rf_reconstruct.c revision 1.68 1 /* $NetBSD: rf_reconstruct.c,v 1.68 2004/03/03 00:45:20 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.68 2004/03/03 00:45:20 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *
103 AllocRaidReconDesc(RF_Raid_t * raidPtr,
104 RF_RowCol_t col, RF_RaidDisk_t * spareDiskPtr,
105 int numDisksDone, RF_RowCol_t scol);
106 static void FreeReconDesc(RF_RaidReconDesc_t * reconDesc);
107 static int
108 ProcessReconEvent(RF_Raid_t * raidPtr, RF_ReconEvent_t * event);
109 static int
110 IssueNextReadRequest(RF_Raid_t * raidPtr, RF_RowCol_t col);
111 static int TryToRead(RF_Raid_t * raidPtr, RF_RowCol_t col);
112 static int
113 ComputePSDiskOffsets(RF_Raid_t * raidPtr, RF_StripeNum_t psid,
114 RF_RowCol_t col, RF_SectorNum_t * outDiskOffset,
115 RF_SectorNum_t * outFailedDiskSectorOffset,
116 RF_RowCol_t * spCol, RF_SectorNum_t * spOffset);
117 static int IssueNextWriteRequest(RF_Raid_t * raidPtr);
118 static int ReconReadDoneProc(void *arg, int status);
119 static int ReconWriteDoneProc(void *arg, int status);
120 static void
121 CheckForNewMinHeadSep(RF_Raid_t * raidPtr, RF_HeadSepLimit_t hsCtr);
122 static int
123 CheckHeadSeparation(RF_Raid_t * raidPtr, RF_PerDiskReconCtrl_t * ctrl,
124 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
125 RF_ReconUnitNum_t which_ru);
126 static int
127 CheckForcedOrBlockedReconstruction(RF_Raid_t * raidPtr,
128 RF_ReconParityStripeStatus_t * pssPtr, RF_PerDiskReconCtrl_t * ctrl,
129 RF_RowCol_t col, RF_StripeNum_t psid,
130 RF_ReconUnitNum_t which_ru);
131 static void ForceReconReadDoneProc(void *arg, int status);
132
133 static void rf_ShutdownReconstruction(void *);
134
135 struct RF_ReconDoneProc_s {
136 void (*proc) (RF_Raid_t *, void *);
137 void *arg;
138 RF_ReconDoneProc_t *next;
139 };
140
141 /**************************************************************************
142 *
143 * sets up the parameters that will be used by the reconstruction process
144 * currently there are none, except for those that the layout-specific
145 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
146 *
147 * in the kernel, we fire off the recon thread.
148 *
149 **************************************************************************/
150 static void
151 rf_ShutdownReconstruction(void *ignored)
152 {
153 pool_destroy(&rf_recond_pool);
154 }
155
156 int
157 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
158 {
159
160 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
161 "rf_recond_pl", NULL);
162 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
163
164 return (0);
165 }
166
167 static RF_RaidReconDesc_t *
168 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
169 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
170 RF_RowCol_t scol)
171 {
172
173 RF_RaidReconDesc_t *reconDesc;
174
175 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
176
177 reconDesc->raidPtr = raidPtr;
178 reconDesc->col = col;
179 reconDesc->spareDiskPtr = spareDiskPtr;
180 reconDesc->numDisksDone = numDisksDone;
181 reconDesc->scol = scol;
182 reconDesc->state = 0;
183 reconDesc->next = NULL;
184
185 return (reconDesc);
186 }
187
188 static void
189 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
190 {
191 #if RF_RECON_STATS > 0
192 printf("raid%d: %lu recon event waits, %lu recon delays\n",
193 reconDesc->raidPtr->raidid,
194 (long) reconDesc->numReconEventWaits,
195 (long) reconDesc->numReconExecDelays);
196 #endif /* RF_RECON_STATS > 0 */
197 printf("raid%d: %lu max exec ticks\n",
198 reconDesc->raidPtr->raidid,
199 (long) reconDesc->maxReconExecTicks);
200 #if (RF_RECON_STATS > 0) || defined(KERNEL)
201 printf("\n");
202 #endif /* (RF_RECON_STATS > 0) || KERNEL */
203 pool_put(&rf_recond_pool, reconDesc);
204 }
205
206
207 /*****************************************************************************
208 *
209 * primary routine to reconstruct a failed disk. This should be called from
210 * within its own thread. It won't return until reconstruction completes,
211 * fails, or is aborted.
212 *****************************************************************************/
213 int
214 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
215 {
216 const RF_LayoutSW_t *lp;
217 int rc;
218
219 lp = raidPtr->Layout.map;
220 if (lp->SubmitReconBuffer) {
221 /*
222 * The current infrastructure only supports reconstructing one
223 * disk at a time for each array.
224 */
225 RF_LOCK_MUTEX(raidPtr->mutex);
226 while (raidPtr->reconInProgress) {
227 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
228 }
229 raidPtr->reconInProgress++;
230 RF_UNLOCK_MUTEX(raidPtr->mutex);
231 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
232 RF_LOCK_MUTEX(raidPtr->mutex);
233 raidPtr->reconInProgress--;
234 RF_UNLOCK_MUTEX(raidPtr->mutex);
235 } else {
236 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
237 lp->parityConfig);
238 rc = EIO;
239 }
240 RF_SIGNAL_COND(raidPtr->waitForReconCond);
241 return (rc);
242 }
243
244 int
245 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
246 {
247 RF_ComponentLabel_t c_label;
248 RF_RaidDisk_t *spareDiskPtr = NULL;
249 RF_RaidReconDesc_t *reconDesc;
250 RF_RowCol_t scol;
251 int numDisksDone = 0, rc;
252
253 /* first look for a spare drive onto which to reconstruct the data */
254 /* spare disk descriptors are stored in row 0. This may have to
255 * change eventually */
256
257 RF_LOCK_MUTEX(raidPtr->mutex);
258 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
259
260 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
261 if (raidPtr->status != rf_rs_degraded) {
262 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
263 RF_UNLOCK_MUTEX(raidPtr->mutex);
264 return (EINVAL);
265 }
266 scol = (-1);
267 } else {
268 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
269 if (raidPtr->Disks[scol].status == rf_ds_spare) {
270 spareDiskPtr = &raidPtr->Disks[scol];
271 spareDiskPtr->status = rf_ds_used_spare;
272 break;
273 }
274 }
275 if (!spareDiskPtr) {
276 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
277 RF_UNLOCK_MUTEX(raidPtr->mutex);
278 return (ENOSPC);
279 }
280 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
281 }
282 RF_UNLOCK_MUTEX(raidPtr->mutex);
283
284 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
285 raidPtr->reconDesc = (void *) reconDesc;
286 #if RF_RECON_STATS > 0
287 reconDesc->hsStallCount = 0;
288 reconDesc->numReconExecDelays = 0;
289 reconDesc->numReconEventWaits = 0;
290 #endif /* RF_RECON_STATS > 0 */
291 reconDesc->reconExecTimerRunning = 0;
292 reconDesc->reconExecTicks = 0;
293 reconDesc->maxReconExecTicks = 0;
294 rc = rf_ContinueReconstructFailedDisk(reconDesc);
295
296 if (!rc) {
297 /* fix up the component label */
298 /* Don't actually need the read here.. */
299 raidread_component_label(
300 raidPtr->raid_cinfo[scol].ci_dev,
301 raidPtr->raid_cinfo[scol].ci_vp,
302 &c_label);
303
304 raid_init_component_label( raidPtr, &c_label);
305 c_label.row = 0;
306 c_label.column = col;
307 c_label.clean = RF_RAID_DIRTY;
308 c_label.status = rf_ds_optimal;
309 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
310
311 /* We've just done a rebuild based on all the other
312 disks, so at this point the parity is known to be
313 clean, even if it wasn't before. */
314
315 /* XXX doesn't hold for RAID 6!!*/
316
317 RF_LOCK_MUTEX(raidPtr->mutex);
318 raidPtr->parity_good = RF_RAID_CLEAN;
319 RF_UNLOCK_MUTEX(raidPtr->mutex);
320
321 /* XXXX MORE NEEDED HERE */
322
323 raidwrite_component_label(
324 raidPtr->raid_cinfo[scol].ci_dev,
325 raidPtr->raid_cinfo[scol].ci_vp,
326 &c_label);
327
328
329 rf_update_component_labels(raidPtr,
330 RF_NORMAL_COMPONENT_UPDATE);
331
332 }
333 return (rc);
334 }
335
336 /*
337
338 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
339 and you don't get a spare until the next Monday. With this function
340 (and hot-swappable drives) you can now put your new disk containing
341 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
342 rebuild the data "on the spot".
343
344 */
345
346 int
347 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
348 {
349 RF_RaidDisk_t *spareDiskPtr = NULL;
350 RF_RaidReconDesc_t *reconDesc;
351 const RF_LayoutSW_t *lp;
352 RF_ComponentLabel_t c_label;
353 int numDisksDone = 0, rc;
354 struct partinfo dpart;
355 struct vnode *vp;
356 struct vattr va;
357 struct proc *proc;
358 int retcode;
359 int ac;
360
361 lp = raidPtr->Layout.map;
362 if (!lp->SubmitReconBuffer) {
363 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
364 lp->parityConfig);
365 /* wakeup anyone who might be waiting to do a reconstruct */
366 RF_SIGNAL_COND(raidPtr->waitForReconCond);
367 return(EIO);
368 }
369
370 /*
371 * The current infrastructure only supports reconstructing one
372 * disk at a time for each array.
373 */
374 RF_LOCK_MUTEX(raidPtr->mutex);
375
376 if (raidPtr->Disks[col].status != rf_ds_failed) {
377 /* "It's gone..." */
378 raidPtr->numFailures++;
379 raidPtr->Disks[col].status = rf_ds_failed;
380 raidPtr->status = rf_rs_degraded;
381 RF_UNLOCK_MUTEX(raidPtr->mutex);
382 rf_update_component_labels(raidPtr,
383 RF_NORMAL_COMPONENT_UPDATE);
384 RF_LOCK_MUTEX(raidPtr->mutex);
385 }
386
387 while (raidPtr->reconInProgress) {
388 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
389 }
390
391 raidPtr->reconInProgress++;
392
393 /* first look for a spare drive onto which to reconstruct the
394 data. spare disk descriptors are stored in row 0. This
395 may have to change eventually */
396
397 /* Actually, we don't care if it's failed or not... On a RAID
398 set with correct parity, this function should be callable
399 on any component without ill affects. */
400 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
401
402 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
403 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
404
405 raidPtr->reconInProgress--;
406 RF_UNLOCK_MUTEX(raidPtr->mutex);
407 RF_SIGNAL_COND(raidPtr->waitForReconCond);
408 return (EINVAL);
409 }
410
411 proc = raidPtr->engine_thread;
412
413 /* This device may have been opened successfully the
414 first time. Close it before trying to open it again.. */
415
416 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
417 #if 0
418 printf("Closed the open device: %s\n",
419 raidPtr->Disks[col].devname);
420 #endif
421 vp = raidPtr->raid_cinfo[col].ci_vp;
422 ac = raidPtr->Disks[col].auto_configured;
423 RF_UNLOCK_MUTEX(raidPtr->mutex);
424 rf_close_component(raidPtr, vp, ac);
425 RF_LOCK_MUTEX(raidPtr->mutex);
426 raidPtr->raid_cinfo[col].ci_vp = NULL;
427 }
428 /* note that this disk was *not* auto_configured (any longer)*/
429 raidPtr->Disks[col].auto_configured = 0;
430
431 #if 0
432 printf("About to (re-)open the device for rebuilding: %s\n",
433 raidPtr->Disks[col].devname);
434 #endif
435 RF_UNLOCK_MUTEX(raidPtr->mutex);
436 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
437
438 if (retcode) {
439 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
440 raidPtr->Disks[col].devname, retcode);
441
442 /* the component isn't responding properly...
443 must be still dead :-( */
444 RF_LOCK_MUTEX(raidPtr->mutex);
445 raidPtr->reconInProgress--;
446 RF_UNLOCK_MUTEX(raidPtr->mutex);
447 RF_SIGNAL_COND(raidPtr->waitForReconCond);
448 return(retcode);
449 }
450
451 /* Ok, so we can at least do a lookup...
452 How about actually getting a vp for it? */
453
454 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
455 RF_LOCK_MUTEX(raidPtr->mutex);
456 raidPtr->reconInProgress--;
457 RF_UNLOCK_MUTEX(raidPtr->mutex);
458 RF_SIGNAL_COND(raidPtr->waitForReconCond);
459 return(retcode);
460 }
461
462 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
463 if (retcode) {
464 RF_LOCK_MUTEX(raidPtr->mutex);
465 raidPtr->reconInProgress--;
466 RF_UNLOCK_MUTEX(raidPtr->mutex);
467 RF_SIGNAL_COND(raidPtr->waitForReconCond);
468 return(retcode);
469 }
470 RF_LOCK_MUTEX(raidPtr->mutex);
471 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
472
473 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
474 rf_protectedSectors;
475
476 raidPtr->raid_cinfo[col].ci_vp = vp;
477 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
478
479 raidPtr->Disks[col].dev = va.va_rdev;
480
481 /* we allow the user to specify that only a fraction
482 of the disks should be used this is just for debug:
483 it speeds up * the parity scan */
484 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
485 rf_sizePercentage / 100;
486 RF_UNLOCK_MUTEX(raidPtr->mutex);
487
488 spareDiskPtr = &raidPtr->Disks[col];
489 spareDiskPtr->status = rf_ds_used_spare;
490
491 printf("raid%d: initiating in-place reconstruction on column %d\n",
492 raidPtr->raidid, col);
493
494 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
495 numDisksDone, col);
496 raidPtr->reconDesc = (void *) reconDesc;
497 #if RF_RECON_STATS > 0
498 reconDesc->hsStallCount = 0;
499 reconDesc->numReconExecDelays = 0;
500 reconDesc->numReconEventWaits = 0;
501 #endif /* RF_RECON_STATS > 0 */
502 reconDesc->reconExecTimerRunning = 0;
503 reconDesc->reconExecTicks = 0;
504 reconDesc->maxReconExecTicks = 0;
505 rc = rf_ContinueReconstructFailedDisk(reconDesc);
506
507 RF_LOCK_MUTEX(raidPtr->mutex);
508 raidPtr->reconInProgress--;
509 RF_UNLOCK_MUTEX(raidPtr->mutex);
510
511 if (!rc) {
512 RF_LOCK_MUTEX(raidPtr->mutex);
513 /* Need to set these here, as at this point it'll be claiming
514 that the disk is in rf_ds_spared! But we know better :-) */
515
516 raidPtr->Disks[col].status = rf_ds_optimal;
517 raidPtr->status = rf_rs_optimal;
518 RF_UNLOCK_MUTEX(raidPtr->mutex);
519
520 /* fix up the component label */
521 /* Don't actually need the read here.. */
522 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
523 raidPtr->raid_cinfo[col].ci_vp,
524 &c_label);
525
526 RF_LOCK_MUTEX(raidPtr->mutex);
527 raid_init_component_label(raidPtr, &c_label);
528
529 c_label.row = 0;
530 c_label.column = col;
531
532 /* We've just done a rebuild based on all the other
533 disks, so at this point the parity is known to be
534 clean, even if it wasn't before. */
535
536 /* XXX doesn't hold for RAID 6!!*/
537
538 raidPtr->parity_good = RF_RAID_CLEAN;
539 RF_UNLOCK_MUTEX(raidPtr->mutex);
540
541 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
542 raidPtr->raid_cinfo[col].ci_vp,
543 &c_label);
544
545 rf_update_component_labels(raidPtr,
546 RF_NORMAL_COMPONENT_UPDATE);
547
548 }
549 RF_SIGNAL_COND(raidPtr->waitForReconCond);
550 return (rc);
551 }
552
553
554 int
555 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
556 {
557 RF_Raid_t *raidPtr = reconDesc->raidPtr;
558 RF_RowCol_t col = reconDesc->col;
559 RF_RowCol_t scol = reconDesc->scol;
560 RF_ReconMap_t *mapPtr;
561 RF_ReconCtrl_t *tmp_reconctrl;
562 RF_ReconEvent_t *event;
563 struct timeval etime, elpsd;
564 unsigned long xor_s, xor_resid_us;
565 int i, ds;
566
567 switch (reconDesc->state) {
568
569
570 case 0:
571
572 raidPtr->accumXorTimeUs = 0;
573 #if RF_ACC_TRACE > 0
574 /* create one trace record per physical disk */
575 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
576 #endif
577
578 /* quiesce the array prior to starting recon. this is needed
579 * to assure no nasty interactions with pending user writes.
580 * We need to do this before we change the disk or row status. */
581 reconDesc->state = 1;
582
583 Dprintf("RECON: begin request suspend\n");
584 rf_SuspendNewRequestsAndWait(raidPtr);
585 Dprintf("RECON: end request suspend\n");
586 rf_StartUserStats(raidPtr); /* zero out the stats kept on
587 * user accs */
588
589 /* fall through to state 1 */
590
591 case 1:
592
593 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
594 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
595
596 RF_LOCK_MUTEX(raidPtr->mutex);
597
598 /* create the reconstruction control pointer and install it in
599 * the right slot */
600 raidPtr->reconControl = tmp_reconctrl;
601 mapPtr = raidPtr->reconControl->reconMap;
602 raidPtr->status = rf_rs_reconstructing;
603 raidPtr->Disks[col].status = rf_ds_reconstructing;
604 raidPtr->Disks[col].spareCol = scol;
605
606 RF_UNLOCK_MUTEX(raidPtr->mutex);
607
608 RF_GETTIME(raidPtr->reconControl->starttime);
609
610 /* now start up the actual reconstruction: issue a read for
611 * each surviving disk */
612
613 reconDesc->numDisksDone = 0;
614 for (i = 0; i < raidPtr->numCol; i++) {
615 if (i != col) {
616 /* find and issue the next I/O on the
617 * indicated disk */
618 if (IssueNextReadRequest(raidPtr, i)) {
619 Dprintf1("RECON: done issuing for c%d\n", i);
620 reconDesc->numDisksDone++;
621 }
622 }
623 }
624
625 case 2:
626 Dprintf("RECON: resume requests\n");
627 rf_ResumeNewRequests(raidPtr);
628
629
630 reconDesc->state = 3;
631
632 case 3:
633
634 /* process reconstruction events until all disks report that
635 * they've completed all work */
636 mapPtr = raidPtr->reconControl->reconMap;
637
638
639
640 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
641
642 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
643 RF_ASSERT(event);
644
645 if (ProcessReconEvent(raidPtr, event))
646 reconDesc->numDisksDone++;
647 raidPtr->reconControl->numRUsTotal =
648 mapPtr->totalRUs;
649 raidPtr->reconControl->numRUsComplete =
650 mapPtr->totalRUs -
651 rf_UnitsLeftToReconstruct(mapPtr);
652 #if RF_DEBUG_RECON
653 raidPtr->reconControl->percentComplete =
654 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
655 if (rf_prReconSched) {
656 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
657 }
658 #endif
659 }
660
661
662
663 reconDesc->state = 4;
664
665
666 case 4:
667 mapPtr = raidPtr->reconControl->reconMap;
668 if (rf_reconDebug) {
669 printf("RECON: all reads completed\n");
670 }
671 /* at this point all the reads have completed. We now wait
672 * for any pending writes to complete, and then we're done */
673
674 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
675
676 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
677 RF_ASSERT(event);
678
679 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
680 #if RF_DEBUG_RECON
681 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
682 if (rf_prReconSched) {
683 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
684 }
685 #endif
686 }
687 reconDesc->state = 5;
688
689 case 5:
690 /* Success: mark the dead disk as reconstructed. We quiesce
691 * the array here to assure no nasty interactions with pending
692 * user accesses when we free up the psstatus structure as
693 * part of FreeReconControl() */
694
695 reconDesc->state = 6;
696
697 rf_SuspendNewRequestsAndWait(raidPtr);
698 rf_StopUserStats(raidPtr);
699 rf_PrintUserStats(raidPtr); /* print out the stats on user
700 * accs accumulated during
701 * recon */
702
703 /* fall through to state 6 */
704 case 6:
705
706
707
708 RF_LOCK_MUTEX(raidPtr->mutex);
709 raidPtr->numFailures--;
710 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
711 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
712 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
713 RF_UNLOCK_MUTEX(raidPtr->mutex);
714 RF_GETTIME(etime);
715 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
716
717 /* XXX -- why is state 7 different from state 6 if there is no
718 * return() here? -- XXX Note that I set elpsd above & use it
719 * below, so if you put a return here you'll have to fix this.
720 * (also, FreeReconControl is called below) */
721
722 case 7:
723
724 rf_ResumeNewRequests(raidPtr);
725
726 printf("raid%d: Reconstruction of disk at col %d completed\n",
727 raidPtr->raidid, col);
728 xor_s = raidPtr->accumXorTimeUs / 1000000;
729 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
730 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
731 raidPtr->raidid,
732 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
733 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
734 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
735 raidPtr->raidid,
736 (int) raidPtr->reconControl->starttime.tv_sec,
737 (int) raidPtr->reconControl->starttime.tv_usec,
738 (int) etime.tv_sec, (int) etime.tv_usec);
739
740 #if RF_RECON_STATS > 0
741 printf("raid%d: Total head-sep stall count was %d\n",
742 raidPtr->raidid, (int) reconDesc->hsStallCount);
743 #endif /* RF_RECON_STATS > 0 */
744 rf_FreeReconControl(raidPtr);
745 #if RF_ACC_TRACE > 0
746 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
747 #endif
748 FreeReconDesc(reconDesc);
749
750 }
751
752 return (0);
753 }
754 /*****************************************************************************
755 * do the right thing upon each reconstruction event.
756 * returns nonzero if and only if there is nothing left unread on the
757 * indicated disk
758 *****************************************************************************/
759 static int
760 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
761 {
762 int retcode = 0, submitblocked;
763 RF_ReconBuffer_t *rbuf;
764 RF_SectorCount_t sectorsPerRU;
765
766 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
767 switch (event->type) {
768
769 /* a read I/O has completed */
770 case RF_REVENT_READDONE:
771 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
772 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
773 event->col, rbuf->parityStripeID);
774 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
775 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
776 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
777 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
778 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
779 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
780 if (!submitblocked)
781 retcode = IssueNextReadRequest(raidPtr, event->col);
782 break;
783
784 /* a write I/O has completed */
785 case RF_REVENT_WRITEDONE:
786 #if RF_DEBUG_RECON
787 if (rf_floatingRbufDebug) {
788 rf_CheckFloatingRbufCount(raidPtr, 1);
789 }
790 #endif
791 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
792 rbuf = (RF_ReconBuffer_t *) event->arg;
793 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
794 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
795 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
796 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
797 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
798 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
799
800 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
801 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
802 raidPtr->numFullReconBuffers--;
803 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
804 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
805 } else
806 if (rbuf->type == RF_RBUF_TYPE_FORCED)
807 rf_FreeReconBuffer(rbuf);
808 else
809 RF_ASSERT(0);
810 break;
811
812 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
813 * cleared */
814 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
815 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
816 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
817 * BUFCLEAR event if we
818 * couldn't submit */
819 retcode = IssueNextReadRequest(raidPtr, event->col);
820 break;
821
822 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
823 * blockage has been cleared */
824 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
825 retcode = TryToRead(raidPtr, event->col);
826 break;
827
828 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
829 * reconstruction blockage has been
830 * cleared */
831 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
832 retcode = TryToRead(raidPtr, event->col);
833 break;
834
835 /* a buffer has become ready to write */
836 case RF_REVENT_BUFREADY:
837 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
838 retcode = IssueNextWriteRequest(raidPtr);
839 #if RF_DEBUG_RECON
840 if (rf_floatingRbufDebug) {
841 rf_CheckFloatingRbufCount(raidPtr, 1);
842 }
843 #endif
844 break;
845
846 /* we need to skip the current RU entirely because it got
847 * recon'd while we were waiting for something else to happen */
848 case RF_REVENT_SKIP:
849 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
850 retcode = IssueNextReadRequest(raidPtr, event->col);
851 break;
852
853 /* a forced-reconstruction read access has completed. Just
854 * submit the buffer */
855 case RF_REVENT_FORCEDREADDONE:
856 rbuf = (RF_ReconBuffer_t *) event->arg;
857 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
858 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
859 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
860 RF_ASSERT(!submitblocked);
861 break;
862
863 default:
864 RF_PANIC();
865 }
866 rf_FreeReconEventDesc(event);
867 return (retcode);
868 }
869 /*****************************************************************************
870 *
871 * find the next thing that's needed on the indicated disk, and issue
872 * a read request for it. We assume that the reconstruction buffer
873 * associated with this process is free to receive the data. If
874 * reconstruction is blocked on the indicated RU, we issue a
875 * blockage-release request instead of a physical disk read request.
876 * If the current disk gets too far ahead of the others, we issue a
877 * head-separation wait request and return.
878 *
879 * ctrl->{ru_count, curPSID, diskOffset} and
880 * rbuf->failedDiskSectorOffset are maintained to point to the unit
881 * we're currently accessing. Note that this deviates from the
882 * standard C idiom of having counters point to the next thing to be
883 * accessed. This allows us to easily retry when we're blocked by
884 * head separation or reconstruction-blockage events.
885 *
886 * returns nonzero if and only if there is nothing left unread on the
887 * indicated disk
888 *
889 *****************************************************************************/
890 static int
891 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
892 {
893 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
894 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
895 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
896 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
897 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
898 int do_new_check = 0, retcode = 0, status;
899
900 /* if we are currently the slowest disk, mark that we have to do a new
901 * check */
902 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
903 do_new_check = 1;
904
905 while (1) {
906
907 ctrl->ru_count++;
908 if (ctrl->ru_count < RUsPerPU) {
909 ctrl->diskOffset += sectorsPerRU;
910 rbuf->failedDiskSectorOffset += sectorsPerRU;
911 } else {
912 ctrl->curPSID++;
913 ctrl->ru_count = 0;
914 /* code left over from when head-sep was based on
915 * parity stripe id */
916 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
917 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
918 return (1); /* finito! */
919 }
920 /* find the disk offsets of the start of the parity
921 * stripe on both the current disk and the failed
922 * disk. skip this entire parity stripe if either disk
923 * does not appear in the indicated PS */
924 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
925 &rbuf->spCol, &rbuf->spOffset);
926 if (status) {
927 ctrl->ru_count = RUsPerPU - 1;
928 continue;
929 }
930 }
931 rbuf->which_ru = ctrl->ru_count;
932
933 /* skip this RU if it's already been reconstructed */
934 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
935 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
936 continue;
937 }
938 break;
939 }
940 ctrl->headSepCounter++;
941 if (do_new_check)
942 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
943
944
945 /* at this point, we have definitely decided what to do, and we have
946 * only to see if we can actually do it now */
947 rbuf->parityStripeID = ctrl->curPSID;
948 rbuf->which_ru = ctrl->ru_count;
949 #if RF_ACC_TRACE > 0
950 memset((char *) &raidPtr->recon_tracerecs[col], 0,
951 sizeof(raidPtr->recon_tracerecs[col]));
952 raidPtr->recon_tracerecs[col].reconacc = 1;
953 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
954 #endif
955 retcode = TryToRead(raidPtr, col);
956 return (retcode);
957 }
958
959 /*
960 * tries to issue the next read on the indicated disk. We may be
961 * blocked by (a) the heads being too far apart, or (b) recon on the
962 * indicated RU being blocked due to a write by a user thread. In
963 * this case, we issue a head-sep or blockage wait request, which will
964 * cause this same routine to be invoked again later when the blockage
965 * has cleared.
966 */
967
968 static int
969 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
970 {
971 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
972 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
973 RF_StripeNum_t psid = ctrl->curPSID;
974 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
975 RF_DiskQueueData_t *req;
976 int status;
977 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
978
979 /* if the current disk is too far ahead of the others, issue a
980 * head-separation wait and return */
981 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
982 return (0);
983
984 /* allocate a new PSS in case we need it */
985 newpssPtr = rf_AllocPSStatus(raidPtr);
986
987 RF_LOCK_PSS_MUTEX(raidPtr, psid);
988 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
989
990 if (pssPtr != newpssPtr) {
991 rf_FreePSStatus(raidPtr, newpssPtr);
992 }
993
994 /* if recon is blocked on the indicated parity stripe, issue a
995 * block-wait request and return. this also must mark the indicated RU
996 * in the stripe as under reconstruction if not blocked. */
997 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
998 if (status == RF_PSS_RECON_BLOCKED) {
999 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1000 goto out;
1001 } else
1002 if (status == RF_PSS_FORCED_ON_WRITE) {
1003 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1004 goto out;
1005 }
1006 /* make one last check to be sure that the indicated RU didn't get
1007 * reconstructed while we were waiting for something else to happen.
1008 * This is unfortunate in that it causes us to make this check twice
1009 * in the normal case. Might want to make some attempt to re-work
1010 * this so that we only do this check if we've definitely blocked on
1011 * one of the above checks. When this condition is detected, we may
1012 * have just created a bogus status entry, which we need to delete. */
1013 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1014 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1015 if (pssPtr == newpssPtr)
1016 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1017 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1018 goto out;
1019 }
1020 /* found something to read. issue the I/O */
1021 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1022 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1023 #if RF_ACC_TRACE > 0
1024 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1025 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1026 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1027 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1028 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1029 #endif
1030 /* should be ok to use a NULL proc pointer here, all the bufs we use
1031 * should be in kernel space */
1032 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1033 ReconReadDoneProc, (void *) ctrl, NULL,
1034 #if RF_ACC_TRACE > 0
1035 &raidPtr->recon_tracerecs[col],
1036 #else
1037 NULL,
1038 #endif
1039 (void *) raidPtr, 0, NULL);
1040
1041 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1042
1043 ctrl->rbuf->arg = (void *) req;
1044 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1045 pssPtr->issued[col] = 1;
1046
1047 out:
1048 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1049 return (0);
1050 }
1051
1052
1053 /*
1054 * given a parity stripe ID, we want to find out whether both the
1055 * current disk and the failed disk exist in that parity stripe. If
1056 * not, we want to skip this whole PS. If so, we want to find the
1057 * disk offset of the start of the PS on both the current disk and the
1058 * failed disk.
1059 *
1060 * this works by getting a list of disks comprising the indicated
1061 * parity stripe, and searching the list for the current and failed
1062 * disks. Once we've decided they both exist in the parity stripe, we
1063 * need to decide whether each is data or parity, so that we'll know
1064 * which mapping function to call to get the corresponding disk
1065 * offsets.
1066 *
1067 * this is kind of unpleasant, but doing it this way allows the
1068 * reconstruction code to use parity stripe IDs rather than physical
1069 * disks address to march through the failed disk, which greatly
1070 * simplifies a lot of code, as well as eliminating the need for a
1071 * reverse-mapping function. I also think it will execute faster,
1072 * since the calls to the mapping module are kept to a minimum.
1073 *
1074 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1075 * THE STRIPE IN THE CORRECT ORDER
1076 *
1077 * raidPtr - raid descriptor
1078 * psid - parity stripe identifier
1079 * col - column of disk to find the offsets for
1080 * spCol - out: col of spare unit for failed unit
1081 * spOffset - out: offset into disk containing spare unit
1082 *
1083 */
1084
1085
1086 static int
1087 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1088 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1089 RF_SectorNum_t *outFailedDiskSectorOffset,
1090 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1091 {
1092 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1093 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1094 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1095 RF_RowCol_t *diskids;
1096 u_int i, j, k, i_offset, j_offset;
1097 RF_RowCol_t pcol;
1098 int testcol;
1099 RF_SectorNum_t poffset;
1100 char i_is_parity = 0, j_is_parity = 0;
1101 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1102
1103 /* get a listing of the disks comprising that stripe */
1104 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1105 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1106 RF_ASSERT(diskids);
1107
1108 /* reject this entire parity stripe if it does not contain the
1109 * indicated disk or it does not contain the failed disk */
1110
1111 for (i = 0; i < stripeWidth; i++) {
1112 if (col == diskids[i])
1113 break;
1114 }
1115 if (i == stripeWidth)
1116 goto skipit;
1117 for (j = 0; j < stripeWidth; j++) {
1118 if (fcol == diskids[j])
1119 break;
1120 }
1121 if (j == stripeWidth) {
1122 goto skipit;
1123 }
1124 /* find out which disk the parity is on */
1125 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1126
1127 /* find out if either the current RU or the failed RU is parity */
1128 /* also, if the parity occurs in this stripe prior to the data and/or
1129 * failed col, we need to decrement i and/or j */
1130 for (k = 0; k < stripeWidth; k++)
1131 if (diskids[k] == pcol)
1132 break;
1133 RF_ASSERT(k < stripeWidth);
1134 i_offset = i;
1135 j_offset = j;
1136 if (k < i)
1137 i_offset--;
1138 else
1139 if (k == i) {
1140 i_is_parity = 1;
1141 i_offset = 0;
1142 } /* set offsets to zero to disable multiply
1143 * below */
1144 if (k < j)
1145 j_offset--;
1146 else
1147 if (k == j) {
1148 j_is_parity = 1;
1149 j_offset = 0;
1150 }
1151 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1152 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1153 * tells us how far into the stripe the [current,failed] disk is. */
1154
1155 /* call the mapping routine to get the offset into the current disk,
1156 * repeat for failed disk. */
1157 if (i_is_parity)
1158 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1159 else
1160 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1161
1162 RF_ASSERT(col == testcol);
1163
1164 if (j_is_parity)
1165 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1166 else
1167 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1168 RF_ASSERT(fcol == testcol);
1169
1170 /* now locate the spare unit for the failed unit */
1171 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1172 if (j_is_parity)
1173 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1174 else
1175 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1176 } else {
1177 *spCol = raidPtr->reconControl->spareCol;
1178 *spOffset = *outFailedDiskSectorOffset;
1179 }
1180
1181 return (0);
1182
1183 skipit:
1184 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1185 psid, col);
1186 return (1);
1187 }
1188 /* this is called when a buffer has become ready to write to the replacement disk */
1189 static int
1190 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1191 {
1192 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1193 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1194 #if RF_ACC_TRACE > 0
1195 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1196 #endif
1197 RF_ReconBuffer_t *rbuf;
1198 RF_DiskQueueData_t *req;
1199
1200 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1201 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1202 * have gotten the event that sent us here */
1203 RF_ASSERT(rbuf->pssPtr);
1204
1205 rbuf->pssPtr->writeRbuf = rbuf;
1206 rbuf->pssPtr = NULL;
1207
1208 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1209 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1210 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1211 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1212 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1213 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1214
1215 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1216 * kernel space */
1217 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1218 sectorsPerRU, rbuf->buffer,
1219 rbuf->parityStripeID, rbuf->which_ru,
1220 ReconWriteDoneProc, (void *) rbuf, NULL,
1221 #if RF_ACC_TRACE > 0
1222 &raidPtr->recon_tracerecs[fcol],
1223 #else
1224 NULL,
1225 #endif
1226 (void *) raidPtr, 0, NULL);
1227
1228 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1229
1230 rbuf->arg = (void *) req;
1231 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1232
1233 return (0);
1234 }
1235
1236 /*
1237 * this gets called upon the completion of a reconstruction read
1238 * operation the arg is a pointer to the per-disk reconstruction
1239 * control structure for the process that just finished a read.
1240 *
1241 * called at interrupt context in the kernel, so don't do anything
1242 * illegal here.
1243 */
1244 static int
1245 ReconReadDoneProc(void *arg, int status)
1246 {
1247 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1248 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1249
1250 if (status) {
1251 /*
1252 * XXX
1253 */
1254 printf("Recon read failed!\n");
1255 RF_PANIC();
1256 }
1257 #if RF_ACC_TRACE > 0
1258 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1259 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1260 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1261 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1262 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1263 #endif
1264 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1265 return (0);
1266 }
1267 /* this gets called upon the completion of a reconstruction write operation.
1268 * the arg is a pointer to the rbuf that was just written
1269 *
1270 * called at interrupt context in the kernel, so don't do anything illegal here.
1271 */
1272 static int
1273 ReconWriteDoneProc(void *arg, int status)
1274 {
1275 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1276
1277 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1278 if (status) {
1279 printf("Recon write failed!\n"); /* fprintf(stderr,"Recon
1280 * write failed!\n"); */
1281 RF_PANIC();
1282 }
1283 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1284 return (0);
1285 }
1286
1287
1288 /*
1289 * computes a new minimum head sep, and wakes up anyone who needs to
1290 * be woken as a result
1291 */
1292 static void
1293 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1294 {
1295 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1296 RF_HeadSepLimit_t new_min;
1297 RF_RowCol_t i;
1298 RF_CallbackDesc_t *p;
1299 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1300 * of a minimum */
1301
1302
1303 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1304
1305 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1306 for (i = 0; i < raidPtr->numCol; i++)
1307 if (i != reconCtrlPtr->fcol) {
1308 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1309 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1310 }
1311 /* set the new minimum and wake up anyone who can now run again */
1312 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1313 reconCtrlPtr->minHeadSepCounter = new_min;
1314 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1315 while (reconCtrlPtr->headSepCBList) {
1316 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1317 break;
1318 p = reconCtrlPtr->headSepCBList;
1319 reconCtrlPtr->headSepCBList = p->next;
1320 p->next = NULL;
1321 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1322 rf_FreeCallbackDesc(p);
1323 }
1324
1325 }
1326 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1327 }
1328
1329 /*
1330 * checks to see that the maximum head separation will not be violated
1331 * if we initiate a reconstruction I/O on the indicated disk.
1332 * Limiting the maximum head separation between two disks eliminates
1333 * the nasty buffer-stall conditions that occur when one disk races
1334 * ahead of the others and consumes all of the floating recon buffers.
1335 * This code is complex and unpleasant but it's necessary to avoid
1336 * some very nasty, albeit fairly rare, reconstruction behavior.
1337 *
1338 * returns non-zero if and only if we have to stop working on the
1339 * indicated disk due to a head-separation delay.
1340 */
1341 static int
1342 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1343 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1344 RF_ReconUnitNum_t which_ru)
1345 {
1346 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1347 RF_CallbackDesc_t *cb, *p, *pt;
1348 int retval = 0;
1349
1350 /* if we're too far ahead of the slowest disk, stop working on this
1351 * disk until the slower ones catch up. We do this by scheduling a
1352 * wakeup callback for the time when the slowest disk has caught up.
1353 * We define "caught up" with 20% hysteresis, i.e. the head separation
1354 * must have fallen to at most 80% of the max allowable head
1355 * separation before we'll wake up.
1356 *
1357 */
1358 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1359 if ((raidPtr->headSepLimit >= 0) &&
1360 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1361 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1362 raidPtr->raidid, col, ctrl->headSepCounter,
1363 reconCtrlPtr->minHeadSepCounter,
1364 raidPtr->headSepLimit);
1365 cb = rf_AllocCallbackDesc();
1366 /* the minHeadSepCounter value we have to get to before we'll
1367 * wake up. build in 20% hysteresis. */
1368 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1369 cb->col = col;
1370 cb->next = NULL;
1371
1372 /* insert this callback descriptor into the sorted list of
1373 * pending head-sep callbacks */
1374 p = reconCtrlPtr->headSepCBList;
1375 if (!p)
1376 reconCtrlPtr->headSepCBList = cb;
1377 else
1378 if (cb->callbackArg.v < p->callbackArg.v) {
1379 cb->next = reconCtrlPtr->headSepCBList;
1380 reconCtrlPtr->headSepCBList = cb;
1381 } else {
1382 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1383 cb->next = p;
1384 pt->next = cb;
1385 }
1386 retval = 1;
1387 #if RF_RECON_STATS > 0
1388 ctrl->reconCtrl->reconDesc->hsStallCount++;
1389 #endif /* RF_RECON_STATS > 0 */
1390 }
1391 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1392
1393 return (retval);
1394 }
1395 /*
1396 * checks to see if reconstruction has been either forced or blocked
1397 * by a user operation. if forced, we skip this RU entirely. else if
1398 * blocked, put ourselves on the wait list. else return 0.
1399 *
1400 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1401 */
1402 static int
1403 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1404 RF_ReconParityStripeStatus_t *pssPtr,
1405 RF_PerDiskReconCtrl_t *ctrl,
1406 RF_RowCol_t col, RF_StripeNum_t psid,
1407 RF_ReconUnitNum_t which_ru)
1408 {
1409 RF_CallbackDesc_t *cb;
1410 int retcode = 0;
1411
1412 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1413 retcode = RF_PSS_FORCED_ON_WRITE;
1414 else
1415 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1416 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1417 cb = rf_AllocCallbackDesc(); /* append ourselves to
1418 * the blockage-wait
1419 * list */
1420 cb->col = col;
1421 cb->next = pssPtr->blockWaitList;
1422 pssPtr->blockWaitList = cb;
1423 retcode = RF_PSS_RECON_BLOCKED;
1424 }
1425 if (!retcode)
1426 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1427 * reconstruction */
1428
1429 return (retcode);
1430 }
1431 /*
1432 * if reconstruction is currently ongoing for the indicated stripeID,
1433 * reconstruction is forced to completion and we return non-zero to
1434 * indicate that the caller must wait. If not, then reconstruction is
1435 * blocked on the indicated stripe and the routine returns zero. If
1436 * and only if we return non-zero, we'll cause the cbFunc to get
1437 * invoked with the cbArg when the reconstruction has completed.
1438 */
1439 int
1440 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1441 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1442 {
1443 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1444 * forcing recon on */
1445 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1446 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1447 * stripe status structure */
1448 RF_StripeNum_t psid; /* parity stripe id */
1449 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1450 * offset */
1451 RF_RowCol_t *diskids;
1452 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1453 RF_RowCol_t fcol, diskno, i;
1454 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1455 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1456 RF_CallbackDesc_t *cb;
1457 int nPromoted;
1458
1459 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1460
1461 /* allocate a new PSS in case we need it */
1462 newpssPtr = rf_AllocPSStatus(raidPtr);
1463
1464 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1465
1466 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1467
1468 if (pssPtr != newpssPtr) {
1469 rf_FreePSStatus(raidPtr, newpssPtr);
1470 }
1471
1472 /* if recon is not ongoing on this PS, just return */
1473 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1474 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1475 return (0);
1476 }
1477 /* otherwise, we have to wait for reconstruction to complete on this
1478 * RU. */
1479 /* In order to avoid waiting for a potentially large number of
1480 * low-priority accesses to complete, we force a normal-priority (i.e.
1481 * not low-priority) reconstruction on this RU. */
1482 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1483 DDprintf1("Forcing recon on psid %ld\n", psid);
1484 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1485 * forced recon */
1486 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1487 * that we just set */
1488 fcol = raidPtr->reconControl->fcol;
1489
1490 /* get a listing of the disks comprising the indicated stripe */
1491 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1492
1493 /* For previously issued reads, elevate them to normal
1494 * priority. If the I/O has already completed, it won't be
1495 * found in the queue, and hence this will be a no-op. For
1496 * unissued reads, allocate buffers and issue new reads. The
1497 * fact that we've set the FORCED bit means that the regular
1498 * recon procs will not re-issue these reqs */
1499 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1500 if ((diskno = diskids[i]) != fcol) {
1501 if (pssPtr->issued[diskno]) {
1502 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1503 if (rf_reconDebug && nPromoted)
1504 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1505 } else {
1506 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1507 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1508 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1509 * location */
1510 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1511 new_rbuf->which_ru = which_ru;
1512 new_rbuf->failedDiskSectorOffset = fd_offset;
1513 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1514
1515 /* use NULL b_proc b/c all addrs
1516 * should be in kernel space */
1517 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1518 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1519 NULL, (void *) raidPtr, 0, NULL);
1520
1521 RF_ASSERT(req); /* XXX -- fix this --
1522 * XXX */
1523
1524 new_rbuf->arg = req;
1525 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1526 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1527 }
1528 }
1529 /* if the write is sitting in the disk queue, elevate its
1530 * priority */
1531 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1532 printf("raid%d: promoted write to col %d\n",
1533 raidPtr->raidid, fcol);
1534 }
1535 /* install a callback descriptor to be invoked when recon completes on
1536 * this parity stripe. */
1537 cb = rf_AllocCallbackDesc();
1538 /* XXX the following is bogus.. These functions don't really match!!
1539 * GO */
1540 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1541 cb->callbackArg.p = (void *) cbArg;
1542 cb->next = pssPtr->procWaitList;
1543 pssPtr->procWaitList = cb;
1544 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1545 raidPtr->raidid, psid);
1546
1547 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1548 return (1);
1549 }
1550 /* called upon the completion of a forced reconstruction read.
1551 * all we do is schedule the FORCEDREADONE event.
1552 * called at interrupt context in the kernel, so don't do anything illegal here.
1553 */
1554 static void
1555 ForceReconReadDoneProc(void *arg, int status)
1556 {
1557 RF_ReconBuffer_t *rbuf = arg;
1558
1559 if (status) {
1560 printf("Forced recon read failed!\n"); /* fprintf(stderr,"Forced
1561 * recon read
1562 * failed!\n"); */
1563 RF_PANIC();
1564 }
1565 rf_CauseReconEvent((RF_Raid_t *) rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1566 }
1567 /* releases a block on the reconstruction of the indicated stripe */
1568 int
1569 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1570 {
1571 RF_StripeNum_t stripeID = asmap->stripeID;
1572 RF_ReconParityStripeStatus_t *pssPtr;
1573 RF_ReconUnitNum_t which_ru;
1574 RF_StripeNum_t psid;
1575 RF_CallbackDesc_t *cb;
1576
1577 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1578 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1579 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1580
1581 /* When recon is forced, the pss desc can get deleted before we get
1582 * back to unblock recon. But, this can _only_ happen when recon is
1583 * forced. It would be good to put some kind of sanity check here, but
1584 * how to decide if recon was just forced or not? */
1585 if (!pssPtr) {
1586 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1587 * RU %d\n",psid,which_ru); */
1588 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1589 if (rf_reconDebug || rf_pssDebug)
1590 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1591 #endif
1592 goto out;
1593 }
1594 pssPtr->blockCount--;
1595 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1596 raidPtr->raidid, psid, pssPtr->blockCount);
1597 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1598
1599 /* unblock recon before calling CauseReconEvent in case
1600 * CauseReconEvent causes us to try to issue a new read before
1601 * returning here. */
1602 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1603
1604
1605 while (pssPtr->blockWaitList) {
1606 /* spin through the block-wait list and
1607 release all the waiters */
1608 cb = pssPtr->blockWaitList;
1609 pssPtr->blockWaitList = cb->next;
1610 cb->next = NULL;
1611 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1612 rf_FreeCallbackDesc(cb);
1613 }
1614 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1615 /* if no recon was requested while recon was blocked */
1616 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1617 }
1618 }
1619 out:
1620 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1621 return (0);
1622 }
1623