rf_reconstruct.c revision 1.71 1 /* $NetBSD: rf_reconstruct.c,v 1.71 2004/03/03 17:14:46 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.71 2004/03/03 17:14:46 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
103 RF_RaidDisk_t *, int, RF_RowCol_t);
104 static void FreeReconDesc(RF_RaidReconDesc_t *);
105 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
106 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
107 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
108 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
109 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
110 RF_SectorNum_t *);
111 static int IssueNextWriteRequest(RF_Raid_t *);
112 static int ReconReadDoneProc(void *, int);
113 static int ReconWriteDoneProc(void *, int);
114 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
115 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
116 RF_RowCol_t, RF_HeadSepLimit_t,
117 RF_ReconUnitNum_t);
118 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
119 RF_ReconParityStripeStatus_t *,
120 RF_PerDiskReconCtrl_t *,
121 RF_RowCol_t, RF_StripeNum_t,
122 RF_ReconUnitNum_t);
123 static void ForceReconReadDoneProc(void *, int);
124 static void rf_ShutdownReconstruction(void *);
125
126 struct RF_ReconDoneProc_s {
127 void (*proc) (RF_Raid_t *, void *);
128 void *arg;
129 RF_ReconDoneProc_t *next;
130 };
131
132 /**************************************************************************
133 *
134 * sets up the parameters that will be used by the reconstruction process
135 * currently there are none, except for those that the layout-specific
136 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
137 *
138 * in the kernel, we fire off the recon thread.
139 *
140 **************************************************************************/
141 static void
142 rf_ShutdownReconstruction(void *ignored)
143 {
144 pool_destroy(&rf_recond_pool);
145 }
146
147 int
148 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
149 {
150
151 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
152 "rf_recond_pl", NULL);
153 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
154
155 return (0);
156 }
157
158 static RF_RaidReconDesc_t *
159 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
160 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
161 RF_RowCol_t scol)
162 {
163
164 RF_RaidReconDesc_t *reconDesc;
165
166 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
167
168 reconDesc->raidPtr = raidPtr;
169 reconDesc->col = col;
170 reconDesc->spareDiskPtr = spareDiskPtr;
171 reconDesc->numDisksDone = numDisksDone;
172 reconDesc->scol = scol;
173 reconDesc->state = 0;
174 reconDesc->next = NULL;
175
176 return (reconDesc);
177 }
178
179 static void
180 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
181 {
182 #if RF_RECON_STATS > 0
183 printf("raid%d: %lu recon event waits, %lu recon delays\n",
184 reconDesc->raidPtr->raidid,
185 (long) reconDesc->numReconEventWaits,
186 (long) reconDesc->numReconExecDelays);
187 #endif /* RF_RECON_STATS > 0 */
188 printf("raid%d: %lu max exec ticks\n",
189 reconDesc->raidPtr->raidid,
190 (long) reconDesc->maxReconExecTicks);
191 #if (RF_RECON_STATS > 0) || defined(KERNEL)
192 printf("\n");
193 #endif /* (RF_RECON_STATS > 0) || KERNEL */
194 pool_put(&rf_recond_pool, reconDesc);
195 }
196
197
198 /*****************************************************************************
199 *
200 * primary routine to reconstruct a failed disk. This should be called from
201 * within its own thread. It won't return until reconstruction completes,
202 * fails, or is aborted.
203 *****************************************************************************/
204 int
205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
206 {
207 const RF_LayoutSW_t *lp;
208 int rc;
209
210 lp = raidPtr->Layout.map;
211 if (lp->SubmitReconBuffer) {
212 /*
213 * The current infrastructure only supports reconstructing one
214 * disk at a time for each array.
215 */
216 RF_LOCK_MUTEX(raidPtr->mutex);
217 while (raidPtr->reconInProgress) {
218 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
219 }
220 raidPtr->reconInProgress++;
221 RF_UNLOCK_MUTEX(raidPtr->mutex);
222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
223 RF_LOCK_MUTEX(raidPtr->mutex);
224 raidPtr->reconInProgress--;
225 RF_UNLOCK_MUTEX(raidPtr->mutex);
226 } else {
227 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
228 lp->parityConfig);
229 rc = EIO;
230 }
231 RF_SIGNAL_COND(raidPtr->waitForReconCond);
232 return (rc);
233 }
234
235 int
236 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
237 {
238 RF_ComponentLabel_t c_label;
239 RF_RaidDisk_t *spareDiskPtr = NULL;
240 RF_RaidReconDesc_t *reconDesc;
241 RF_RowCol_t scol;
242 int numDisksDone = 0, rc;
243
244 /* first look for a spare drive onto which to reconstruct the data */
245 /* spare disk descriptors are stored in row 0. This may have to
246 * change eventually */
247
248 RF_LOCK_MUTEX(raidPtr->mutex);
249 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
250
251 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
252 if (raidPtr->status != rf_rs_degraded) {
253 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
254 RF_UNLOCK_MUTEX(raidPtr->mutex);
255 return (EINVAL);
256 }
257 scol = (-1);
258 } else {
259 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
260 if (raidPtr->Disks[scol].status == rf_ds_spare) {
261 spareDiskPtr = &raidPtr->Disks[scol];
262 spareDiskPtr->status = rf_ds_used_spare;
263 break;
264 }
265 }
266 if (!spareDiskPtr) {
267 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
268 RF_UNLOCK_MUTEX(raidPtr->mutex);
269 return (ENOSPC);
270 }
271 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
272 }
273 RF_UNLOCK_MUTEX(raidPtr->mutex);
274
275 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
276 raidPtr->reconDesc = (void *) reconDesc;
277 #if RF_RECON_STATS > 0
278 reconDesc->hsStallCount = 0;
279 reconDesc->numReconExecDelays = 0;
280 reconDesc->numReconEventWaits = 0;
281 #endif /* RF_RECON_STATS > 0 */
282 reconDesc->reconExecTimerRunning = 0;
283 reconDesc->reconExecTicks = 0;
284 reconDesc->maxReconExecTicks = 0;
285 rc = rf_ContinueReconstructFailedDisk(reconDesc);
286
287 if (!rc) {
288 /* fix up the component label */
289 /* Don't actually need the read here.. */
290 raidread_component_label(
291 raidPtr->raid_cinfo[scol].ci_dev,
292 raidPtr->raid_cinfo[scol].ci_vp,
293 &c_label);
294
295 raid_init_component_label( raidPtr, &c_label);
296 c_label.row = 0;
297 c_label.column = col;
298 c_label.clean = RF_RAID_DIRTY;
299 c_label.status = rf_ds_optimal;
300 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
301
302 /* We've just done a rebuild based on all the other
303 disks, so at this point the parity is known to be
304 clean, even if it wasn't before. */
305
306 /* XXX doesn't hold for RAID 6!!*/
307
308 RF_LOCK_MUTEX(raidPtr->mutex);
309 raidPtr->parity_good = RF_RAID_CLEAN;
310 RF_UNLOCK_MUTEX(raidPtr->mutex);
311
312 /* XXXX MORE NEEDED HERE */
313
314 raidwrite_component_label(
315 raidPtr->raid_cinfo[scol].ci_dev,
316 raidPtr->raid_cinfo[scol].ci_vp,
317 &c_label);
318
319
320 rf_update_component_labels(raidPtr,
321 RF_NORMAL_COMPONENT_UPDATE);
322
323 }
324 return (rc);
325 }
326
327 /*
328
329 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
330 and you don't get a spare until the next Monday. With this function
331 (and hot-swappable drives) you can now put your new disk containing
332 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
333 rebuild the data "on the spot".
334
335 */
336
337 int
338 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
339 {
340 RF_RaidDisk_t *spareDiskPtr = NULL;
341 RF_RaidReconDesc_t *reconDesc;
342 const RF_LayoutSW_t *lp;
343 RF_ComponentLabel_t c_label;
344 int numDisksDone = 0, rc;
345 struct partinfo dpart;
346 struct vnode *vp;
347 struct vattr va;
348 struct proc *proc;
349 int retcode;
350 int ac;
351
352 lp = raidPtr->Layout.map;
353 if (!lp->SubmitReconBuffer) {
354 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
355 lp->parityConfig);
356 /* wakeup anyone who might be waiting to do a reconstruct */
357 RF_SIGNAL_COND(raidPtr->waitForReconCond);
358 return(EIO);
359 }
360
361 /*
362 * The current infrastructure only supports reconstructing one
363 * disk at a time for each array.
364 */
365 RF_LOCK_MUTEX(raidPtr->mutex);
366
367 if (raidPtr->Disks[col].status != rf_ds_failed) {
368 /* "It's gone..." */
369 raidPtr->numFailures++;
370 raidPtr->Disks[col].status = rf_ds_failed;
371 raidPtr->status = rf_rs_degraded;
372 RF_UNLOCK_MUTEX(raidPtr->mutex);
373 rf_update_component_labels(raidPtr,
374 RF_NORMAL_COMPONENT_UPDATE);
375 RF_LOCK_MUTEX(raidPtr->mutex);
376 }
377
378 while (raidPtr->reconInProgress) {
379 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
380 }
381
382 raidPtr->reconInProgress++;
383
384 /* first look for a spare drive onto which to reconstruct the
385 data. spare disk descriptors are stored in row 0. This
386 may have to change eventually */
387
388 /* Actually, we don't care if it's failed or not... On a RAID
389 set with correct parity, this function should be callable
390 on any component without ill affects. */
391 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
392
393 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
394 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
395
396 raidPtr->reconInProgress--;
397 RF_UNLOCK_MUTEX(raidPtr->mutex);
398 RF_SIGNAL_COND(raidPtr->waitForReconCond);
399 return (EINVAL);
400 }
401
402 proc = raidPtr->engine_thread;
403
404 /* This device may have been opened successfully the
405 first time. Close it before trying to open it again.. */
406
407 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
408 #if 0
409 printf("Closed the open device: %s\n",
410 raidPtr->Disks[col].devname);
411 #endif
412 vp = raidPtr->raid_cinfo[col].ci_vp;
413 ac = raidPtr->Disks[col].auto_configured;
414 RF_UNLOCK_MUTEX(raidPtr->mutex);
415 rf_close_component(raidPtr, vp, ac);
416 RF_LOCK_MUTEX(raidPtr->mutex);
417 raidPtr->raid_cinfo[col].ci_vp = NULL;
418 }
419 /* note that this disk was *not* auto_configured (any longer)*/
420 raidPtr->Disks[col].auto_configured = 0;
421
422 #if 0
423 printf("About to (re-)open the device for rebuilding: %s\n",
424 raidPtr->Disks[col].devname);
425 #endif
426 RF_UNLOCK_MUTEX(raidPtr->mutex);
427 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
428
429 if (retcode) {
430 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
431 raidPtr->Disks[col].devname, retcode);
432
433 /* the component isn't responding properly...
434 must be still dead :-( */
435 RF_LOCK_MUTEX(raidPtr->mutex);
436 raidPtr->reconInProgress--;
437 RF_UNLOCK_MUTEX(raidPtr->mutex);
438 RF_SIGNAL_COND(raidPtr->waitForReconCond);
439 return(retcode);
440 }
441
442 /* Ok, so we can at least do a lookup...
443 How about actually getting a vp for it? */
444
445 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
446 RF_LOCK_MUTEX(raidPtr->mutex);
447 raidPtr->reconInProgress--;
448 RF_UNLOCK_MUTEX(raidPtr->mutex);
449 RF_SIGNAL_COND(raidPtr->waitForReconCond);
450 return(retcode);
451 }
452
453 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
454 if (retcode) {
455 RF_LOCK_MUTEX(raidPtr->mutex);
456 raidPtr->reconInProgress--;
457 RF_UNLOCK_MUTEX(raidPtr->mutex);
458 RF_SIGNAL_COND(raidPtr->waitForReconCond);
459 return(retcode);
460 }
461 RF_LOCK_MUTEX(raidPtr->mutex);
462 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
463
464 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
465 rf_protectedSectors;
466
467 raidPtr->raid_cinfo[col].ci_vp = vp;
468 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
469
470 raidPtr->Disks[col].dev = va.va_rdev;
471
472 /* we allow the user to specify that only a fraction
473 of the disks should be used this is just for debug:
474 it speeds up * the parity scan */
475 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
476 rf_sizePercentage / 100;
477 RF_UNLOCK_MUTEX(raidPtr->mutex);
478
479 spareDiskPtr = &raidPtr->Disks[col];
480 spareDiskPtr->status = rf_ds_used_spare;
481
482 printf("raid%d: initiating in-place reconstruction on column %d\n",
483 raidPtr->raidid, col);
484
485 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
486 numDisksDone, col);
487 raidPtr->reconDesc = (void *) reconDesc;
488 #if RF_RECON_STATS > 0
489 reconDesc->hsStallCount = 0;
490 reconDesc->numReconExecDelays = 0;
491 reconDesc->numReconEventWaits = 0;
492 #endif /* RF_RECON_STATS > 0 */
493 reconDesc->reconExecTimerRunning = 0;
494 reconDesc->reconExecTicks = 0;
495 reconDesc->maxReconExecTicks = 0;
496 rc = rf_ContinueReconstructFailedDisk(reconDesc);
497
498 RF_LOCK_MUTEX(raidPtr->mutex);
499 raidPtr->reconInProgress--;
500 RF_UNLOCK_MUTEX(raidPtr->mutex);
501
502 if (!rc) {
503 RF_LOCK_MUTEX(raidPtr->mutex);
504 /* Need to set these here, as at this point it'll be claiming
505 that the disk is in rf_ds_spared! But we know better :-) */
506
507 raidPtr->Disks[col].status = rf_ds_optimal;
508 raidPtr->status = rf_rs_optimal;
509 RF_UNLOCK_MUTEX(raidPtr->mutex);
510
511 /* fix up the component label */
512 /* Don't actually need the read here.. */
513 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
514 raidPtr->raid_cinfo[col].ci_vp,
515 &c_label);
516
517 RF_LOCK_MUTEX(raidPtr->mutex);
518 raid_init_component_label(raidPtr, &c_label);
519
520 c_label.row = 0;
521 c_label.column = col;
522
523 /* We've just done a rebuild based on all the other
524 disks, so at this point the parity is known to be
525 clean, even if it wasn't before. */
526
527 /* XXX doesn't hold for RAID 6!!*/
528
529 raidPtr->parity_good = RF_RAID_CLEAN;
530 RF_UNLOCK_MUTEX(raidPtr->mutex);
531
532 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
533 raidPtr->raid_cinfo[col].ci_vp,
534 &c_label);
535
536 rf_update_component_labels(raidPtr,
537 RF_NORMAL_COMPONENT_UPDATE);
538
539 }
540 RF_SIGNAL_COND(raidPtr->waitForReconCond);
541 return (rc);
542 }
543
544
545 int
546 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
547 {
548 RF_Raid_t *raidPtr = reconDesc->raidPtr;
549 RF_RowCol_t col = reconDesc->col;
550 RF_RowCol_t scol = reconDesc->scol;
551 RF_ReconMap_t *mapPtr;
552 RF_ReconCtrl_t *tmp_reconctrl;
553 RF_ReconEvent_t *event;
554 struct timeval etime, elpsd;
555 unsigned long xor_s, xor_resid_us;
556 int i, ds;
557
558 switch (reconDesc->state) {
559
560
561 case 0:
562
563 raidPtr->accumXorTimeUs = 0;
564 #if RF_ACC_TRACE > 0
565 /* create one trace record per physical disk */
566 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
567 #endif
568
569 /* quiesce the array prior to starting recon. this is needed
570 * to assure no nasty interactions with pending user writes.
571 * We need to do this before we change the disk or row status. */
572 reconDesc->state = 1;
573
574 Dprintf("RECON: begin request suspend\n");
575 rf_SuspendNewRequestsAndWait(raidPtr);
576 Dprintf("RECON: end request suspend\n");
577 rf_StartUserStats(raidPtr); /* zero out the stats kept on
578 * user accs */
579
580 /* fall through to state 1 */
581
582 case 1:
583
584 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
585 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
586
587 RF_LOCK_MUTEX(raidPtr->mutex);
588
589 /* create the reconstruction control pointer and install it in
590 * the right slot */
591 raidPtr->reconControl = tmp_reconctrl;
592 mapPtr = raidPtr->reconControl->reconMap;
593 raidPtr->status = rf_rs_reconstructing;
594 raidPtr->Disks[col].status = rf_ds_reconstructing;
595 raidPtr->Disks[col].spareCol = scol;
596
597 RF_UNLOCK_MUTEX(raidPtr->mutex);
598
599 RF_GETTIME(raidPtr->reconControl->starttime);
600
601 /* now start up the actual reconstruction: issue a read for
602 * each surviving disk */
603
604 reconDesc->numDisksDone = 0;
605 for (i = 0; i < raidPtr->numCol; i++) {
606 if (i != col) {
607 /* find and issue the next I/O on the
608 * indicated disk */
609 if (IssueNextReadRequest(raidPtr, i)) {
610 Dprintf1("RECON: done issuing for c%d\n", i);
611 reconDesc->numDisksDone++;
612 }
613 }
614 }
615
616 case 2:
617 Dprintf("RECON: resume requests\n");
618 rf_ResumeNewRequests(raidPtr);
619
620
621 reconDesc->state = 3;
622
623 case 3:
624
625 /* process reconstruction events until all disks report that
626 * they've completed all work */
627 mapPtr = raidPtr->reconControl->reconMap;
628
629
630
631 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
632
633 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
634 RF_ASSERT(event);
635
636 if (ProcessReconEvent(raidPtr, event))
637 reconDesc->numDisksDone++;
638 raidPtr->reconControl->numRUsTotal =
639 mapPtr->totalRUs;
640 raidPtr->reconControl->numRUsComplete =
641 mapPtr->totalRUs -
642 rf_UnitsLeftToReconstruct(mapPtr);
643 #if RF_DEBUG_RECON
644 raidPtr->reconControl->percentComplete =
645 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
646 if (rf_prReconSched) {
647 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
648 }
649 #endif
650 }
651
652
653
654 reconDesc->state = 4;
655
656
657 case 4:
658 mapPtr = raidPtr->reconControl->reconMap;
659 if (rf_reconDebug) {
660 printf("RECON: all reads completed\n");
661 }
662 /* at this point all the reads have completed. We now wait
663 * for any pending writes to complete, and then we're done */
664
665 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
666
667 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
668 RF_ASSERT(event);
669
670 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
671 #if RF_DEBUG_RECON
672 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
673 if (rf_prReconSched) {
674 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
675 }
676 #endif
677 }
678 reconDesc->state = 5;
679
680 case 5:
681 /* Success: mark the dead disk as reconstructed. We quiesce
682 * the array here to assure no nasty interactions with pending
683 * user accesses when we free up the psstatus structure as
684 * part of FreeReconControl() */
685
686 reconDesc->state = 6;
687
688 rf_SuspendNewRequestsAndWait(raidPtr);
689 rf_StopUserStats(raidPtr);
690 rf_PrintUserStats(raidPtr); /* print out the stats on user
691 * accs accumulated during
692 * recon */
693
694 /* fall through to state 6 */
695 case 6:
696
697
698
699 RF_LOCK_MUTEX(raidPtr->mutex);
700 raidPtr->numFailures--;
701 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
702 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
703 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
704 RF_UNLOCK_MUTEX(raidPtr->mutex);
705 RF_GETTIME(etime);
706 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
707
708 /* XXX -- why is state 7 different from state 6 if there is no
709 * return() here? -- XXX Note that I set elpsd above & use it
710 * below, so if you put a return here you'll have to fix this.
711 * (also, FreeReconControl is called below) */
712
713 case 7:
714
715 rf_ResumeNewRequests(raidPtr);
716
717 printf("raid%d: Reconstruction of disk at col %d completed\n",
718 raidPtr->raidid, col);
719 xor_s = raidPtr->accumXorTimeUs / 1000000;
720 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
721 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
722 raidPtr->raidid,
723 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
724 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
725 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
726 raidPtr->raidid,
727 (int) raidPtr->reconControl->starttime.tv_sec,
728 (int) raidPtr->reconControl->starttime.tv_usec,
729 (int) etime.tv_sec, (int) etime.tv_usec);
730
731 #if RF_RECON_STATS > 0
732 printf("raid%d: Total head-sep stall count was %d\n",
733 raidPtr->raidid, (int) reconDesc->hsStallCount);
734 #endif /* RF_RECON_STATS > 0 */
735 rf_FreeReconControl(raidPtr);
736 #if RF_ACC_TRACE > 0
737 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
738 #endif
739 FreeReconDesc(reconDesc);
740
741 }
742
743 return (0);
744 }
745 /*****************************************************************************
746 * do the right thing upon each reconstruction event.
747 * returns nonzero if and only if there is nothing left unread on the
748 * indicated disk
749 *****************************************************************************/
750 static int
751 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
752 {
753 int retcode = 0, submitblocked;
754 RF_ReconBuffer_t *rbuf;
755 RF_SectorCount_t sectorsPerRU;
756
757 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
758 switch (event->type) {
759
760 /* a read I/O has completed */
761 case RF_REVENT_READDONE:
762 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
763 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
764 event->col, rbuf->parityStripeID);
765 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
766 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
767 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
768 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
769 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
770 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
771 if (!submitblocked)
772 retcode = IssueNextReadRequest(raidPtr, event->col);
773 break;
774
775 /* a write I/O has completed */
776 case RF_REVENT_WRITEDONE:
777 #if RF_DEBUG_RECON
778 if (rf_floatingRbufDebug) {
779 rf_CheckFloatingRbufCount(raidPtr, 1);
780 }
781 #endif
782 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
783 rbuf = (RF_ReconBuffer_t *) event->arg;
784 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
785 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
786 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
787 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
788 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
789 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
790
791 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
792 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
793 raidPtr->numFullReconBuffers--;
794 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
795 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
796 } else
797 if (rbuf->type == RF_RBUF_TYPE_FORCED)
798 rf_FreeReconBuffer(rbuf);
799 else
800 RF_ASSERT(0);
801 break;
802
803 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
804 * cleared */
805 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
806 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
807 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
808 * BUFCLEAR event if we
809 * couldn't submit */
810 retcode = IssueNextReadRequest(raidPtr, event->col);
811 break;
812
813 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
814 * blockage has been cleared */
815 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
816 retcode = TryToRead(raidPtr, event->col);
817 break;
818
819 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
820 * reconstruction blockage has been
821 * cleared */
822 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
823 retcode = TryToRead(raidPtr, event->col);
824 break;
825
826 /* a buffer has become ready to write */
827 case RF_REVENT_BUFREADY:
828 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
829 retcode = IssueNextWriteRequest(raidPtr);
830 #if RF_DEBUG_RECON
831 if (rf_floatingRbufDebug) {
832 rf_CheckFloatingRbufCount(raidPtr, 1);
833 }
834 #endif
835 break;
836
837 /* we need to skip the current RU entirely because it got
838 * recon'd while we were waiting for something else to happen */
839 case RF_REVENT_SKIP:
840 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
841 retcode = IssueNextReadRequest(raidPtr, event->col);
842 break;
843
844 /* a forced-reconstruction read access has completed. Just
845 * submit the buffer */
846 case RF_REVENT_FORCEDREADDONE:
847 rbuf = (RF_ReconBuffer_t *) event->arg;
848 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
849 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
850 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
851 RF_ASSERT(!submitblocked);
852 break;
853
854 /* A read I/O failed to complete */
855 case RF_REVENT_READ_FAILED:
856 /* fallthru to panic... */
857
858 /* A write I/O failed to complete */
859 case RF_REVENT_WRITE_FAILED:
860 /* fallthru to panic... */
861
862 /* a forced read I/O failed to complete */
863 case RF_REVENT_FORCEDREAD_FAILED:
864 /* fallthru to panic... */
865
866 default:
867 RF_PANIC();
868 }
869 rf_FreeReconEventDesc(event);
870 return (retcode);
871 }
872 /*****************************************************************************
873 *
874 * find the next thing that's needed on the indicated disk, and issue
875 * a read request for it. We assume that the reconstruction buffer
876 * associated with this process is free to receive the data. If
877 * reconstruction is blocked on the indicated RU, we issue a
878 * blockage-release request instead of a physical disk read request.
879 * If the current disk gets too far ahead of the others, we issue a
880 * head-separation wait request and return.
881 *
882 * ctrl->{ru_count, curPSID, diskOffset} and
883 * rbuf->failedDiskSectorOffset are maintained to point to the unit
884 * we're currently accessing. Note that this deviates from the
885 * standard C idiom of having counters point to the next thing to be
886 * accessed. This allows us to easily retry when we're blocked by
887 * head separation or reconstruction-blockage events.
888 *
889 * returns nonzero if and only if there is nothing left unread on the
890 * indicated disk
891 *
892 *****************************************************************************/
893 static int
894 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
895 {
896 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
897 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
898 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
899 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
900 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
901 int do_new_check = 0, retcode = 0, status;
902
903 /* if we are currently the slowest disk, mark that we have to do a new
904 * check */
905 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
906 do_new_check = 1;
907
908 while (1) {
909
910 ctrl->ru_count++;
911 if (ctrl->ru_count < RUsPerPU) {
912 ctrl->diskOffset += sectorsPerRU;
913 rbuf->failedDiskSectorOffset += sectorsPerRU;
914 } else {
915 ctrl->curPSID++;
916 ctrl->ru_count = 0;
917 /* code left over from when head-sep was based on
918 * parity stripe id */
919 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
920 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
921 return (1); /* finito! */
922 }
923 /* find the disk offsets of the start of the parity
924 * stripe on both the current disk and the failed
925 * disk. skip this entire parity stripe if either disk
926 * does not appear in the indicated PS */
927 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
928 &rbuf->spCol, &rbuf->spOffset);
929 if (status) {
930 ctrl->ru_count = RUsPerPU - 1;
931 continue;
932 }
933 }
934 rbuf->which_ru = ctrl->ru_count;
935
936 /* skip this RU if it's already been reconstructed */
937 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
938 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
939 continue;
940 }
941 break;
942 }
943 ctrl->headSepCounter++;
944 if (do_new_check)
945 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
946
947
948 /* at this point, we have definitely decided what to do, and we have
949 * only to see if we can actually do it now */
950 rbuf->parityStripeID = ctrl->curPSID;
951 rbuf->which_ru = ctrl->ru_count;
952 #if RF_ACC_TRACE > 0
953 memset((char *) &raidPtr->recon_tracerecs[col], 0,
954 sizeof(raidPtr->recon_tracerecs[col]));
955 raidPtr->recon_tracerecs[col].reconacc = 1;
956 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
957 #endif
958 retcode = TryToRead(raidPtr, col);
959 return (retcode);
960 }
961
962 /*
963 * tries to issue the next read on the indicated disk. We may be
964 * blocked by (a) the heads being too far apart, or (b) recon on the
965 * indicated RU being blocked due to a write by a user thread. In
966 * this case, we issue a head-sep or blockage wait request, which will
967 * cause this same routine to be invoked again later when the blockage
968 * has cleared.
969 */
970
971 static int
972 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
973 {
974 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
975 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
976 RF_StripeNum_t psid = ctrl->curPSID;
977 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
978 RF_DiskQueueData_t *req;
979 int status;
980 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
981
982 /* if the current disk is too far ahead of the others, issue a
983 * head-separation wait and return */
984 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
985 return (0);
986
987 /* allocate a new PSS in case we need it */
988 newpssPtr = rf_AllocPSStatus(raidPtr);
989
990 RF_LOCK_PSS_MUTEX(raidPtr, psid);
991 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
992
993 if (pssPtr != newpssPtr) {
994 rf_FreePSStatus(raidPtr, newpssPtr);
995 }
996
997 /* if recon is blocked on the indicated parity stripe, issue a
998 * block-wait request and return. this also must mark the indicated RU
999 * in the stripe as under reconstruction if not blocked. */
1000 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1001 if (status == RF_PSS_RECON_BLOCKED) {
1002 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1003 goto out;
1004 } else
1005 if (status == RF_PSS_FORCED_ON_WRITE) {
1006 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1007 goto out;
1008 }
1009 /* make one last check to be sure that the indicated RU didn't get
1010 * reconstructed while we were waiting for something else to happen.
1011 * This is unfortunate in that it causes us to make this check twice
1012 * in the normal case. Might want to make some attempt to re-work
1013 * this so that we only do this check if we've definitely blocked on
1014 * one of the above checks. When this condition is detected, we may
1015 * have just created a bogus status entry, which we need to delete. */
1016 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1017 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1018 if (pssPtr == newpssPtr)
1019 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1020 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1021 goto out;
1022 }
1023 /* found something to read. issue the I/O */
1024 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1025 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1026 #if RF_ACC_TRACE > 0
1027 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1028 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1029 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1030 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1031 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1032 #endif
1033 /* should be ok to use a NULL proc pointer here, all the bufs we use
1034 * should be in kernel space */
1035 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1036 ReconReadDoneProc, (void *) ctrl, NULL,
1037 #if RF_ACC_TRACE > 0
1038 &raidPtr->recon_tracerecs[col],
1039 #else
1040 NULL,
1041 #endif
1042 (void *) raidPtr, 0, NULL);
1043
1044 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1045
1046 ctrl->rbuf->arg = (void *) req;
1047 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1048 pssPtr->issued[col] = 1;
1049
1050 out:
1051 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1052 return (0);
1053 }
1054
1055
1056 /*
1057 * given a parity stripe ID, we want to find out whether both the
1058 * current disk and the failed disk exist in that parity stripe. If
1059 * not, we want to skip this whole PS. If so, we want to find the
1060 * disk offset of the start of the PS on both the current disk and the
1061 * failed disk.
1062 *
1063 * this works by getting a list of disks comprising the indicated
1064 * parity stripe, and searching the list for the current and failed
1065 * disks. Once we've decided they both exist in the parity stripe, we
1066 * need to decide whether each is data or parity, so that we'll know
1067 * which mapping function to call to get the corresponding disk
1068 * offsets.
1069 *
1070 * this is kind of unpleasant, but doing it this way allows the
1071 * reconstruction code to use parity stripe IDs rather than physical
1072 * disks address to march through the failed disk, which greatly
1073 * simplifies a lot of code, as well as eliminating the need for a
1074 * reverse-mapping function. I also think it will execute faster,
1075 * since the calls to the mapping module are kept to a minimum.
1076 *
1077 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1078 * THE STRIPE IN THE CORRECT ORDER
1079 *
1080 * raidPtr - raid descriptor
1081 * psid - parity stripe identifier
1082 * col - column of disk to find the offsets for
1083 * spCol - out: col of spare unit for failed unit
1084 * spOffset - out: offset into disk containing spare unit
1085 *
1086 */
1087
1088
1089 static int
1090 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1091 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1092 RF_SectorNum_t *outFailedDiskSectorOffset,
1093 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1094 {
1095 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1096 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1097 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1098 RF_RowCol_t *diskids;
1099 u_int i, j, k, i_offset, j_offset;
1100 RF_RowCol_t pcol;
1101 int testcol;
1102 RF_SectorNum_t poffset;
1103 char i_is_parity = 0, j_is_parity = 0;
1104 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1105
1106 /* get a listing of the disks comprising that stripe */
1107 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1108 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1109 RF_ASSERT(diskids);
1110
1111 /* reject this entire parity stripe if it does not contain the
1112 * indicated disk or it does not contain the failed disk */
1113
1114 for (i = 0; i < stripeWidth; i++) {
1115 if (col == diskids[i])
1116 break;
1117 }
1118 if (i == stripeWidth)
1119 goto skipit;
1120 for (j = 0; j < stripeWidth; j++) {
1121 if (fcol == diskids[j])
1122 break;
1123 }
1124 if (j == stripeWidth) {
1125 goto skipit;
1126 }
1127 /* find out which disk the parity is on */
1128 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1129
1130 /* find out if either the current RU or the failed RU is parity */
1131 /* also, if the parity occurs in this stripe prior to the data and/or
1132 * failed col, we need to decrement i and/or j */
1133 for (k = 0; k < stripeWidth; k++)
1134 if (diskids[k] == pcol)
1135 break;
1136 RF_ASSERT(k < stripeWidth);
1137 i_offset = i;
1138 j_offset = j;
1139 if (k < i)
1140 i_offset--;
1141 else
1142 if (k == i) {
1143 i_is_parity = 1;
1144 i_offset = 0;
1145 } /* set offsets to zero to disable multiply
1146 * below */
1147 if (k < j)
1148 j_offset--;
1149 else
1150 if (k == j) {
1151 j_is_parity = 1;
1152 j_offset = 0;
1153 }
1154 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1155 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1156 * tells us how far into the stripe the [current,failed] disk is. */
1157
1158 /* call the mapping routine to get the offset into the current disk,
1159 * repeat for failed disk. */
1160 if (i_is_parity)
1161 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1162 else
1163 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1164
1165 RF_ASSERT(col == testcol);
1166
1167 if (j_is_parity)
1168 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1169 else
1170 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1171 RF_ASSERT(fcol == testcol);
1172
1173 /* now locate the spare unit for the failed unit */
1174 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1175 if (j_is_parity)
1176 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1177 else
1178 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1179 } else {
1180 *spCol = raidPtr->reconControl->spareCol;
1181 *spOffset = *outFailedDiskSectorOffset;
1182 }
1183
1184 return (0);
1185
1186 skipit:
1187 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1188 psid, col);
1189 return (1);
1190 }
1191 /* this is called when a buffer has become ready to write to the replacement disk */
1192 static int
1193 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1194 {
1195 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1196 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1197 #if RF_ACC_TRACE > 0
1198 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1199 #endif
1200 RF_ReconBuffer_t *rbuf;
1201 RF_DiskQueueData_t *req;
1202
1203 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1204 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1205 * have gotten the event that sent us here */
1206 RF_ASSERT(rbuf->pssPtr);
1207
1208 rbuf->pssPtr->writeRbuf = rbuf;
1209 rbuf->pssPtr = NULL;
1210
1211 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1212 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1213 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1214 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1215 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1216 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1217
1218 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1219 * kernel space */
1220 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1221 sectorsPerRU, rbuf->buffer,
1222 rbuf->parityStripeID, rbuf->which_ru,
1223 ReconWriteDoneProc, (void *) rbuf, NULL,
1224 #if RF_ACC_TRACE > 0
1225 &raidPtr->recon_tracerecs[fcol],
1226 #else
1227 NULL,
1228 #endif
1229 (void *) raidPtr, 0, NULL);
1230
1231 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1232
1233 rbuf->arg = (void *) req;
1234 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1235
1236 return (0);
1237 }
1238
1239 /*
1240 * this gets called upon the completion of a reconstruction read
1241 * operation the arg is a pointer to the per-disk reconstruction
1242 * control structure for the process that just finished a read.
1243 *
1244 * called at interrupt context in the kernel, so don't do anything
1245 * illegal here.
1246 */
1247 static int
1248 ReconReadDoneProc(void *arg, int status)
1249 {
1250 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1251 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1252
1253 if (status) {
1254 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1255 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1256 return(0);
1257 }
1258 #if RF_ACC_TRACE > 0
1259 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1260 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1261 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1262 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1263 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1264 #endif
1265 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1266 return (0);
1267 }
1268 /* this gets called upon the completion of a reconstruction write operation.
1269 * the arg is a pointer to the rbuf that was just written
1270 *
1271 * called at interrupt context in the kernel, so don't do anything illegal here.
1272 */
1273 static int
1274 ReconWriteDoneProc(void *arg, int status)
1275 {
1276 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1277
1278 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1279 if (status) {
1280 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1281 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1282 return(0);
1283 }
1284 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1285 return (0);
1286 }
1287
1288
1289 /*
1290 * computes a new minimum head sep, and wakes up anyone who needs to
1291 * be woken as a result
1292 */
1293 static void
1294 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1295 {
1296 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1297 RF_HeadSepLimit_t new_min;
1298 RF_RowCol_t i;
1299 RF_CallbackDesc_t *p;
1300 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1301 * of a minimum */
1302
1303
1304 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1305
1306 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1307 for (i = 0; i < raidPtr->numCol; i++)
1308 if (i != reconCtrlPtr->fcol) {
1309 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1310 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1311 }
1312 /* set the new minimum and wake up anyone who can now run again */
1313 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1314 reconCtrlPtr->minHeadSepCounter = new_min;
1315 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1316 while (reconCtrlPtr->headSepCBList) {
1317 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1318 break;
1319 p = reconCtrlPtr->headSepCBList;
1320 reconCtrlPtr->headSepCBList = p->next;
1321 p->next = NULL;
1322 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1323 rf_FreeCallbackDesc(p);
1324 }
1325
1326 }
1327 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1328 }
1329
1330 /*
1331 * checks to see that the maximum head separation will not be violated
1332 * if we initiate a reconstruction I/O on the indicated disk.
1333 * Limiting the maximum head separation between two disks eliminates
1334 * the nasty buffer-stall conditions that occur when one disk races
1335 * ahead of the others and consumes all of the floating recon buffers.
1336 * This code is complex and unpleasant but it's necessary to avoid
1337 * some very nasty, albeit fairly rare, reconstruction behavior.
1338 *
1339 * returns non-zero if and only if we have to stop working on the
1340 * indicated disk due to a head-separation delay.
1341 */
1342 static int
1343 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1344 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1345 RF_ReconUnitNum_t which_ru)
1346 {
1347 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1348 RF_CallbackDesc_t *cb, *p, *pt;
1349 int retval = 0;
1350
1351 /* if we're too far ahead of the slowest disk, stop working on this
1352 * disk until the slower ones catch up. We do this by scheduling a
1353 * wakeup callback for the time when the slowest disk has caught up.
1354 * We define "caught up" with 20% hysteresis, i.e. the head separation
1355 * must have fallen to at most 80% of the max allowable head
1356 * separation before we'll wake up.
1357 *
1358 */
1359 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1360 if ((raidPtr->headSepLimit >= 0) &&
1361 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1362 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1363 raidPtr->raidid, col, ctrl->headSepCounter,
1364 reconCtrlPtr->minHeadSepCounter,
1365 raidPtr->headSepLimit);
1366 cb = rf_AllocCallbackDesc();
1367 /* the minHeadSepCounter value we have to get to before we'll
1368 * wake up. build in 20% hysteresis. */
1369 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1370 cb->col = col;
1371 cb->next = NULL;
1372
1373 /* insert this callback descriptor into the sorted list of
1374 * pending head-sep callbacks */
1375 p = reconCtrlPtr->headSepCBList;
1376 if (!p)
1377 reconCtrlPtr->headSepCBList = cb;
1378 else
1379 if (cb->callbackArg.v < p->callbackArg.v) {
1380 cb->next = reconCtrlPtr->headSepCBList;
1381 reconCtrlPtr->headSepCBList = cb;
1382 } else {
1383 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1384 cb->next = p;
1385 pt->next = cb;
1386 }
1387 retval = 1;
1388 #if RF_RECON_STATS > 0
1389 ctrl->reconCtrl->reconDesc->hsStallCount++;
1390 #endif /* RF_RECON_STATS > 0 */
1391 }
1392 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1393
1394 return (retval);
1395 }
1396 /*
1397 * checks to see if reconstruction has been either forced or blocked
1398 * by a user operation. if forced, we skip this RU entirely. else if
1399 * blocked, put ourselves on the wait list. else return 0.
1400 *
1401 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1402 */
1403 static int
1404 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1405 RF_ReconParityStripeStatus_t *pssPtr,
1406 RF_PerDiskReconCtrl_t *ctrl,
1407 RF_RowCol_t col, RF_StripeNum_t psid,
1408 RF_ReconUnitNum_t which_ru)
1409 {
1410 RF_CallbackDesc_t *cb;
1411 int retcode = 0;
1412
1413 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1414 retcode = RF_PSS_FORCED_ON_WRITE;
1415 else
1416 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1417 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1418 cb = rf_AllocCallbackDesc(); /* append ourselves to
1419 * the blockage-wait
1420 * list */
1421 cb->col = col;
1422 cb->next = pssPtr->blockWaitList;
1423 pssPtr->blockWaitList = cb;
1424 retcode = RF_PSS_RECON_BLOCKED;
1425 }
1426 if (!retcode)
1427 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1428 * reconstruction */
1429
1430 return (retcode);
1431 }
1432 /*
1433 * if reconstruction is currently ongoing for the indicated stripeID,
1434 * reconstruction is forced to completion and we return non-zero to
1435 * indicate that the caller must wait. If not, then reconstruction is
1436 * blocked on the indicated stripe and the routine returns zero. If
1437 * and only if we return non-zero, we'll cause the cbFunc to get
1438 * invoked with the cbArg when the reconstruction has completed.
1439 */
1440 int
1441 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1442 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1443 {
1444 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1445 * forcing recon on */
1446 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1447 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1448 * stripe status structure */
1449 RF_StripeNum_t psid; /* parity stripe id */
1450 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1451 * offset */
1452 RF_RowCol_t *diskids;
1453 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1454 RF_RowCol_t fcol, diskno, i;
1455 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1456 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1457 RF_CallbackDesc_t *cb;
1458 int nPromoted;
1459
1460 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1461
1462 /* allocate a new PSS in case we need it */
1463 newpssPtr = rf_AllocPSStatus(raidPtr);
1464
1465 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1466
1467 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1468
1469 if (pssPtr != newpssPtr) {
1470 rf_FreePSStatus(raidPtr, newpssPtr);
1471 }
1472
1473 /* if recon is not ongoing on this PS, just return */
1474 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1475 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1476 return (0);
1477 }
1478 /* otherwise, we have to wait for reconstruction to complete on this
1479 * RU. */
1480 /* In order to avoid waiting for a potentially large number of
1481 * low-priority accesses to complete, we force a normal-priority (i.e.
1482 * not low-priority) reconstruction on this RU. */
1483 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1484 DDprintf1("Forcing recon on psid %ld\n", psid);
1485 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1486 * forced recon */
1487 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1488 * that we just set */
1489 fcol = raidPtr->reconControl->fcol;
1490
1491 /* get a listing of the disks comprising the indicated stripe */
1492 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1493
1494 /* For previously issued reads, elevate them to normal
1495 * priority. If the I/O has already completed, it won't be
1496 * found in the queue, and hence this will be a no-op. For
1497 * unissued reads, allocate buffers and issue new reads. The
1498 * fact that we've set the FORCED bit means that the regular
1499 * recon procs will not re-issue these reqs */
1500 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1501 if ((diskno = diskids[i]) != fcol) {
1502 if (pssPtr->issued[diskno]) {
1503 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1504 if (rf_reconDebug && nPromoted)
1505 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1506 } else {
1507 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1508 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1509 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1510 * location */
1511 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1512 new_rbuf->which_ru = which_ru;
1513 new_rbuf->failedDiskSectorOffset = fd_offset;
1514 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1515
1516 /* use NULL b_proc b/c all addrs
1517 * should be in kernel space */
1518 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1519 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1520 NULL, (void *) raidPtr, 0, NULL);
1521
1522 RF_ASSERT(req); /* XXX -- fix this --
1523 * XXX */
1524
1525 new_rbuf->arg = req;
1526 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1527 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1528 }
1529 }
1530 /* if the write is sitting in the disk queue, elevate its
1531 * priority */
1532 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1533 printf("raid%d: promoted write to col %d\n",
1534 raidPtr->raidid, fcol);
1535 }
1536 /* install a callback descriptor to be invoked when recon completes on
1537 * this parity stripe. */
1538 cb = rf_AllocCallbackDesc();
1539 /* XXX the following is bogus.. These functions don't really match!!
1540 * GO */
1541 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1542 cb->callbackArg.p = (void *) cbArg;
1543 cb->next = pssPtr->procWaitList;
1544 pssPtr->procWaitList = cb;
1545 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1546 raidPtr->raidid, psid);
1547
1548 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1549 return (1);
1550 }
1551 /* called upon the completion of a forced reconstruction read.
1552 * all we do is schedule the FORCEDREADONE event.
1553 * called at interrupt context in the kernel, so don't do anything illegal here.
1554 */
1555 static void
1556 ForceReconReadDoneProc(void *arg, int status)
1557 {
1558 RF_ReconBuffer_t *rbuf = arg;
1559
1560 if (status) {
1561 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1562 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1563 }
1564 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1565 }
1566 /* releases a block on the reconstruction of the indicated stripe */
1567 int
1568 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1569 {
1570 RF_StripeNum_t stripeID = asmap->stripeID;
1571 RF_ReconParityStripeStatus_t *pssPtr;
1572 RF_ReconUnitNum_t which_ru;
1573 RF_StripeNum_t psid;
1574 RF_CallbackDesc_t *cb;
1575
1576 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1577 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1578 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1579
1580 /* When recon is forced, the pss desc can get deleted before we get
1581 * back to unblock recon. But, this can _only_ happen when recon is
1582 * forced. It would be good to put some kind of sanity check here, but
1583 * how to decide if recon was just forced or not? */
1584 if (!pssPtr) {
1585 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1586 * RU %d\n",psid,which_ru); */
1587 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1588 if (rf_reconDebug || rf_pssDebug)
1589 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1590 #endif
1591 goto out;
1592 }
1593 pssPtr->blockCount--;
1594 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1595 raidPtr->raidid, psid, pssPtr->blockCount);
1596 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1597
1598 /* unblock recon before calling CauseReconEvent in case
1599 * CauseReconEvent causes us to try to issue a new read before
1600 * returning here. */
1601 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1602
1603
1604 while (pssPtr->blockWaitList) {
1605 /* spin through the block-wait list and
1606 release all the waiters */
1607 cb = pssPtr->blockWaitList;
1608 pssPtr->blockWaitList = cb->next;
1609 cb->next = NULL;
1610 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1611 rf_FreeCallbackDesc(cb);
1612 }
1613 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1614 /* if no recon was requested while recon was blocked */
1615 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1616 }
1617 }
1618 out:
1619 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1620 return (0);
1621 }
1622