rf_reconstruct.c revision 1.66 1 /* $NetBSD: rf_reconstruct.c,v 1.66 2004/02/29 04:03:50 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.66 2004/02/29 04:03:50 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105 int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115 RF_SectorNum_t * outFailedDiskSectorOffset,
116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125 RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129 RF_RowCol_t col, RF_StripeNum_t psid,
130 RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132
133 static void rf_ShutdownReconstruction(void *);
134
135 struct RF_ReconDoneProc_s {
136 void (*proc) (RF_Raid_t *, void *);
137 void *arg;
138 RF_ReconDoneProc_t *next;
139 };
140
141 /**************************************************************************
142 *
143 * sets up the parameters that will be used by the reconstruction process
144 * currently there are none, except for those that the layout-specific
145 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
146 *
147 * in the kernel, we fire off the recon thread.
148 *
149 **************************************************************************/
150 static void
151 rf_ShutdownReconstruction(void *ignored)
152 {
153 pool_destroy(&rf_recond_pool);
154 }
155
156 int
157 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
158 {
159
160 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
161 "rf_recond_pl", NULL);
162 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
163
164 return (0);
165 }
166
167 static RF_RaidReconDesc_t *
168 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
169 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
170 RF_RowCol_t scol)
171 {
172
173 RF_RaidReconDesc_t *reconDesc;
174
175 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
176
177 reconDesc->raidPtr = raidPtr;
178 reconDesc->col = col;
179 reconDesc->spareDiskPtr = spareDiskPtr;
180 reconDesc->numDisksDone = numDisksDone;
181 reconDesc->scol = scol;
182 reconDesc->state = 0;
183 reconDesc->next = NULL;
184
185 return (reconDesc);
186 }
187
188 static void
189 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
190 {
191 #if RF_RECON_STATS > 0
192 printf("raid%d: %lu recon event waits, %lu recon delays\n",
193 reconDesc->raidPtr->raidid,
194 (long) reconDesc->numReconEventWaits,
195 (long) reconDesc->numReconExecDelays);
196 #endif /* RF_RECON_STATS > 0 */
197 printf("raid%d: %lu max exec ticks\n",
198 reconDesc->raidPtr->raidid,
199 (long) reconDesc->maxReconExecTicks);
200 #if (RF_RECON_STATS > 0) || defined(KERNEL)
201 printf("\n");
202 #endif /* (RF_RECON_STATS > 0) || KERNEL */
203 pool_put(&rf_recond_pool, reconDesc);
204 }
205
206
207 /*****************************************************************************
208 *
209 * primary routine to reconstruct a failed disk. This should be called from
210 * within its own thread. It won't return until reconstruction completes,
211 * fails, or is aborted.
212 *****************************************************************************/
213 int
214 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
215 {
216 const RF_LayoutSW_t *lp;
217 int rc;
218
219 lp = raidPtr->Layout.map;
220 if (lp->SubmitReconBuffer) {
221 /*
222 * The current infrastructure only supports reconstructing one
223 * disk at a time for each array.
224 */
225 RF_LOCK_MUTEX(raidPtr->mutex);
226 while (raidPtr->reconInProgress) {
227 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
228 }
229 raidPtr->reconInProgress++;
230 RF_UNLOCK_MUTEX(raidPtr->mutex);
231 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
232 RF_LOCK_MUTEX(raidPtr->mutex);
233 raidPtr->reconInProgress--;
234 RF_UNLOCK_MUTEX(raidPtr->mutex);
235 } else {
236 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
237 lp->parityConfig);
238 rc = EIO;
239 }
240 RF_SIGNAL_COND(raidPtr->waitForReconCond);
241 return (rc);
242 }
243
244 int
245 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
246 {
247 RF_ComponentLabel_t c_label;
248 RF_RaidDisk_t *spareDiskPtr = NULL;
249 RF_RaidReconDesc_t *reconDesc;
250 RF_RowCol_t scol;
251 int numDisksDone = 0, rc;
252
253 /* first look for a spare drive onto which to reconstruct the data */
254 /* spare disk descriptors are stored in row 0. This may have to
255 * change eventually */
256
257 RF_LOCK_MUTEX(raidPtr->mutex);
258 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
259
260 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
261 if (raidPtr->status != rf_rs_degraded) {
262 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
263 RF_UNLOCK_MUTEX(raidPtr->mutex);
264 return (EINVAL);
265 }
266 scol = (-1);
267 } else {
268 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
269 if (raidPtr->Disks[scol].status == rf_ds_spare) {
270 spareDiskPtr = &raidPtr->Disks[scol];
271 spareDiskPtr->status = rf_ds_used_spare;
272 break;
273 }
274 }
275 if (!spareDiskPtr) {
276 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
277 RF_UNLOCK_MUTEX(raidPtr->mutex);
278 return (ENOSPC);
279 }
280 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
281 }
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283
284 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
285 raidPtr->reconDesc = (void *) reconDesc;
286 #if RF_RECON_STATS > 0
287 reconDesc->hsStallCount = 0;
288 reconDesc->numReconExecDelays = 0;
289 reconDesc->numReconEventWaits = 0;
290 #endif /* RF_RECON_STATS > 0 */
291 reconDesc->reconExecTimerRunning = 0;
292 reconDesc->reconExecTicks = 0;
293 reconDesc->maxReconExecTicks = 0;
294 rc = rf_ContinueReconstructFailedDisk(reconDesc);
295
296 if (!rc) {
297 /* fix up the component label */
298 /* Don't actually need the read here.. */
299 raidread_component_label(
300 raidPtr->raid_cinfo[scol].ci_dev,
301 raidPtr->raid_cinfo[scol].ci_vp,
302 &c_label);
303
304 raid_init_component_label( raidPtr, &c_label);
305 c_label.row = 0;
306 c_label.column = col;
307 c_label.clean = RF_RAID_DIRTY;
308 c_label.status = rf_ds_optimal;
309 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
310
311 /* We've just done a rebuild based on all the other
312 disks, so at this point the parity is known to be
313 clean, even if it wasn't before. */
314
315 /* XXX doesn't hold for RAID 6!!*/
316
317 RF_LOCK_MUTEX(raidPtr->mutex);
318 raidPtr->parity_good = RF_RAID_CLEAN;
319 RF_UNLOCK_MUTEX(raidPtr->mutex);
320
321 /* XXXX MORE NEEDED HERE */
322
323 raidwrite_component_label(
324 raidPtr->raid_cinfo[scol].ci_dev,
325 raidPtr->raid_cinfo[scol].ci_vp,
326 &c_label);
327
328
329 rf_update_component_labels(raidPtr,
330 RF_NORMAL_COMPONENT_UPDATE);
331
332 }
333 return (rc);
334 }
335
336 /*
337
338 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
339 and you don't get a spare until the next Monday. With this function
340 (and hot-swappable drives) you can now put your new disk containing
341 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
342 rebuild the data "on the spot".
343
344 */
345
346 int
347 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
348 {
349 RF_RaidDisk_t *spareDiskPtr = NULL;
350 RF_RaidReconDesc_t *reconDesc;
351 const RF_LayoutSW_t *lp;
352 RF_ComponentLabel_t c_label;
353 int numDisksDone = 0, rc;
354 struct partinfo dpart;
355 struct vnode *vp;
356 struct vattr va;
357 struct proc *proc;
358 int retcode;
359 int ac;
360
361 lp = raidPtr->Layout.map;
362 if (!lp->SubmitReconBuffer) {
363 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
364 lp->parityConfig);
365 /* wakeup anyone who might be waiting to do a reconstruct */
366 RF_SIGNAL_COND(raidPtr->waitForReconCond);
367 return(EIO);
368 }
369
370 /*
371 * The current infrastructure only supports reconstructing one
372 * disk at a time for each array.
373 */
374 RF_LOCK_MUTEX(raidPtr->mutex);
375
376 if (raidPtr->Disks[col].status != rf_ds_failed) {
377 /* "It's gone..." */
378 raidPtr->numFailures++;
379 raidPtr->Disks[col].status = rf_ds_failed;
380 raidPtr->status = rf_rs_degraded;
381 RF_UNLOCK_MUTEX(raidPtr->mutex);
382 rf_update_component_labels(raidPtr,
383 RF_NORMAL_COMPONENT_UPDATE);
384 RF_LOCK_MUTEX(raidPtr->mutex);
385 }
386
387 while (raidPtr->reconInProgress) {
388 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
389 }
390
391 raidPtr->reconInProgress++;
392
393 /* first look for a spare drive onto which to reconstruct the
394 data. spare disk descriptors are stored in row 0. This
395 may have to change eventually */
396
397 /* Actually, we don't care if it's failed or not... On a RAID
398 set with correct parity, this function should be callable
399 on any component without ill affects. */
400 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
401
402 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
403 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
404
405 raidPtr->reconInProgress--;
406 RF_UNLOCK_MUTEX(raidPtr->mutex);
407 RF_SIGNAL_COND(raidPtr->waitForReconCond);
408 return (EINVAL);
409 }
410
411 proc = raidPtr->engine_thread;
412
413 /* This device may have been opened successfully the
414 first time. Close it before trying to open it again.. */
415
416 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
417 #if 0
418 printf("Closed the open device: %s\n",
419 raidPtr->Disks[col].devname);
420 #endif
421 vp = raidPtr->raid_cinfo[col].ci_vp;
422 ac = raidPtr->Disks[col].auto_configured;
423 RF_UNLOCK_MUTEX(raidPtr->mutex);
424 rf_close_component(raidPtr, vp, ac);
425 RF_LOCK_MUTEX(raidPtr->mutex);
426 raidPtr->raid_cinfo[col].ci_vp = NULL;
427 }
428 /* note that this disk was *not* auto_configured (any longer)*/
429 raidPtr->Disks[col].auto_configured = 0;
430
431 #if 0
432 printf("About to (re-)open the device for rebuilding: %s\n",
433 raidPtr->Disks[col].devname);
434 #endif
435 RF_UNLOCK_MUTEX(raidPtr->mutex);
436 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
437
438 if (retcode) {
439 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
440 raidPtr->Disks[col].devname, retcode);
441
442 /* the component isn't responding properly...
443 must be still dead :-( */
444 RF_LOCK_MUTEX(raidPtr->mutex);
445 raidPtr->reconInProgress--;
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 RF_SIGNAL_COND(raidPtr->waitForReconCond);
448 return(retcode);
449 }
450
451 /* Ok, so we can at least do a lookup...
452 How about actually getting a vp for it? */
453
454 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
455 RF_LOCK_MUTEX(raidPtr->mutex);
456 raidPtr->reconInProgress--;
457 RF_UNLOCK_MUTEX(raidPtr->mutex);
458 RF_SIGNAL_COND(raidPtr->waitForReconCond);
459 return(retcode);
460 }
461
462 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
463 if (retcode) {
464 RF_LOCK_MUTEX(raidPtr->mutex);
465 raidPtr->reconInProgress--;
466 RF_UNLOCK_MUTEX(raidPtr->mutex);
467 RF_SIGNAL_COND(raidPtr->waitForReconCond);
468 return(retcode);
469 }
470 RF_LOCK_MUTEX(raidPtr->mutex);
471 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
472
473 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
474 rf_protectedSectors;
475
476 raidPtr->raid_cinfo[col].ci_vp = vp;
477 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
478
479 raidPtr->Disks[col].dev = va.va_rdev;
480
481 /* we allow the user to specify that only a fraction
482 of the disks should be used this is just for debug:
483 it speeds up * the parity scan */
484 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
485 rf_sizePercentage / 100;
486 RF_UNLOCK_MUTEX(raidPtr->mutex);
487
488 spareDiskPtr = &raidPtr->Disks[col];
489 spareDiskPtr->status = rf_ds_used_spare;
490
491 printf("raid%d: initiating in-place reconstruction on column %d\n",
492 raidPtr->raidid, col);
493
494 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
495 numDisksDone, col);
496 raidPtr->reconDesc = (void *) reconDesc;
497 #if RF_RECON_STATS > 0
498 reconDesc->hsStallCount = 0;
499 reconDesc->numReconExecDelays = 0;
500 reconDesc->numReconEventWaits = 0;
501 #endif /* RF_RECON_STATS > 0 */
502 reconDesc->reconExecTimerRunning = 0;
503 reconDesc->reconExecTicks = 0;
504 reconDesc->maxReconExecTicks = 0;
505 rc = rf_ContinueReconstructFailedDisk(reconDesc);
506
507 RF_LOCK_MUTEX(raidPtr->mutex);
508 raidPtr->reconInProgress--;
509 RF_UNLOCK_MUTEX(raidPtr->mutex);
510
511 if (!rc) {
512 RF_LOCK_MUTEX(raidPtr->mutex);
513 /* Need to set these here, as at this point it'll be claiming
514 that the disk is in rf_ds_spared! But we know better :-) */
515
516 raidPtr->Disks[col].status = rf_ds_optimal;
517 raidPtr->status = rf_rs_optimal;
518 RF_UNLOCK_MUTEX(raidPtr->mutex);
519
520 /* fix up the component label */
521 /* Don't actually need the read here.. */
522 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
523 raidPtr->raid_cinfo[col].ci_vp,
524 &c_label);
525
526 RF_LOCK_MUTEX(raidPtr->mutex);
527 raid_init_component_label(raidPtr, &c_label);
528
529 c_label.row = 0;
530 c_label.column = col;
531
532 /* We've just done a rebuild based on all the other
533 disks, so at this point the parity is known to be
534 clean, even if it wasn't before. */
535
536 /* XXX doesn't hold for RAID 6!!*/
537
538 raidPtr->parity_good = RF_RAID_CLEAN;
539 RF_UNLOCK_MUTEX(raidPtr->mutex);
540
541 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
542 raidPtr->raid_cinfo[col].ci_vp,
543 &c_label);
544
545 rf_update_component_labels(raidPtr,
546 RF_NORMAL_COMPONENT_UPDATE);
547
548 }
549 RF_SIGNAL_COND(raidPtr->waitForReconCond);
550 return (rc);
551 }
552
553
554 int
555 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
556 {
557 RF_Raid_t *raidPtr = reconDesc->raidPtr;
558 RF_RowCol_t col = reconDesc->col;
559 RF_RowCol_t scol = reconDesc->scol;
560 RF_ReconMap_t *mapPtr;
561 RF_ReconCtrl_t *tmp_reconctrl;
562 RF_ReconEvent_t *event;
563 struct timeval etime, elpsd;
564 unsigned long xor_s, xor_resid_us;
565 int i, ds;
566
567 switch (reconDesc->state) {
568
569
570 case 0:
571
572 raidPtr->accumXorTimeUs = 0;
573
574 /* create one trace record per physical disk */
575 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
576
577 /* quiesce the array prior to starting recon. this is needed
578 * to assure no nasty interactions with pending user writes.
579 * We need to do this before we change the disk or row status. */
580 reconDesc->state = 1;
581
582 Dprintf("RECON: begin request suspend\n");
583 rf_SuspendNewRequestsAndWait(raidPtr);
584 Dprintf("RECON: end request suspend\n");
585 rf_StartUserStats(raidPtr); /* zero out the stats kept on
586 * user accs */
587
588 /* fall through to state 1 */
589
590 case 1:
591
592 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
593 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
594
595 RF_LOCK_MUTEX(raidPtr->mutex);
596
597 /* create the reconstruction control pointer and install it in
598 * the right slot */
599 raidPtr->reconControl = tmp_reconctrl;
600 mapPtr = raidPtr->reconControl->reconMap;
601 raidPtr->status = rf_rs_reconstructing;
602 raidPtr->Disks[col].status = rf_ds_reconstructing;
603 raidPtr->Disks[col].spareCol = scol;
604
605 RF_UNLOCK_MUTEX(raidPtr->mutex);
606
607 RF_GETTIME(raidPtr->reconControl->starttime);
608
609 /* now start up the actual reconstruction: issue a read for
610 * each surviving disk */
611
612 reconDesc->numDisksDone = 0;
613 for (i = 0; i < raidPtr->numCol; i++) {
614 if (i != col) {
615 /* find and issue the next I/O on the
616 * indicated disk */
617 if (IssueNextReadRequest(raidPtr, i)) {
618 Dprintf1("RECON: done issuing for c%d\n", i);
619 reconDesc->numDisksDone++;
620 }
621 }
622 }
623
624 case 2:
625 Dprintf("RECON: resume requests\n");
626 rf_ResumeNewRequests(raidPtr);
627
628
629 reconDesc->state = 3;
630
631 case 3:
632
633 /* process reconstruction events until all disks report that
634 * they've completed all work */
635 mapPtr = raidPtr->reconControl->reconMap;
636
637
638
639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
640
641 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
642 RF_ASSERT(event);
643
644 if (ProcessReconEvent(raidPtr, event))
645 reconDesc->numDisksDone++;
646 raidPtr->reconControl->numRUsTotal =
647 mapPtr->totalRUs;
648 raidPtr->reconControl->numRUsComplete =
649 mapPtr->totalRUs -
650 rf_UnitsLeftToReconstruct(mapPtr);
651 #if RF_DEBUG_RECON
652 raidPtr->reconControl->percentComplete =
653 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
654 if (rf_prReconSched) {
655 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
656 }
657 #endif
658 }
659
660
661
662 reconDesc->state = 4;
663
664
665 case 4:
666 mapPtr = raidPtr->reconControl->reconMap;
667 if (rf_reconDebug) {
668 printf("RECON: all reads completed\n");
669 }
670 /* at this point all the reads have completed. We now wait
671 * for any pending writes to complete, and then we're done */
672
673 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
674
675 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
676 RF_ASSERT(event);
677
678 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
679 #if RF_DEBUG_RECON
680 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
681 if (rf_prReconSched) {
682 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
683 }
684 #endif
685 }
686 reconDesc->state = 5;
687
688 case 5:
689 /* Success: mark the dead disk as reconstructed. We quiesce
690 * the array here to assure no nasty interactions with pending
691 * user accesses when we free up the psstatus structure as
692 * part of FreeReconControl() */
693
694 reconDesc->state = 6;
695
696 rf_SuspendNewRequestsAndWait(raidPtr);
697 rf_StopUserStats(raidPtr);
698 rf_PrintUserStats(raidPtr); /* print out the stats on user
699 * accs accumulated during
700 * recon */
701
702 /* fall through to state 6 */
703 case 6:
704
705
706
707 RF_LOCK_MUTEX(raidPtr->mutex);
708 raidPtr->numFailures--;
709 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
710 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
711 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
712 RF_UNLOCK_MUTEX(raidPtr->mutex);
713 RF_GETTIME(etime);
714 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
715
716 /* XXX -- why is state 7 different from state 6 if there is no
717 * return() here? -- XXX Note that I set elpsd above & use it
718 * below, so if you put a return here you'll have to fix this.
719 * (also, FreeReconControl is called below) */
720
721 case 7:
722
723 rf_ResumeNewRequests(raidPtr);
724
725 printf("raid%d: Reconstruction of disk at col %d completed\n",
726 raidPtr->raidid, col);
727 xor_s = raidPtr->accumXorTimeUs / 1000000;
728 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
729 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
730 raidPtr->raidid,
731 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
732 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
733 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
734 raidPtr->raidid,
735 (int) raidPtr->reconControl->starttime.tv_sec,
736 (int) raidPtr->reconControl->starttime.tv_usec,
737 (int) etime.tv_sec, (int) etime.tv_usec);
738
739 #if RF_RECON_STATS > 0
740 printf("raid%d: Total head-sep stall count was %d\n",
741 raidPtr->raidid, (int) reconDesc->hsStallCount);
742 #endif /* RF_RECON_STATS > 0 */
743 rf_FreeReconControl(raidPtr);
744 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
745 FreeReconDesc(reconDesc);
746
747 }
748
749 return (0);
750 }
751 /*****************************************************************************
752 * do the right thing upon each reconstruction event.
753 * returns nonzero if and only if there is nothing left unread on the
754 * indicated disk
755 *****************************************************************************/
756 static int
757 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
758 {
759 int retcode = 0, submitblocked;
760 RF_ReconBuffer_t *rbuf;
761 RF_SectorCount_t sectorsPerRU;
762
763 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
764 switch (event->type) {
765
766 /* a read I/O has completed */
767 case RF_REVENT_READDONE:
768 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
769 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
770 event->col, rbuf->parityStripeID);
771 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
772 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
773 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
774 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
775 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
776 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
777 if (!submitblocked)
778 retcode = IssueNextReadRequest(raidPtr, event->col);
779 break;
780
781 /* a write I/O has completed */
782 case RF_REVENT_WRITEDONE:
783 #if RF_DEBUG_RECON
784 if (rf_floatingRbufDebug) {
785 rf_CheckFloatingRbufCount(raidPtr, 1);
786 }
787 #endif
788 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
789 rbuf = (RF_ReconBuffer_t *) event->arg;
790 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
791 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
792 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
793 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
794 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
795 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
796
797 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
798 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
799 raidPtr->numFullReconBuffers--;
800 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
801 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
802 } else
803 if (rbuf->type == RF_RBUF_TYPE_FORCED)
804 rf_FreeReconBuffer(rbuf);
805 else
806 RF_ASSERT(0);
807 break;
808
809 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
810 * cleared */
811 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
812 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
813 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
814 * BUFCLEAR event if we
815 * couldn't submit */
816 retcode = IssueNextReadRequest(raidPtr, event->col);
817 break;
818
819 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
820 * blockage has been cleared */
821 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
822 retcode = TryToRead(raidPtr, event->col);
823 break;
824
825 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
826 * reconstruction blockage has been
827 * cleared */
828 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
829 retcode = TryToRead(raidPtr, event->col);
830 break;
831
832 /* a buffer has become ready to write */
833 case RF_REVENT_BUFREADY:
834 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
835 retcode = IssueNextWriteRequest(raidPtr);
836 #if RF_DEBUG_RECON
837 if (rf_floatingRbufDebug) {
838 rf_CheckFloatingRbufCount(raidPtr, 1);
839 }
840 #endif
841 break;
842
843 /* we need to skip the current RU entirely because it got
844 * recon'd while we were waiting for something else to happen */
845 case RF_REVENT_SKIP:
846 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
847 retcode = IssueNextReadRequest(raidPtr, event->col);
848 break;
849
850 /* a forced-reconstruction read access has completed. Just
851 * submit the buffer */
852 case RF_REVENT_FORCEDREADDONE:
853 rbuf = (RF_ReconBuffer_t *) event->arg;
854 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
855 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
856 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
857 RF_ASSERT(!submitblocked);
858 break;
859
860 default:
861 RF_PANIC();
862 }
863 rf_FreeReconEventDesc(event);
864 return (retcode);
865 }
866 /*****************************************************************************
867 *
868 * find the next thing that's needed on the indicated disk, and issue
869 * a read request for it. We assume that the reconstruction buffer
870 * associated with this process is free to receive the data. If
871 * reconstruction is blocked on the indicated RU, we issue a
872 * blockage-release request instead of a physical disk read request.
873 * If the current disk gets too far ahead of the others, we issue a
874 * head-separation wait request and return.
875 *
876 * ctrl->{ru_count, curPSID, diskOffset} and
877 * rbuf->failedDiskSectorOffset are maintained to point to the unit
878 * we're currently accessing. Note that this deviates from the
879 * standard C idiom of having counters point to the next thing to be
880 * accessed. This allows us to easily retry when we're blocked by
881 * head separation or reconstruction-blockage events.
882 *
883 * returns nonzero if and only if there is nothing left unread on the
884 * indicated disk
885 *
886 *****************************************************************************/
887 static int
888 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
889 {
890 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
891 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
892 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
893 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
894 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
895 int do_new_check = 0, retcode = 0, status;
896
897 /* if we are currently the slowest disk, mark that we have to do a new
898 * check */
899 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
900 do_new_check = 1;
901
902 while (1) {
903
904 ctrl->ru_count++;
905 if (ctrl->ru_count < RUsPerPU) {
906 ctrl->diskOffset += sectorsPerRU;
907 rbuf->failedDiskSectorOffset += sectorsPerRU;
908 } else {
909 ctrl->curPSID++;
910 ctrl->ru_count = 0;
911 /* code left over from when head-sep was based on
912 * parity stripe id */
913 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
914 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
915 return (1); /* finito! */
916 }
917 /* find the disk offsets of the start of the parity
918 * stripe on both the current disk and the failed
919 * disk. skip this entire parity stripe if either disk
920 * does not appear in the indicated PS */
921 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
922 &rbuf->spCol, &rbuf->spOffset);
923 if (status) {
924 ctrl->ru_count = RUsPerPU - 1;
925 continue;
926 }
927 }
928 rbuf->which_ru = ctrl->ru_count;
929
930 /* skip this RU if it's already been reconstructed */
931 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
932 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
933 continue;
934 }
935 break;
936 }
937 ctrl->headSepCounter++;
938 if (do_new_check)
939 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
940
941
942 /* at this point, we have definitely decided what to do, and we have
943 * only to see if we can actually do it now */
944 rbuf->parityStripeID = ctrl->curPSID;
945 rbuf->which_ru = ctrl->ru_count;
946 memset((char *) &raidPtr->recon_tracerecs[col], 0,
947 sizeof(raidPtr->recon_tracerecs[col]));
948 raidPtr->recon_tracerecs[col].reconacc = 1;
949 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
950 retcode = TryToRead(raidPtr, col);
951 return (retcode);
952 }
953
954 /*
955 * tries to issue the next read on the indicated disk. We may be
956 * blocked by (a) the heads being too far apart, or (b) recon on the
957 * indicated RU being blocked due to a write by a user thread. In
958 * this case, we issue a head-sep or blockage wait request, which will
959 * cause this same routine to be invoked again later when the blockage
960 * has cleared.
961 */
962
963 static int
964 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
965 {
966 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
967 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
968 RF_StripeNum_t psid = ctrl->curPSID;
969 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
970 RF_DiskQueueData_t *req;
971 int status, created = 0;
972 RF_ReconParityStripeStatus_t *pssPtr;
973
974 /* if the current disk is too far ahead of the others, issue a
975 * head-separation wait and return */
976 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
977 return (0);
978 RF_LOCK_PSS_MUTEX(raidPtr, psid);
979 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, &created);
980
981 /* if recon is blocked on the indicated parity stripe, issue a
982 * block-wait request and return. this also must mark the indicated RU
983 * in the stripe as under reconstruction if not blocked. */
984 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
985 if (status == RF_PSS_RECON_BLOCKED) {
986 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
987 goto out;
988 } else
989 if (status == RF_PSS_FORCED_ON_WRITE) {
990 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
991 goto out;
992 }
993 /* make one last check to be sure that the indicated RU didn't get
994 * reconstructed while we were waiting for something else to happen.
995 * This is unfortunate in that it causes us to make this check twice
996 * in the normal case. Might want to make some attempt to re-work
997 * this so that we only do this check if we've definitely blocked on
998 * one of the above checks. When this condition is detected, we may
999 * have just created a bogus status entry, which we need to delete. */
1000 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1001 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1002 if (created)
1003 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1004 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1005 goto out;
1006 }
1007 /* found something to read. issue the I/O */
1008 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1009 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1010 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1011 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1012 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1013 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1014 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1015
1016 /* should be ok to use a NULL proc pointer here, all the bufs we use
1017 * should be in kernel space */
1018 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1019 ReconReadDoneProc, (void *) ctrl, NULL, &raidPtr->recon_tracerecs[col], (void *) raidPtr, 0, NULL);
1020
1021 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1022
1023 ctrl->rbuf->arg = (void *) req;
1024 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1025 pssPtr->issued[col] = 1;
1026
1027 out:
1028 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1029 return (0);
1030 }
1031
1032
1033 /*
1034 * given a parity stripe ID, we want to find out whether both the
1035 * current disk and the failed disk exist in that parity stripe. If
1036 * not, we want to skip this whole PS. If so, we want to find the
1037 * disk offset of the start of the PS on both the current disk and the
1038 * failed disk.
1039 *
1040 * this works by getting a list of disks comprising the indicated
1041 * parity stripe, and searching the list for the current and failed
1042 * disks. Once we've decided they both exist in the parity stripe, we
1043 * need to decide whether each is data or parity, so that we'll know
1044 * which mapping function to call to get the corresponding disk
1045 * offsets.
1046 *
1047 * this is kind of unpleasant, but doing it this way allows the
1048 * reconstruction code to use parity stripe IDs rather than physical
1049 * disks address to march through the failed disk, which greatly
1050 * simplifies a lot of code, as well as eliminating the need for a
1051 * reverse-mapping function. I also think it will execute faster,
1052 * since the calls to the mapping module are kept to a minimum.
1053 *
1054 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1055 * THE STRIPE IN THE CORRECT ORDER
1056 *
1057 * raidPtr - raid descriptor
1058 * psid - parity stripe identifier
1059 * col - column of disk to find the offsets for
1060 * spCol - out: col of spare unit for failed unit
1061 * spOffset - out: offset into disk containing spare unit
1062 *
1063 */
1064
1065
1066 static int
1067 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1068 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1069 RF_SectorNum_t *outFailedDiskSectorOffset,
1070 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1071 {
1072 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1073 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1074 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1075 RF_RowCol_t *diskids;
1076 u_int i, j, k, i_offset, j_offset;
1077 RF_RowCol_t pcol;
1078 int testcol;
1079 RF_SectorNum_t poffset;
1080 char i_is_parity = 0, j_is_parity = 0;
1081 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1082
1083 /* get a listing of the disks comprising that stripe */
1084 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1085 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1086 RF_ASSERT(diskids);
1087
1088 /* reject this entire parity stripe if it does not contain the
1089 * indicated disk or it does not contain the failed disk */
1090
1091 for (i = 0; i < stripeWidth; i++) {
1092 if (col == diskids[i])
1093 break;
1094 }
1095 if (i == stripeWidth)
1096 goto skipit;
1097 for (j = 0; j < stripeWidth; j++) {
1098 if (fcol == diskids[j])
1099 break;
1100 }
1101 if (j == stripeWidth) {
1102 goto skipit;
1103 }
1104 /* find out which disk the parity is on */
1105 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1106
1107 /* find out if either the current RU or the failed RU is parity */
1108 /* also, if the parity occurs in this stripe prior to the data and/or
1109 * failed col, we need to decrement i and/or j */
1110 for (k = 0; k < stripeWidth; k++)
1111 if (diskids[k] == pcol)
1112 break;
1113 RF_ASSERT(k < stripeWidth);
1114 i_offset = i;
1115 j_offset = j;
1116 if (k < i)
1117 i_offset--;
1118 else
1119 if (k == i) {
1120 i_is_parity = 1;
1121 i_offset = 0;
1122 } /* set offsets to zero to disable multiply
1123 * below */
1124 if (k < j)
1125 j_offset--;
1126 else
1127 if (k == j) {
1128 j_is_parity = 1;
1129 j_offset = 0;
1130 }
1131 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1132 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1133 * tells us how far into the stripe the [current,failed] disk is. */
1134
1135 /* call the mapping routine to get the offset into the current disk,
1136 * repeat for failed disk. */
1137 if (i_is_parity)
1138 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1139 else
1140 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1141
1142 RF_ASSERT(col == testcol);
1143
1144 if (j_is_parity)
1145 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1146 else
1147 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1148 RF_ASSERT(fcol == testcol);
1149
1150 /* now locate the spare unit for the failed unit */
1151 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1152 if (j_is_parity)
1153 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1154 else
1155 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1156 } else {
1157 *spCol = raidPtr->reconControl->spareCol;
1158 *spOffset = *outFailedDiskSectorOffset;
1159 }
1160
1161 return (0);
1162
1163 skipit:
1164 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1165 psid, col);
1166 return (1);
1167 }
1168 /* this is called when a buffer has become ready to write to the replacement disk */
1169 static int
1170 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1171 {
1172 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1173 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1174 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1175 RF_ReconBuffer_t *rbuf;
1176 RF_DiskQueueData_t *req;
1177
1178 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1179 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1180 * have gotten the event that sent us here */
1181 RF_ASSERT(rbuf->pssPtr);
1182
1183 rbuf->pssPtr->writeRbuf = rbuf;
1184 rbuf->pssPtr = NULL;
1185
1186 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1187 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1188 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1189 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1190 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1191 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1192
1193 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1194 * kernel space */
1195 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1196 sectorsPerRU, rbuf->buffer,
1197 rbuf->parityStripeID, rbuf->which_ru,
1198 ReconWriteDoneProc, (void *) rbuf, NULL,
1199 &raidPtr->recon_tracerecs[fcol],
1200 (void *) raidPtr, 0, NULL);
1201
1202 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1203
1204 rbuf->arg = (void *) req;
1205 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1206
1207 return (0);
1208 }
1209
1210 /*
1211 * this gets called upon the completion of a reconstruction read
1212 * operation the arg is a pointer to the per-disk reconstruction
1213 * control structure for the process that just finished a read.
1214 *
1215 * called at interrupt context in the kernel, so don't do anything
1216 * illegal here.
1217 */
1218 static int
1219 ReconReadDoneProc(void *arg, int status)
1220 {
1221 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1222 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1223
1224 if (status) {
1225 /*
1226 * XXX
1227 */
1228 printf("Recon read failed!\n");
1229 RF_PANIC();
1230 }
1231 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1232 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1233 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1234 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1235 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1236
1237 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1238 return (0);
1239 }
1240 /* this gets called upon the completion of a reconstruction write operation.
1241 * the arg is a pointer to the rbuf that was just written
1242 *
1243 * called at interrupt context in the kernel, so don't do anything illegal here.
1244 */
1245 static int
1246 ReconWriteDoneProc(void *arg, int status)
1247 {
1248 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1249
1250 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1251 if (status) {
1252 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1253 * write failed!\n"); */
1254 RF_PANIC();
1255 }
1256 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1257 return (0);
1258 }
1259
1260
1261 /*
1262 * computes a new minimum head sep, and wakes up anyone who needs to
1263 * be woken as a result
1264 */
1265 static void
1266 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1267 {
1268 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1269 RF_HeadSepLimit_t new_min;
1270 RF_RowCol_t i;
1271 RF_CallbackDesc_t *p;
1272 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1273 * of a minimum */
1274
1275
1276 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1277
1278 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1279 for (i = 0; i < raidPtr->numCol; i++)
1280 if (i != reconCtrlPtr->fcol) {
1281 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1282 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1283 }
1284 /* set the new minimum and wake up anyone who can now run again */
1285 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1286 reconCtrlPtr->minHeadSepCounter = new_min;
1287 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1288 while (reconCtrlPtr->headSepCBList) {
1289 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1290 break;
1291 p = reconCtrlPtr->headSepCBList;
1292 reconCtrlPtr->headSepCBList = p->next;
1293 p->next = NULL;
1294 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1295 rf_FreeCallbackDesc(p);
1296 }
1297
1298 }
1299 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1300 }
1301
1302 /*
1303 * checks to see that the maximum head separation will not be violated
1304 * if we initiate a reconstruction I/O on the indicated disk.
1305 * Limiting the maximum head separation between two disks eliminates
1306 * the nasty buffer-stall conditions that occur when one disk races
1307 * ahead of the others and consumes all of the floating recon buffers.
1308 * This code is complex and unpleasant but it's necessary to avoid
1309 * some very nasty, albeit fairly rare, reconstruction behavior.
1310 *
1311 * returns non-zero if and only if we have to stop working on the
1312 * indicated disk due to a head-separation delay.
1313 */
1314 static int
1315 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1316 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1317 RF_ReconUnitNum_t which_ru)
1318 {
1319 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1320 RF_CallbackDesc_t *cb, *p, *pt;
1321 int retval = 0;
1322
1323 /* if we're too far ahead of the slowest disk, stop working on this
1324 * disk until the slower ones catch up. We do this by scheduling a
1325 * wakeup callback for the time when the slowest disk has caught up.
1326 * We define "caught up" with 20% hysteresis, i.e. the head separation
1327 * must have fallen to at most 80% of the max allowable head
1328 * separation before we'll wake up.
1329 *
1330 */
1331 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1332 if ((raidPtr->headSepLimit >= 0) &&
1333 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1334 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1335 raidPtr->raidid, col, ctrl->headSepCounter,
1336 reconCtrlPtr->minHeadSepCounter,
1337 raidPtr->headSepLimit);
1338 cb = rf_AllocCallbackDesc();
1339 /* the minHeadSepCounter value we have to get to before we'll
1340 * wake up. build in 20% hysteresis. */
1341 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1342 cb->col = col;
1343 cb->next = NULL;
1344
1345 /* insert this callback descriptor into the sorted list of
1346 * pending head-sep callbacks */
1347 p = reconCtrlPtr->headSepCBList;
1348 if (!p)
1349 reconCtrlPtr->headSepCBList = cb;
1350 else
1351 if (cb->callbackArg.v < p->callbackArg.v) {
1352 cb->next = reconCtrlPtr->headSepCBList;
1353 reconCtrlPtr->headSepCBList = cb;
1354 } else {
1355 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1356 cb->next = p;
1357 pt->next = cb;
1358 }
1359 retval = 1;
1360 #if RF_RECON_STATS > 0
1361 ctrl->reconCtrl->reconDesc->hsStallCount++;
1362 #endif /* RF_RECON_STATS > 0 */
1363 }
1364 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1365
1366 return (retval);
1367 }
1368 /*
1369 * checks to see if reconstruction has been either forced or blocked
1370 * by a user operation. if forced, we skip this RU entirely. else if
1371 * blocked, put ourselves on the wait list. else return 0.
1372 *
1373 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1374 */
1375 static int
1376 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1377 RF_ReconParityStripeStatus_t *pssPtr,
1378 RF_PerDiskReconCtrl_t *ctrl,
1379 RF_RowCol_t col, RF_StripeNum_t psid,
1380 RF_ReconUnitNum_t which_ru)
1381 {
1382 RF_CallbackDesc_t *cb;
1383 int retcode = 0;
1384
1385 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1386 retcode = RF_PSS_FORCED_ON_WRITE;
1387 else
1388 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1389 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1390 cb = rf_AllocCallbackDesc(); /* append ourselves to
1391 * the blockage-wait
1392 * list */
1393 cb->col = col;
1394 cb->next = pssPtr->blockWaitList;
1395 pssPtr->blockWaitList = cb;
1396 retcode = RF_PSS_RECON_BLOCKED;
1397 }
1398 if (!retcode)
1399 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1400 * reconstruction */
1401
1402 return (retcode);
1403 }
1404 /*
1405 * if reconstruction is currently ongoing for the indicated stripeID,
1406 * reconstruction is forced to completion and we return non-zero to
1407 * indicate that the caller must wait. If not, then reconstruction is
1408 * blocked on the indicated stripe and the routine returns zero. If
1409 * and only if we return non-zero, we'll cause the cbFunc to get
1410 * invoked with the cbArg when the reconstruction has completed.
1411 */
1412 int
1413 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1414 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1415 {
1416 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1417 * forcing recon on */
1418 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1419 RF_ReconParityStripeStatus_t *pssPtr; /* a pointer to the parity
1420 * stripe status structure */
1421 RF_StripeNum_t psid; /* parity stripe id */
1422 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1423 * offset */
1424 RF_RowCol_t *diskids;
1425 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1426 RF_RowCol_t fcol, diskno, i;
1427 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1428 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1429 RF_CallbackDesc_t *cb;
1430 int created = 0, nPromoted;
1431
1432 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1433
1434 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1435
1436 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, &created);
1437
1438 /* if recon is not ongoing on this PS, just return */
1439 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1440 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1441 return (0);
1442 }
1443 /* otherwise, we have to wait for reconstruction to complete on this
1444 * RU. */
1445 /* In order to avoid waiting for a potentially large number of
1446 * low-priority accesses to complete, we force a normal-priority (i.e.
1447 * not low-priority) reconstruction on this RU. */
1448 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1449 DDprintf1("Forcing recon on psid %ld\n", psid);
1450 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1451 * forced recon */
1452 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1453 * that we just set */
1454 fcol = raidPtr->reconControl->fcol;
1455
1456 /* get a listing of the disks comprising the indicated stripe */
1457 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1458
1459 /* For previously issued reads, elevate them to normal
1460 * priority. If the I/O has already completed, it won't be
1461 * found in the queue, and hence this will be a no-op. For
1462 * unissued reads, allocate buffers and issue new reads. The
1463 * fact that we've set the FORCED bit means that the regular
1464 * recon procs will not re-issue these reqs */
1465 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1466 if ((diskno = diskids[i]) != fcol) {
1467 if (pssPtr->issued[diskno]) {
1468 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1469 if (rf_reconDebug && nPromoted)
1470 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1471 } else {
1472 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1473 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1474 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1475 * location */
1476 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1477 new_rbuf->which_ru = which_ru;
1478 new_rbuf->failedDiskSectorOffset = fd_offset;
1479 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1480
1481 /* use NULL b_proc b/c all addrs
1482 * should be in kernel space */
1483 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1484 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1485 NULL, (void *) raidPtr, 0, NULL);
1486
1487 RF_ASSERT(req); /* XXX -- fix this --
1488 * XXX */
1489
1490 new_rbuf->arg = req;
1491 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1492 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1493 }
1494 }
1495 /* if the write is sitting in the disk queue, elevate its
1496 * priority */
1497 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1498 printf("raid%d: promoted write to col %d\n",
1499 raidPtr->raidid, fcol);
1500 }
1501 /* install a callback descriptor to be invoked when recon completes on
1502 * this parity stripe. */
1503 cb = rf_AllocCallbackDesc();
1504 /* XXX the following is bogus.. These functions don't really match!!
1505 * GO */
1506 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1507 cb->callbackArg.p = (void *) cbArg;
1508 cb->next = pssPtr->procWaitList;
1509 pssPtr->procWaitList = cb;
1510 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1511 raidPtr->raidid, psid);
1512
1513 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1514 return (1);
1515 }
1516 /* called upon the completion of a forced reconstruction read.
1517 * all we do is schedule the FORCEDREADONE event.
1518 * called at interrupt context in the kernel, so don't do anything illegal here.
1519 */
1520 static void
1521 ForceReconReadDoneProc(void *arg, int status)
1522 {
1523 RF_ReconBuffer_t *rbuf = arg;
1524
1525 if (status) {
1526 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1527 * recon read
1528 * failed!\n"); */
1529 RF_PANIC();
1530 }
1531 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1532 }
1533 /* releases a block on the reconstruction of the indicated stripe */
1534 int
1535 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1536 {
1537 RF_StripeNum_t stripeID = asmap->stripeID;
1538 RF_ReconParityStripeStatus_t *pssPtr;
1539 RF_ReconUnitNum_t which_ru;
1540 RF_StripeNum_t psid;
1541 int created = 0;
1542 RF_CallbackDesc_t *cb;
1543
1544 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1545 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1546 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, &created);
1547
1548 /* When recon is forced, the pss desc can get deleted before we get
1549 * back to unblock recon. But, this can _only_ happen when recon is
1550 * forced. It would be good to put some kind of sanity check here, but
1551 * how to decide if recon was just forced or not? */
1552 if (!pssPtr) {
1553 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1554 * RU %d\n",psid,which_ru); */
1555 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1556 if (rf_reconDebug || rf_pssDebug)
1557 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1558 #endif
1559 goto out;
1560 }
1561 pssPtr->blockCount--;
1562 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1563 raidPtr->raidid, psid, pssPtr->blockCount);
1564 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1565
1566 /* unblock recon before calling CauseReconEvent in case
1567 * CauseReconEvent causes us to try to issue a new read before
1568 * returning here. */
1569 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1570
1571
1572 while (pssPtr->blockWaitList) {
1573 /* spin through the block-wait list and
1574 release all the waiters */
1575 cb = pssPtr->blockWaitList;
1576 pssPtr->blockWaitList = cb->next;
1577 cb->next = NULL;
1578 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1579 rf_FreeCallbackDesc(cb);
1580 }
1581 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1582 /* if no recon was requested while recon was blocked */
1583 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1584 }
1585 }
1586 out:
1587 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1588 return (0);
1589 }
1590