in the disk queue, elevate its
1501 * priority */
1502 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1503 printf("raid%d: promoted write to col %d\n",
1504 raidPtr->raidid, fcol);
1505 }
1506 /* install a callback descriptor to be invoked when recon completes on
1507 * this parity stripe. */
1508 cb = rf_AllocCallbackDesc();
1509 /* XXX the following is bogus.. These functions don't really match!!
1510 * GO */
1511 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1512 cb->callbackArg.p = (void *) cbArg;
1513 cb->next = pssPtr->procWaitList;
1514 pssPtr->procWaitList = cb;
1515 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1516 raidPtr->raidid, psid);
1517
1518 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1519 return (1);
1520 }
1521 /* called upon the completion of a forced reconstruction read.
1522 * all we do is schedule the FORCEDREADONE event.
1523 * called at interrupt context in the kernel, so don't do anything illegal here.
1524 */
1525 static void
1526 ForceReconReadDoneProc(void *arg, int status)
1527 {
1528 RF_ReconBuffer_t *rbuf = arg;
1529
1530 if (status) {
1531 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1532 * recon read
1533 * failed!\n"); */
1534 RF_PANIC();
1535 }
1536 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1537 }
1538 /* releases a block on the reconstruction of the indicated stripe */
1539 int
1540 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1541 {
1542 RF_StripeNum_t stripeID = asmap->stripeID;
1543 RF_ReconParityStripeStatus_t *pssPtr;
1544 RF_ReconUnitNum_t which_ru;
1545 RF_StripeNum_t psid;
1546 int created = 0;
1547 RF_CallbackDesc_t *cb;
1548
1549 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1550 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1551 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1552
1553 /* When recon is forced, the pss desc can get deleted before we get
1554 * back to unblock recon. But, this can _only_ happen when recon is
1555 * forced. It would be good to put some kind of sanity check here, but
1556 * how to decide if recon was just forced or not? */
1557 if (!pssPtr) {
1558 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1559 * RU %d\n",psid,which_ru); */
1560 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1561 if (rf_reconDebug || rf_pssDebug)
1562 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1563 #endif
1564 goto out;
1565 }
1566 pssPtr->blockCount--;
1567 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1568 raidPtr->raidid, psid, pssPtr->blockCount);
1569 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1570
1571 /* unblock recon before calling CauseReconEvent in case
1572 * CauseReconEvent causes us to try to issue a new read before
1573 * returning here. */
1574 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1575
1576
1577 while (pssPtr->blockWaitList) {
1578 /* spin through the block-wait list and
1579 release all the waiters */
1580 cb = pssPtr->blockWaitList;
1581 pssPtr->blockWaitList = cb->next;
1582 cb->next = NULL;
1583 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1584 rf_FreeCallbackDesc(cb);
1585 }
1586 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1587 /* if no recon was requested while recon was blocked */
1588 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1589 }
1590 }
1591 out:
1592 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1593 return (0);
1594 }
1595