rf_reconstruct.c revision 1.72 1 /* $NetBSD: rf_reconstruct.c,v 1.72 2004/03/05 03:58:21 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.72 2004/03/05 03:58:21 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 static struct pool rf_recond_pool;
99 #define RF_MAX_FREE_RECOND 4
100 #define RF_RECOND_INC 1
101
102 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
103 RF_RaidDisk_t *, int, RF_RowCol_t);
104 static void FreeReconDesc(RF_RaidReconDesc_t *);
105 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
106 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
107 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
108 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
109 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
110 RF_SectorNum_t *);
111 static int IssueNextWriteRequest(RF_Raid_t *);
112 static int ReconReadDoneProc(void *, int);
113 static int ReconWriteDoneProc(void *, int);
114 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
115 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
116 RF_RowCol_t, RF_HeadSepLimit_t,
117 RF_ReconUnitNum_t);
118 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
119 RF_ReconParityStripeStatus_t *,
120 RF_PerDiskReconCtrl_t *,
121 RF_RowCol_t, RF_StripeNum_t,
122 RF_ReconUnitNum_t);
123 static void ForceReconReadDoneProc(void *, int);
124 static void rf_ShutdownReconstruction(void *);
125
126 struct RF_ReconDoneProc_s {
127 void (*proc) (RF_Raid_t *, void *);
128 void *arg;
129 RF_ReconDoneProc_t *next;
130 };
131
132 /**************************************************************************
133 *
134 * sets up the parameters that will be used by the reconstruction process
135 * currently there are none, except for those that the layout-specific
136 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
137 *
138 * in the kernel, we fire off the recon thread.
139 *
140 **************************************************************************/
141 static void
142 rf_ShutdownReconstruction(void *ignored)
143 {
144 pool_destroy(&rf_recond_pool);
145 }
146
147 int
148 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
149 {
150
151 pool_init(&rf_recond_pool, sizeof(RF_RaidReconDesc_t), 0, 0, 0,
152 "rf_recond_pl", NULL);
153 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
154
155 return (0);
156 }
157
158 static RF_RaidReconDesc_t *
159 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
160 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
161 RF_RowCol_t scol)
162 {
163
164 RF_RaidReconDesc_t *reconDesc;
165
166 reconDesc = pool_get(&rf_recond_pool, PR_WAITOK); /* XXX WAITOK?? */
167
168 reconDesc->raidPtr = raidPtr;
169 reconDesc->col = col;
170 reconDesc->spareDiskPtr = spareDiskPtr;
171 reconDesc->numDisksDone = numDisksDone;
172 reconDesc->scol = scol;
173 reconDesc->state = 0;
174 reconDesc->next = NULL;
175
176 return (reconDesc);
177 }
178
179 static void
180 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
181 {
182 #if RF_RECON_STATS > 0
183 printf("raid%d: %lu recon event waits, %lu recon delays\n",
184 reconDesc->raidPtr->raidid,
185 (long) reconDesc->numReconEventWaits,
186 (long) reconDesc->numReconExecDelays);
187 #endif /* RF_RECON_STATS > 0 */
188 printf("raid%d: %lu max exec ticks\n",
189 reconDesc->raidPtr->raidid,
190 (long) reconDesc->maxReconExecTicks);
191 #if (RF_RECON_STATS > 0) || defined(KERNEL)
192 printf("\n");
193 #endif /* (RF_RECON_STATS > 0) || KERNEL */
194 pool_put(&rf_recond_pool, reconDesc);
195 }
196
197
198 /*****************************************************************************
199 *
200 * primary routine to reconstruct a failed disk. This should be called from
201 * within its own thread. It won't return until reconstruction completes,
202 * fails, or is aborted.
203 *****************************************************************************/
204 int
205 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
206 {
207 const RF_LayoutSW_t *lp;
208 int rc;
209
210 lp = raidPtr->Layout.map;
211 if (lp->SubmitReconBuffer) {
212 /*
213 * The current infrastructure only supports reconstructing one
214 * disk at a time for each array.
215 */
216 RF_LOCK_MUTEX(raidPtr->mutex);
217 while (raidPtr->reconInProgress) {
218 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
219 }
220 raidPtr->reconInProgress++;
221 RF_UNLOCK_MUTEX(raidPtr->mutex);
222 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
223 RF_LOCK_MUTEX(raidPtr->mutex);
224 raidPtr->reconInProgress--;
225 RF_UNLOCK_MUTEX(raidPtr->mutex);
226 } else {
227 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
228 lp->parityConfig);
229 rc = EIO;
230 }
231 RF_SIGNAL_COND(raidPtr->waitForReconCond);
232 return (rc);
233 }
234
235 int
236 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
237 {
238 RF_ComponentLabel_t c_label;
239 RF_RaidDisk_t *spareDiskPtr = NULL;
240 RF_RaidReconDesc_t *reconDesc;
241 RF_RowCol_t scol;
242 int numDisksDone = 0, rc;
243
244 /* first look for a spare drive onto which to reconstruct the data */
245 /* spare disk descriptors are stored in row 0. This may have to
246 * change eventually */
247
248 RF_LOCK_MUTEX(raidPtr->mutex);
249 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
250 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
251 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
252 if (raidPtr->status != rf_rs_degraded) {
253 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
254 RF_UNLOCK_MUTEX(raidPtr->mutex);
255 return (EINVAL);
256 }
257 scol = (-1);
258 } else {
259 #endif
260 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
261 if (raidPtr->Disks[scol].status == rf_ds_spare) {
262 spareDiskPtr = &raidPtr->Disks[scol];
263 spareDiskPtr->status = rf_ds_used_spare;
264 break;
265 }
266 }
267 if (!spareDiskPtr) {
268 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
269 RF_UNLOCK_MUTEX(raidPtr->mutex);
270 return (ENOSPC);
271 }
272 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
273 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
274 }
275 #endif
276 RF_UNLOCK_MUTEX(raidPtr->mutex);
277
278 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
279 raidPtr->reconDesc = (void *) reconDesc;
280 #if RF_RECON_STATS > 0
281 reconDesc->hsStallCount = 0;
282 reconDesc->numReconExecDelays = 0;
283 reconDesc->numReconEventWaits = 0;
284 #endif /* RF_RECON_STATS > 0 */
285 reconDesc->reconExecTimerRunning = 0;
286 reconDesc->reconExecTicks = 0;
287 reconDesc->maxReconExecTicks = 0;
288 rc = rf_ContinueReconstructFailedDisk(reconDesc);
289
290 if (!rc) {
291 /* fix up the component label */
292 /* Don't actually need the read here.. */
293 raidread_component_label(
294 raidPtr->raid_cinfo[scol].ci_dev,
295 raidPtr->raid_cinfo[scol].ci_vp,
296 &c_label);
297
298 raid_init_component_label( raidPtr, &c_label);
299 c_label.row = 0;
300 c_label.column = col;
301 c_label.clean = RF_RAID_DIRTY;
302 c_label.status = rf_ds_optimal;
303 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
304
305 /* We've just done a rebuild based on all the other
306 disks, so at this point the parity is known to be
307 clean, even if it wasn't before. */
308
309 /* XXX doesn't hold for RAID 6!!*/
310
311 RF_LOCK_MUTEX(raidPtr->mutex);
312 raidPtr->parity_good = RF_RAID_CLEAN;
313 RF_UNLOCK_MUTEX(raidPtr->mutex);
314
315 /* XXXX MORE NEEDED HERE */
316
317 raidwrite_component_label(
318 raidPtr->raid_cinfo[scol].ci_dev,
319 raidPtr->raid_cinfo[scol].ci_vp,
320 &c_label);
321
322
323 rf_update_component_labels(raidPtr,
324 RF_NORMAL_COMPONENT_UPDATE);
325
326 }
327 return (rc);
328 }
329
330 /*
331
332 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
333 and you don't get a spare until the next Monday. With this function
334 (and hot-swappable drives) you can now put your new disk containing
335 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
336 rebuild the data "on the spot".
337
338 */
339
340 int
341 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
342 {
343 RF_RaidDisk_t *spareDiskPtr = NULL;
344 RF_RaidReconDesc_t *reconDesc;
345 const RF_LayoutSW_t *lp;
346 RF_ComponentLabel_t c_label;
347 int numDisksDone = 0, rc;
348 struct partinfo dpart;
349 struct vnode *vp;
350 struct vattr va;
351 struct proc *proc;
352 int retcode;
353 int ac;
354
355 lp = raidPtr->Layout.map;
356 if (!lp->SubmitReconBuffer) {
357 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
358 lp->parityConfig);
359 /* wakeup anyone who might be waiting to do a reconstruct */
360 RF_SIGNAL_COND(raidPtr->waitForReconCond);
361 return(EIO);
362 }
363
364 /*
365 * The current infrastructure only supports reconstructing one
366 * disk at a time for each array.
367 */
368 RF_LOCK_MUTEX(raidPtr->mutex);
369
370 if (raidPtr->Disks[col].status != rf_ds_failed) {
371 /* "It's gone..." */
372 raidPtr->numFailures++;
373 raidPtr->Disks[col].status = rf_ds_failed;
374 raidPtr->status = rf_rs_degraded;
375 RF_UNLOCK_MUTEX(raidPtr->mutex);
376 rf_update_component_labels(raidPtr,
377 RF_NORMAL_COMPONENT_UPDATE);
378 RF_LOCK_MUTEX(raidPtr->mutex);
379 }
380
381 while (raidPtr->reconInProgress) {
382 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
383 }
384
385 raidPtr->reconInProgress++;
386
387 /* first look for a spare drive onto which to reconstruct the
388 data. spare disk descriptors are stored in row 0. This
389 may have to change eventually */
390
391 /* Actually, we don't care if it's failed or not... On a RAID
392 set with correct parity, this function should be callable
393 on any component without ill affects. */
394 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
395
396 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
397 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
398 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
399
400 raidPtr->reconInProgress--;
401 RF_UNLOCK_MUTEX(raidPtr->mutex);
402 RF_SIGNAL_COND(raidPtr->waitForReconCond);
403 return (EINVAL);
404 }
405 #endif
406 proc = raidPtr->engine_thread;
407
408 /* This device may have been opened successfully the
409 first time. Close it before trying to open it again.. */
410
411 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
412 #if 0
413 printf("Closed the open device: %s\n",
414 raidPtr->Disks[col].devname);
415 #endif
416 vp = raidPtr->raid_cinfo[col].ci_vp;
417 ac = raidPtr->Disks[col].auto_configured;
418 RF_UNLOCK_MUTEX(raidPtr->mutex);
419 rf_close_component(raidPtr, vp, ac);
420 RF_LOCK_MUTEX(raidPtr->mutex);
421 raidPtr->raid_cinfo[col].ci_vp = NULL;
422 }
423 /* note that this disk was *not* auto_configured (any longer)*/
424 raidPtr->Disks[col].auto_configured = 0;
425
426 #if 0
427 printf("About to (re-)open the device for rebuilding: %s\n",
428 raidPtr->Disks[col].devname);
429 #endif
430 RF_UNLOCK_MUTEX(raidPtr->mutex);
431 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
432
433 if (retcode) {
434 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
435 raidPtr->Disks[col].devname, retcode);
436
437 /* the component isn't responding properly...
438 must be still dead :-( */
439 RF_LOCK_MUTEX(raidPtr->mutex);
440 raidPtr->reconInProgress--;
441 RF_UNLOCK_MUTEX(raidPtr->mutex);
442 RF_SIGNAL_COND(raidPtr->waitForReconCond);
443 return(retcode);
444 }
445
446 /* Ok, so we can at least do a lookup...
447 How about actually getting a vp for it? */
448
449 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
450 RF_LOCK_MUTEX(raidPtr->mutex);
451 raidPtr->reconInProgress--;
452 RF_UNLOCK_MUTEX(raidPtr->mutex);
453 RF_SIGNAL_COND(raidPtr->waitForReconCond);
454 return(retcode);
455 }
456
457 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
458 if (retcode) {
459 RF_LOCK_MUTEX(raidPtr->mutex);
460 raidPtr->reconInProgress--;
461 RF_UNLOCK_MUTEX(raidPtr->mutex);
462 RF_SIGNAL_COND(raidPtr->waitForReconCond);
463 return(retcode);
464 }
465 RF_LOCK_MUTEX(raidPtr->mutex);
466 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
467
468 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
469 rf_protectedSectors;
470
471 raidPtr->raid_cinfo[col].ci_vp = vp;
472 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
473
474 raidPtr->Disks[col].dev = va.va_rdev;
475
476 /* we allow the user to specify that only a fraction
477 of the disks should be used this is just for debug:
478 it speeds up * the parity scan */
479 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
480 rf_sizePercentage / 100;
481 RF_UNLOCK_MUTEX(raidPtr->mutex);
482
483 spareDiskPtr = &raidPtr->Disks[col];
484 spareDiskPtr->status = rf_ds_used_spare;
485
486 printf("raid%d: initiating in-place reconstruction on column %d\n",
487 raidPtr->raidid, col);
488
489 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
490 numDisksDone, col);
491 raidPtr->reconDesc = (void *) reconDesc;
492 #if RF_RECON_STATS > 0
493 reconDesc->hsStallCount = 0;
494 reconDesc->numReconExecDelays = 0;
495 reconDesc->numReconEventWaits = 0;
496 #endif /* RF_RECON_STATS > 0 */
497 reconDesc->reconExecTimerRunning = 0;
498 reconDesc->reconExecTicks = 0;
499 reconDesc->maxReconExecTicks = 0;
500 rc = rf_ContinueReconstructFailedDisk(reconDesc);
501
502 RF_LOCK_MUTEX(raidPtr->mutex);
503 raidPtr->reconInProgress--;
504 RF_UNLOCK_MUTEX(raidPtr->mutex);
505
506 if (!rc) {
507 RF_LOCK_MUTEX(raidPtr->mutex);
508 /* Need to set these here, as at this point it'll be claiming
509 that the disk is in rf_ds_spared! But we know better :-) */
510
511 raidPtr->Disks[col].status = rf_ds_optimal;
512 raidPtr->status = rf_rs_optimal;
513 RF_UNLOCK_MUTEX(raidPtr->mutex);
514
515 /* fix up the component label */
516 /* Don't actually need the read here.. */
517 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
518 raidPtr->raid_cinfo[col].ci_vp,
519 &c_label);
520
521 RF_LOCK_MUTEX(raidPtr->mutex);
522 raid_init_component_label(raidPtr, &c_label);
523
524 c_label.row = 0;
525 c_label.column = col;
526
527 /* We've just done a rebuild based on all the other
528 disks, so at this point the parity is known to be
529 clean, even if it wasn't before. */
530
531 /* XXX doesn't hold for RAID 6!!*/
532
533 raidPtr->parity_good = RF_RAID_CLEAN;
534 RF_UNLOCK_MUTEX(raidPtr->mutex);
535
536 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
537 raidPtr->raid_cinfo[col].ci_vp,
538 &c_label);
539
540 rf_update_component_labels(raidPtr,
541 RF_NORMAL_COMPONENT_UPDATE);
542
543 }
544 RF_SIGNAL_COND(raidPtr->waitForReconCond);
545 return (rc);
546 }
547
548
549 int
550 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
551 {
552 RF_Raid_t *raidPtr = reconDesc->raidPtr;
553 RF_RowCol_t col = reconDesc->col;
554 RF_RowCol_t scol = reconDesc->scol;
555 RF_ReconMap_t *mapPtr;
556 RF_ReconCtrl_t *tmp_reconctrl;
557 RF_ReconEvent_t *event;
558 struct timeval etime, elpsd;
559 unsigned long xor_s, xor_resid_us;
560 int i, ds;
561
562 switch (reconDesc->state) {
563
564
565 case 0:
566
567 raidPtr->accumXorTimeUs = 0;
568 #if RF_ACC_TRACE > 0
569 /* create one trace record per physical disk */
570 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
571 #endif
572
573 /* quiesce the array prior to starting recon. this is needed
574 * to assure no nasty interactions with pending user writes.
575 * We need to do this before we change the disk or row status. */
576 reconDesc->state = 1;
577
578 Dprintf("RECON: begin request suspend\n");
579 rf_SuspendNewRequestsAndWait(raidPtr);
580 Dprintf("RECON: end request suspend\n");
581 rf_StartUserStats(raidPtr); /* zero out the stats kept on
582 * user accs */
583
584 /* fall through to state 1 */
585
586 case 1:
587
588 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
589 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
590
591 RF_LOCK_MUTEX(raidPtr->mutex);
592
593 /* create the reconstruction control pointer and install it in
594 * the right slot */
595 raidPtr->reconControl = tmp_reconctrl;
596 mapPtr = raidPtr->reconControl->reconMap;
597 raidPtr->status = rf_rs_reconstructing;
598 raidPtr->Disks[col].status = rf_ds_reconstructing;
599 raidPtr->Disks[col].spareCol = scol;
600
601 RF_UNLOCK_MUTEX(raidPtr->mutex);
602
603 RF_GETTIME(raidPtr->reconControl->starttime);
604
605 /* now start up the actual reconstruction: issue a read for
606 * each surviving disk */
607
608 reconDesc->numDisksDone = 0;
609 for (i = 0; i < raidPtr->numCol; i++) {
610 if (i != col) {
611 /* find and issue the next I/O on the
612 * indicated disk */
613 if (IssueNextReadRequest(raidPtr, i)) {
614 Dprintf1("RECON: done issuing for c%d\n", i);
615 reconDesc->numDisksDone++;
616 }
617 }
618 }
619
620 case 2:
621 Dprintf("RECON: resume requests\n");
622 rf_ResumeNewRequests(raidPtr);
623
624
625 reconDesc->state = 3;
626
627 case 3:
628
629 /* process reconstruction events until all disks report that
630 * they've completed all work */
631 mapPtr = raidPtr->reconControl->reconMap;
632
633
634
635 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
636
637 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
638 RF_ASSERT(event);
639
640 if (ProcessReconEvent(raidPtr, event))
641 reconDesc->numDisksDone++;
642 raidPtr->reconControl->numRUsTotal =
643 mapPtr->totalRUs;
644 raidPtr->reconControl->numRUsComplete =
645 mapPtr->totalRUs -
646 rf_UnitsLeftToReconstruct(mapPtr);
647 #if RF_DEBUG_RECON
648 raidPtr->reconControl->percentComplete =
649 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
650 if (rf_prReconSched) {
651 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
652 }
653 #endif
654 }
655
656
657
658 reconDesc->state = 4;
659
660
661 case 4:
662 mapPtr = raidPtr->reconControl->reconMap;
663 if (rf_reconDebug) {
664 printf("RECON: all reads completed\n");
665 }
666 /* at this point all the reads have completed. We now wait
667 * for any pending writes to complete, and then we're done */
668
669 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
670
671 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
672 RF_ASSERT(event);
673
674 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
675 #if RF_DEBUG_RECON
676 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
677 if (rf_prReconSched) {
678 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
679 }
680 #endif
681 }
682 reconDesc->state = 5;
683
684 case 5:
685 /* Success: mark the dead disk as reconstructed. We quiesce
686 * the array here to assure no nasty interactions with pending
687 * user accesses when we free up the psstatus structure as
688 * part of FreeReconControl() */
689
690 reconDesc->state = 6;
691
692 rf_SuspendNewRequestsAndWait(raidPtr);
693 rf_StopUserStats(raidPtr);
694 rf_PrintUserStats(raidPtr); /* print out the stats on user
695 * accs accumulated during
696 * recon */
697
698 /* fall through to state 6 */
699 case 6:
700
701
702
703 RF_LOCK_MUTEX(raidPtr->mutex);
704 raidPtr->numFailures--;
705 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
706 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
707 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
708 RF_UNLOCK_MUTEX(raidPtr->mutex);
709 RF_GETTIME(etime);
710 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
711
712 /* XXX -- why is state 7 different from state 6 if there is no
713 * return() here? -- XXX Note that I set elpsd above & use it
714 * below, so if you put a return here you'll have to fix this.
715 * (also, FreeReconControl is called below) */
716
717 case 7:
718
719 rf_ResumeNewRequests(raidPtr);
720
721 printf("raid%d: Reconstruction of disk at col %d completed\n",
722 raidPtr->raidid, col);
723 xor_s = raidPtr->accumXorTimeUs / 1000000;
724 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
725 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
726 raidPtr->raidid,
727 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
728 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
729 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
730 raidPtr->raidid,
731 (int) raidPtr->reconControl->starttime.tv_sec,
732 (int) raidPtr->reconControl->starttime.tv_usec,
733 (int) etime.tv_sec, (int) etime.tv_usec);
734
735 #if RF_RECON_STATS > 0
736 printf("raid%d: Total head-sep stall count was %d\n",
737 raidPtr->raidid, (int) reconDesc->hsStallCount);
738 #endif /* RF_RECON_STATS > 0 */
739 rf_FreeReconControl(raidPtr);
740 #if RF_ACC_TRACE > 0
741 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
742 #endif
743 FreeReconDesc(reconDesc);
744
745 }
746
747 return (0);
748 }
749 /*****************************************************************************
750 * do the right thing upon each reconstruction event.
751 * returns nonzero if and only if there is nothing left unread on the
752 * indicated disk
753 *****************************************************************************/
754 static int
755 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
756 {
757 int retcode = 0, submitblocked;
758 RF_ReconBuffer_t *rbuf;
759 RF_SectorCount_t sectorsPerRU;
760
761 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
762 switch (event->type) {
763
764 /* a read I/O has completed */
765 case RF_REVENT_READDONE:
766 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
767 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
768 event->col, rbuf->parityStripeID);
769 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
770 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
771 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
772 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
773 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
774 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
775 if (!submitblocked)
776 retcode = IssueNextReadRequest(raidPtr, event->col);
777 break;
778
779 /* a write I/O has completed */
780 case RF_REVENT_WRITEDONE:
781 #if RF_DEBUG_RECON
782 if (rf_floatingRbufDebug) {
783 rf_CheckFloatingRbufCount(raidPtr, 1);
784 }
785 #endif
786 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
787 rbuf = (RF_ReconBuffer_t *) event->arg;
788 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
789 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
790 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
791 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
792 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
793 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
794
795 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
796 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
797 raidPtr->numFullReconBuffers--;
798 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
799 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
800 } else
801 if (rbuf->type == RF_RBUF_TYPE_FORCED)
802 rf_FreeReconBuffer(rbuf);
803 else
804 RF_ASSERT(0);
805 break;
806
807 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
808 * cleared */
809 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
810 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
811 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
812 * BUFCLEAR event if we
813 * couldn't submit */
814 retcode = IssueNextReadRequest(raidPtr, event->col);
815 break;
816
817 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
818 * blockage has been cleared */
819 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
820 retcode = TryToRead(raidPtr, event->col);
821 break;
822
823 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
824 * reconstruction blockage has been
825 * cleared */
826 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
827 retcode = TryToRead(raidPtr, event->col);
828 break;
829
830 /* a buffer has become ready to write */
831 case RF_REVENT_BUFREADY:
832 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
833 retcode = IssueNextWriteRequest(raidPtr);
834 #if RF_DEBUG_RECON
835 if (rf_floatingRbufDebug) {
836 rf_CheckFloatingRbufCount(raidPtr, 1);
837 }
838 #endif
839 break;
840
841 /* we need to skip the current RU entirely because it got
842 * recon'd while we were waiting for something else to happen */
843 case RF_REVENT_SKIP:
844 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
845 retcode = IssueNextReadRequest(raidPtr, event->col);
846 break;
847
848 /* a forced-reconstruction read access has completed. Just
849 * submit the buffer */
850 case RF_REVENT_FORCEDREADDONE:
851 rbuf = (RF_ReconBuffer_t *) event->arg;
852 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
853 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
854 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
855 RF_ASSERT(!submitblocked);
856 break;
857
858 /* A read I/O failed to complete */
859 case RF_REVENT_READ_FAILED:
860 /* fallthru to panic... */
861
862 /* A write I/O failed to complete */
863 case RF_REVENT_WRITE_FAILED:
864 /* fallthru to panic... */
865
866 /* a forced read I/O failed to complete */
867 case RF_REVENT_FORCEDREAD_FAILED:
868 /* fallthru to panic... */
869
870 default:
871 RF_PANIC();
872 }
873 rf_FreeReconEventDesc(event);
874 return (retcode);
875 }
876 /*****************************************************************************
877 *
878 * find the next thing that's needed on the indicated disk, and issue
879 * a read request for it. We assume that the reconstruction buffer
880 * associated with this process is free to receive the data. If
881 * reconstruction is blocked on the indicated RU, we issue a
882 * blockage-release request instead of a physical disk read request.
883 * If the current disk gets too far ahead of the others, we issue a
884 * head-separation wait request and return.
885 *
886 * ctrl->{ru_count, curPSID, diskOffset} and
887 * rbuf->failedDiskSectorOffset are maintained to point to the unit
888 * we're currently accessing. Note that this deviates from the
889 * standard C idiom of having counters point to the next thing to be
890 * accessed. This allows us to easily retry when we're blocked by
891 * head separation or reconstruction-blockage events.
892 *
893 * returns nonzero if and only if there is nothing left unread on the
894 * indicated disk
895 *
896 *****************************************************************************/
897 static int
898 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
899 {
900 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
901 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
902 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
903 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
904 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
905 int do_new_check = 0, retcode = 0, status;
906
907 /* if we are currently the slowest disk, mark that we have to do a new
908 * check */
909 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
910 do_new_check = 1;
911
912 while (1) {
913
914 ctrl->ru_count++;
915 if (ctrl->ru_count < RUsPerPU) {
916 ctrl->diskOffset += sectorsPerRU;
917 rbuf->failedDiskSectorOffset += sectorsPerRU;
918 } else {
919 ctrl->curPSID++;
920 ctrl->ru_count = 0;
921 /* code left over from when head-sep was based on
922 * parity stripe id */
923 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
924 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
925 return (1); /* finito! */
926 }
927 /* find the disk offsets of the start of the parity
928 * stripe on both the current disk and the failed
929 * disk. skip this entire parity stripe if either disk
930 * does not appear in the indicated PS */
931 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
932 &rbuf->spCol, &rbuf->spOffset);
933 if (status) {
934 ctrl->ru_count = RUsPerPU - 1;
935 continue;
936 }
937 }
938 rbuf->which_ru = ctrl->ru_count;
939
940 /* skip this RU if it's already been reconstructed */
941 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
942 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
943 continue;
944 }
945 break;
946 }
947 ctrl->headSepCounter++;
948 if (do_new_check)
949 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
950
951
952 /* at this point, we have definitely decided what to do, and we have
953 * only to see if we can actually do it now */
954 rbuf->parityStripeID = ctrl->curPSID;
955 rbuf->which_ru = ctrl->ru_count;
956 #if RF_ACC_TRACE > 0
957 memset((char *) &raidPtr->recon_tracerecs[col], 0,
958 sizeof(raidPtr->recon_tracerecs[col]));
959 raidPtr->recon_tracerecs[col].reconacc = 1;
960 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
961 #endif
962 retcode = TryToRead(raidPtr, col);
963 return (retcode);
964 }
965
966 /*
967 * tries to issue the next read on the indicated disk. We may be
968 * blocked by (a) the heads being too far apart, or (b) recon on the
969 * indicated RU being blocked due to a write by a user thread. In
970 * this case, we issue a head-sep or blockage wait request, which will
971 * cause this same routine to be invoked again later when the blockage
972 * has cleared.
973 */
974
975 static int
976 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
977 {
978 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
979 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
980 RF_StripeNum_t psid = ctrl->curPSID;
981 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
982 RF_DiskQueueData_t *req;
983 int status;
984 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
985
986 /* if the current disk is too far ahead of the others, issue a
987 * head-separation wait and return */
988 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
989 return (0);
990
991 /* allocate a new PSS in case we need it */
992 newpssPtr = rf_AllocPSStatus(raidPtr);
993
994 RF_LOCK_PSS_MUTEX(raidPtr, psid);
995 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
996
997 if (pssPtr != newpssPtr) {
998 rf_FreePSStatus(raidPtr, newpssPtr);
999 }
1000
1001 /* if recon is blocked on the indicated parity stripe, issue a
1002 * block-wait request and return. this also must mark the indicated RU
1003 * in the stripe as under reconstruction if not blocked. */
1004 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1005 if (status == RF_PSS_RECON_BLOCKED) {
1006 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1007 goto out;
1008 } else
1009 if (status == RF_PSS_FORCED_ON_WRITE) {
1010 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1011 goto out;
1012 }
1013 /* make one last check to be sure that the indicated RU didn't get
1014 * reconstructed while we were waiting for something else to happen.
1015 * This is unfortunate in that it causes us to make this check twice
1016 * in the normal case. Might want to make some attempt to re-work
1017 * this so that we only do this check if we've definitely blocked on
1018 * one of the above checks. When this condition is detected, we may
1019 * have just created a bogus status entry, which we need to delete. */
1020 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1021 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1022 if (pssPtr == newpssPtr)
1023 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1024 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1025 goto out;
1026 }
1027 /* found something to read. issue the I/O */
1028 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1029 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1030 #if RF_ACC_TRACE > 0
1031 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1032 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1033 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1034 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1035 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1036 #endif
1037 /* should be ok to use a NULL proc pointer here, all the bufs we use
1038 * should be in kernel space */
1039 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1040 ReconReadDoneProc, (void *) ctrl, NULL,
1041 #if RF_ACC_TRACE > 0
1042 &raidPtr->recon_tracerecs[col],
1043 #else
1044 NULL,
1045 #endif
1046 (void *) raidPtr, 0, NULL);
1047
1048 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1049
1050 ctrl->rbuf->arg = (void *) req;
1051 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1052 pssPtr->issued[col] = 1;
1053
1054 out:
1055 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1056 return (0);
1057 }
1058
1059
1060 /*
1061 * given a parity stripe ID, we want to find out whether both the
1062 * current disk and the failed disk exist in that parity stripe. If
1063 * not, we want to skip this whole PS. If so, we want to find the
1064 * disk offset of the start of the PS on both the current disk and the
1065 * failed disk.
1066 *
1067 * this works by getting a list of disks comprising the indicated
1068 * parity stripe, and searching the list for the current and failed
1069 * disks. Once we've decided they both exist in the parity stripe, we
1070 * need to decide whether each is data or parity, so that we'll know
1071 * which mapping function to call to get the corresponding disk
1072 * offsets.
1073 *
1074 * this is kind of unpleasant, but doing it this way allows the
1075 * reconstruction code to use parity stripe IDs rather than physical
1076 * disks address to march through the failed disk, which greatly
1077 * simplifies a lot of code, as well as eliminating the need for a
1078 * reverse-mapping function. I also think it will execute faster,
1079 * since the calls to the mapping module are kept to a minimum.
1080 *
1081 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1082 * THE STRIPE IN THE CORRECT ORDER
1083 *
1084 * raidPtr - raid descriptor
1085 * psid - parity stripe identifier
1086 * col - column of disk to find the offsets for
1087 * spCol - out: col of spare unit for failed unit
1088 * spOffset - out: offset into disk containing spare unit
1089 *
1090 */
1091
1092
1093 static int
1094 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1095 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1096 RF_SectorNum_t *outFailedDiskSectorOffset,
1097 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1098 {
1099 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1100 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1101 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1102 RF_RowCol_t *diskids;
1103 u_int i, j, k, i_offset, j_offset;
1104 RF_RowCol_t pcol;
1105 int testcol;
1106 RF_SectorNum_t poffset;
1107 char i_is_parity = 0, j_is_parity = 0;
1108 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1109
1110 /* get a listing of the disks comprising that stripe */
1111 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1112 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1113 RF_ASSERT(diskids);
1114
1115 /* reject this entire parity stripe if it does not contain the
1116 * indicated disk or it does not contain the failed disk */
1117
1118 for (i = 0; i < stripeWidth; i++) {
1119 if (col == diskids[i])
1120 break;
1121 }
1122 if (i == stripeWidth)
1123 goto skipit;
1124 for (j = 0; j < stripeWidth; j++) {
1125 if (fcol == diskids[j])
1126 break;
1127 }
1128 if (j == stripeWidth) {
1129 goto skipit;
1130 }
1131 /* find out which disk the parity is on */
1132 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1133
1134 /* find out if either the current RU or the failed RU is parity */
1135 /* also, if the parity occurs in this stripe prior to the data and/or
1136 * failed col, we need to decrement i and/or j */
1137 for (k = 0; k < stripeWidth; k++)
1138 if (diskids[k] == pcol)
1139 break;
1140 RF_ASSERT(k < stripeWidth);
1141 i_offset = i;
1142 j_offset = j;
1143 if (k < i)
1144 i_offset--;
1145 else
1146 if (k == i) {
1147 i_is_parity = 1;
1148 i_offset = 0;
1149 } /* set offsets to zero to disable multiply
1150 * below */
1151 if (k < j)
1152 j_offset--;
1153 else
1154 if (k == j) {
1155 j_is_parity = 1;
1156 j_offset = 0;
1157 }
1158 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1159 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1160 * tells us how far into the stripe the [current,failed] disk is. */
1161
1162 /* call the mapping routine to get the offset into the current disk,
1163 * repeat for failed disk. */
1164 if (i_is_parity)
1165 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1166 else
1167 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1168
1169 RF_ASSERT(col == testcol);
1170
1171 if (j_is_parity)
1172 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1173 else
1174 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1175 RF_ASSERT(fcol == testcol);
1176
1177 /* now locate the spare unit for the failed unit */
1178 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1179 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1180 if (j_is_parity)
1181 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1182 else
1183 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1184 } else {
1185 #endif
1186 *spCol = raidPtr->reconControl->spareCol;
1187 *spOffset = *outFailedDiskSectorOffset;
1188 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1189 }
1190 #endif
1191 return (0);
1192
1193 skipit:
1194 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1195 psid, col);
1196 return (1);
1197 }
1198 /* this is called when a buffer has become ready to write to the replacement disk */
1199 static int
1200 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1201 {
1202 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1203 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1204 #if RF_ACC_TRACE > 0
1205 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1206 #endif
1207 RF_ReconBuffer_t *rbuf;
1208 RF_DiskQueueData_t *req;
1209
1210 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1211 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1212 * have gotten the event that sent us here */
1213 RF_ASSERT(rbuf->pssPtr);
1214
1215 rbuf->pssPtr->writeRbuf = rbuf;
1216 rbuf->pssPtr = NULL;
1217
1218 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1219 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1220 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1221 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1222 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1223 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1224
1225 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1226 * kernel space */
1227 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1228 sectorsPerRU, rbuf->buffer,
1229 rbuf->parityStripeID, rbuf->which_ru,
1230 ReconWriteDoneProc, (void *) rbuf, NULL,
1231 #if RF_ACC_TRACE > 0
1232 &raidPtr->recon_tracerecs[fcol],
1233 #else
1234 NULL,
1235 #endif
1236 (void *) raidPtr, 0, NULL);
1237
1238 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1239
1240 rbuf->arg = (void *) req;
1241 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1242
1243 return (0);
1244 }
1245
1246 /*
1247 * this gets called upon the completion of a reconstruction read
1248 * operation the arg is a pointer to the per-disk reconstruction
1249 * control structure for the process that just finished a read.
1250 *
1251 * called at interrupt context in the kernel, so don't do anything
1252 * illegal here.
1253 */
1254 static int
1255 ReconReadDoneProc(void *arg, int status)
1256 {
1257 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1258 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1259
1260 if (status) {
1261 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1262 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1263 return(0);
1264 }
1265 #if RF_ACC_TRACE > 0
1266 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1267 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1268 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1269 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1270 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1271 #endif
1272 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1273 return (0);
1274 }
1275 /* this gets called upon the completion of a reconstruction write operation.
1276 * the arg is a pointer to the rbuf that was just written
1277 *
1278 * called at interrupt context in the kernel, so don't do anything illegal here.
1279 */
1280 static int
1281 ReconWriteDoneProc(void *arg, int status)
1282 {
1283 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1284
1285 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1286 if (status) {
1287 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1288 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1289 return(0);
1290 }
1291 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1292 return (0);
1293 }
1294
1295
1296 /*
1297 * computes a new minimum head sep, and wakes up anyone who needs to
1298 * be woken as a result
1299 */
1300 static void
1301 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1302 {
1303 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1304 RF_HeadSepLimit_t new_min;
1305 RF_RowCol_t i;
1306 RF_CallbackDesc_t *p;
1307 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1308 * of a minimum */
1309
1310
1311 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1312
1313 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1314 for (i = 0; i < raidPtr->numCol; i++)
1315 if (i != reconCtrlPtr->fcol) {
1316 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1317 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1318 }
1319 /* set the new minimum and wake up anyone who can now run again */
1320 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1321 reconCtrlPtr->minHeadSepCounter = new_min;
1322 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1323 while (reconCtrlPtr->headSepCBList) {
1324 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1325 break;
1326 p = reconCtrlPtr->headSepCBList;
1327 reconCtrlPtr->headSepCBList = p->next;
1328 p->next = NULL;
1329 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1330 rf_FreeCallbackDesc(p);
1331 }
1332
1333 }
1334 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1335 }
1336
1337 /*
1338 * checks to see that the maximum head separation will not be violated
1339 * if we initiate a reconstruction I/O on the indicated disk.
1340 * Limiting the maximum head separation between two disks eliminates
1341 * the nasty buffer-stall conditions that occur when one disk races
1342 * ahead of the others and consumes all of the floating recon buffers.
1343 * This code is complex and unpleasant but it's necessary to avoid
1344 * some very nasty, albeit fairly rare, reconstruction behavior.
1345 *
1346 * returns non-zero if and only if we have to stop working on the
1347 * indicated disk due to a head-separation delay.
1348 */
1349 static int
1350 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1351 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1352 RF_ReconUnitNum_t which_ru)
1353 {
1354 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1355 RF_CallbackDesc_t *cb, *p, *pt;
1356 int retval = 0;
1357
1358 /* if we're too far ahead of the slowest disk, stop working on this
1359 * disk until the slower ones catch up. We do this by scheduling a
1360 * wakeup callback for the time when the slowest disk has caught up.
1361 * We define "caught up" with 20% hysteresis, i.e. the head separation
1362 * must have fallen to at most 80% of the max allowable head
1363 * separation before we'll wake up.
1364 *
1365 */
1366 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1367 if ((raidPtr->headSepLimit >= 0) &&
1368 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1369 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1370 raidPtr->raidid, col, ctrl->headSepCounter,
1371 reconCtrlPtr->minHeadSepCounter,
1372 raidPtr->headSepLimit);
1373 cb = rf_AllocCallbackDesc();
1374 /* the minHeadSepCounter value we have to get to before we'll
1375 * wake up. build in 20% hysteresis. */
1376 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1377 cb->col = col;
1378 cb->next = NULL;
1379
1380 /* insert this callback descriptor into the sorted list of
1381 * pending head-sep callbacks */
1382 p = reconCtrlPtr->headSepCBList;
1383 if (!p)
1384 reconCtrlPtr->headSepCBList = cb;
1385 else
1386 if (cb->callbackArg.v < p->callbackArg.v) {
1387 cb->next = reconCtrlPtr->headSepCBList;
1388 reconCtrlPtr->headSepCBList = cb;
1389 } else {
1390 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1391 cb->next = p;
1392 pt->next = cb;
1393 }
1394 retval = 1;
1395 #if RF_RECON_STATS > 0
1396 ctrl->reconCtrl->reconDesc->hsStallCount++;
1397 #endif /* RF_RECON_STATS > 0 */
1398 }
1399 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1400
1401 return (retval);
1402 }
1403 /*
1404 * checks to see if reconstruction has been either forced or blocked
1405 * by a user operation. if forced, we skip this RU entirely. else if
1406 * blocked, put ourselves on the wait list. else return 0.
1407 *
1408 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1409 */
1410 static int
1411 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1412 RF_ReconParityStripeStatus_t *pssPtr,
1413 RF_PerDiskReconCtrl_t *ctrl,
1414 RF_RowCol_t col, RF_StripeNum_t psid,
1415 RF_ReconUnitNum_t which_ru)
1416 {
1417 RF_CallbackDesc_t *cb;
1418 int retcode = 0;
1419
1420 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1421 retcode = RF_PSS_FORCED_ON_WRITE;
1422 else
1423 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1424 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1425 cb = rf_AllocCallbackDesc(); /* append ourselves to
1426 * the blockage-wait
1427 * list */
1428 cb->col = col;
1429 cb->next = pssPtr->blockWaitList;
1430 pssPtr->blockWaitList = cb;
1431 retcode = RF_PSS_RECON_BLOCKED;
1432 }
1433 if (!retcode)
1434 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1435 * reconstruction */
1436
1437 return (retcode);
1438 }
1439 /*
1440 * if reconstruction is currently ongoing for the indicated stripeID,
1441 * reconstruction is forced to completion and we return non-zero to
1442 * indicate that the caller must wait. If not, then reconstruction is
1443 * blocked on the indicated stripe and the routine returns zero. If
1444 * and only if we return non-zero, we'll cause the cbFunc to get
1445 * invoked with the cbArg when the reconstruction has completed.
1446 */
1447 int
1448 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1449 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1450 {
1451 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1452 * forcing recon on */
1453 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1454 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1455 * stripe status structure */
1456 RF_StripeNum_t psid; /* parity stripe id */
1457 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1458 * offset */
1459 RF_RowCol_t *diskids;
1460 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1461 RF_RowCol_t fcol, diskno, i;
1462 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1463 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1464 RF_CallbackDesc_t *cb;
1465 int nPromoted;
1466
1467 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1468
1469 /* allocate a new PSS in case we need it */
1470 newpssPtr = rf_AllocPSStatus(raidPtr);
1471
1472 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1473
1474 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1475
1476 if (pssPtr != newpssPtr) {
1477 rf_FreePSStatus(raidPtr, newpssPtr);
1478 }
1479
1480 /* if recon is not ongoing on this PS, just return */
1481 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1482 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1483 return (0);
1484 }
1485 /* otherwise, we have to wait for reconstruction to complete on this
1486 * RU. */
1487 /* In order to avoid waiting for a potentially large number of
1488 * low-priority accesses to complete, we force a normal-priority (i.e.
1489 * not low-priority) reconstruction on this RU. */
1490 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1491 DDprintf1("Forcing recon on psid %ld\n", psid);
1492 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1493 * forced recon */
1494 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1495 * that we just set */
1496 fcol = raidPtr->reconControl->fcol;
1497
1498 /* get a listing of the disks comprising the indicated stripe */
1499 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1500
1501 /* For previously issued reads, elevate them to normal
1502 * priority. If the I/O has already completed, it won't be
1503 * found in the queue, and hence this will be a no-op. For
1504 * unissued reads, allocate buffers and issue new reads. The
1505 * fact that we've set the FORCED bit means that the regular
1506 * recon procs will not re-issue these reqs */
1507 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1508 if ((diskno = diskids[i]) != fcol) {
1509 if (pssPtr->issued[diskno]) {
1510 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1511 if (rf_reconDebug && nPromoted)
1512 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1513 } else {
1514 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1515 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1516 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1517 * location */
1518 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1519 new_rbuf->which_ru = which_ru;
1520 new_rbuf->failedDiskSectorOffset = fd_offset;
1521 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1522
1523 /* use NULL b_proc b/c all addrs
1524 * should be in kernel space */
1525 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1526 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1527 NULL, (void *) raidPtr, 0, NULL);
1528
1529 RF_ASSERT(req); /* XXX -- fix this --
1530 * XXX */
1531
1532 new_rbuf->arg = req;
1533 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1534 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1535 }
1536 }
1537 /* if the write is sitting in the disk queue, elevate its
1538 * priority */
1539 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1540 printf("raid%d: promoted write to col %d\n",
1541 raidPtr->raidid, fcol);
1542 }
1543 /* install a callback descriptor to be invoked when recon completes on
1544 * this parity stripe. */
1545 cb = rf_AllocCallbackDesc();
1546 /* XXX the following is bogus.. These functions don't really match!!
1547 * GO */
1548 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1549 cb->callbackArg.p = (void *) cbArg;
1550 cb->next = pssPtr->procWaitList;
1551 pssPtr->procWaitList = cb;
1552 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1553 raidPtr->raidid, psid);
1554
1555 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1556 return (1);
1557 }
1558 /* called upon the completion of a forced reconstruction read.
1559 * all we do is schedule the FORCEDREADONE event.
1560 * called at interrupt context in the kernel, so don't do anything illegal here.
1561 */
1562 static void
1563 ForceReconReadDoneProc(void *arg, int status)
1564 {
1565 RF_ReconBuffer_t *rbuf = arg;
1566
1567 if (status) {
1568 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1569 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1570 }
1571 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1572 }
1573 /* releases a block on the reconstruction of the indicated stripe */
1574 int
1575 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1576 {
1577 RF_StripeNum_t stripeID = asmap->stripeID;
1578 RF_ReconParityStripeStatus_t *pssPtr;
1579 RF_ReconUnitNum_t which_ru;
1580 RF_StripeNum_t psid;
1581 RF_CallbackDesc_t *cb;
1582
1583 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1584 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1585 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1586
1587 /* When recon is forced, the pss desc can get deleted before we get
1588 * back to unblock recon. But, this can _only_ happen when recon is
1589 * forced. It would be good to put some kind of sanity check here, but
1590 * how to decide if recon was just forced or not? */
1591 if (!pssPtr) {
1592 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1593 * RU %d\n",psid,which_ru); */
1594 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1595 if (rf_reconDebug || rf_pssDebug)
1596 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1597 #endif
1598 goto out;
1599 }
1600 pssPtr->blockCount--;
1601 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1602 raidPtr->raidid, psid, pssPtr->blockCount);
1603 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1604
1605 /* unblock recon before calling CauseReconEvent in case
1606 * CauseReconEvent causes us to try to issue a new read before
1607 * returning here. */
1608 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1609
1610
1611 while (pssPtr->blockWaitList) {
1612 /* spin through the block-wait list and
1613 release all the waiters */
1614 cb = pssPtr->blockWaitList;
1615 pssPtr->blockWaitList = cb->next;
1616 cb->next = NULL;
1617 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1618 rf_FreeCallbackDesc(cb);
1619 }
1620 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1621 /* if no recon was requested while recon was blocked */
1622 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1623 }
1624 }
1625 out:
1626 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1627 return (0);
1628 }
1629