rf_reconstruct.c revision 1.74 1 /* $NetBSD: rf_reconstruct.c,v 1.74 2004/03/07 22:15:19 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.74 2004/03/07 22:15:19 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 #define RF_MAX_FREE_RECOND 10
99 #define RF_MIN_FREE_RECOND 4
100
101 #define RF_MAX_FREE_RECONBUFFER 32
102 #define RF_MIN_FREE_RECONBUFFER 16
103
104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
105 RF_RaidDisk_t *, int, RF_RowCol_t);
106 static void FreeReconDesc(RF_RaidReconDesc_t *);
107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
109 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
111 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
112 RF_SectorNum_t *);
113 static int IssueNextWriteRequest(RF_Raid_t *);
114 static int ReconReadDoneProc(void *, int);
115 static int ReconWriteDoneProc(void *, int);
116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
118 RF_RowCol_t, RF_HeadSepLimit_t,
119 RF_ReconUnitNum_t);
120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
121 RF_ReconParityStripeStatus_t *,
122 RF_PerDiskReconCtrl_t *,
123 RF_RowCol_t, RF_StripeNum_t,
124 RF_ReconUnitNum_t);
125 static void ForceReconReadDoneProc(void *, int);
126 static void rf_ShutdownReconstruction(void *);
127
128 struct RF_ReconDoneProc_s {
129 void (*proc) (RF_Raid_t *, void *);
130 void *arg;
131 RF_ReconDoneProc_t *next;
132 };
133
134 /**************************************************************************
135 *
136 * sets up the parameters that will be used by the reconstruction process
137 * currently there are none, except for those that the layout-specific
138 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
139 *
140 * in the kernel, we fire off the recon thread.
141 *
142 **************************************************************************/
143 static void
144 rf_ShutdownReconstruction(void *ignored)
145 {
146 pool_destroy(&rf_pools.recond);
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.recond, sizeof(RF_RaidReconDesc_t),
155 "rf_recond_pl", RF_MIN_FREE_RECOND, RF_MAX_FREE_RECOND);
156 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
157 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
158 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
159
160 return (0);
161 }
162
163 static RF_RaidReconDesc_t *
164 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
165 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
166 RF_RowCol_t scol)
167 {
168
169 RF_RaidReconDesc_t *reconDesc;
170
171 reconDesc = pool_get(&rf_pools.recond, PR_WAITOK);
172 reconDesc->raidPtr = raidPtr;
173 reconDesc->col = col;
174 reconDesc->spareDiskPtr = spareDiskPtr;
175 reconDesc->numDisksDone = numDisksDone;
176 reconDesc->scol = scol;
177 reconDesc->state = 0;
178 reconDesc->next = NULL;
179
180 return (reconDesc);
181 }
182
183 static void
184 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
185 {
186 #if RF_RECON_STATS > 0
187 printf("raid%d: %lu recon event waits, %lu recon delays\n",
188 reconDesc->raidPtr->raidid,
189 (long) reconDesc->numReconEventWaits,
190 (long) reconDesc->numReconExecDelays);
191 #endif /* RF_RECON_STATS > 0 */
192 printf("raid%d: %lu max exec ticks\n",
193 reconDesc->raidPtr->raidid,
194 (long) reconDesc->maxReconExecTicks);
195 #if (RF_RECON_STATS > 0) || defined(KERNEL)
196 printf("\n");
197 #endif /* (RF_RECON_STATS > 0) || KERNEL */
198 pool_put(&rf_pools.recond, reconDesc);
199 }
200
201
202 /*****************************************************************************
203 *
204 * primary routine to reconstruct a failed disk. This should be called from
205 * within its own thread. It won't return until reconstruction completes,
206 * fails, or is aborted.
207 *****************************************************************************/
208 int
209 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
210 {
211 const RF_LayoutSW_t *lp;
212 int rc;
213
214 lp = raidPtr->Layout.map;
215 if (lp->SubmitReconBuffer) {
216 /*
217 * The current infrastructure only supports reconstructing one
218 * disk at a time for each array.
219 */
220 RF_LOCK_MUTEX(raidPtr->mutex);
221 while (raidPtr->reconInProgress) {
222 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
223 }
224 raidPtr->reconInProgress++;
225 RF_UNLOCK_MUTEX(raidPtr->mutex);
226 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
227 RF_LOCK_MUTEX(raidPtr->mutex);
228 raidPtr->reconInProgress--;
229 RF_UNLOCK_MUTEX(raidPtr->mutex);
230 } else {
231 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
232 lp->parityConfig);
233 rc = EIO;
234 }
235 RF_SIGNAL_COND(raidPtr->waitForReconCond);
236 return (rc);
237 }
238
239 int
240 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
241 {
242 RF_ComponentLabel_t c_label;
243 RF_RaidDisk_t *spareDiskPtr = NULL;
244 RF_RaidReconDesc_t *reconDesc;
245 RF_RowCol_t scol;
246 int numDisksDone = 0, rc;
247
248 /* first look for a spare drive onto which to reconstruct the data */
249 /* spare disk descriptors are stored in row 0. This may have to
250 * change eventually */
251
252 RF_LOCK_MUTEX(raidPtr->mutex);
253 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
254 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
255 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
256 if (raidPtr->status != rf_rs_degraded) {
257 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
258 RF_UNLOCK_MUTEX(raidPtr->mutex);
259 return (EINVAL);
260 }
261 scol = (-1);
262 } else {
263 #endif
264 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
265 if (raidPtr->Disks[scol].status == rf_ds_spare) {
266 spareDiskPtr = &raidPtr->Disks[scol];
267 spareDiskPtr->status = rf_ds_used_spare;
268 break;
269 }
270 }
271 if (!spareDiskPtr) {
272 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
273 RF_UNLOCK_MUTEX(raidPtr->mutex);
274 return (ENOSPC);
275 }
276 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
277 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
278 }
279 #endif
280 RF_UNLOCK_MUTEX(raidPtr->mutex);
281
282 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
283 raidPtr->reconDesc = (void *) reconDesc;
284 #if RF_RECON_STATS > 0
285 reconDesc->hsStallCount = 0;
286 reconDesc->numReconExecDelays = 0;
287 reconDesc->numReconEventWaits = 0;
288 #endif /* RF_RECON_STATS > 0 */
289 reconDesc->reconExecTimerRunning = 0;
290 reconDesc->reconExecTicks = 0;
291 reconDesc->maxReconExecTicks = 0;
292 rc = rf_ContinueReconstructFailedDisk(reconDesc);
293
294 if (!rc) {
295 /* fix up the component label */
296 /* Don't actually need the read here.. */
297 raidread_component_label(
298 raidPtr->raid_cinfo[scol].ci_dev,
299 raidPtr->raid_cinfo[scol].ci_vp,
300 &c_label);
301
302 raid_init_component_label( raidPtr, &c_label);
303 c_label.row = 0;
304 c_label.column = col;
305 c_label.clean = RF_RAID_DIRTY;
306 c_label.status = rf_ds_optimal;
307 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
308
309 /* We've just done a rebuild based on all the other
310 disks, so at this point the parity is known to be
311 clean, even if it wasn't before. */
312
313 /* XXX doesn't hold for RAID 6!!*/
314
315 RF_LOCK_MUTEX(raidPtr->mutex);
316 raidPtr->parity_good = RF_RAID_CLEAN;
317 RF_UNLOCK_MUTEX(raidPtr->mutex);
318
319 /* XXXX MORE NEEDED HERE */
320
321 raidwrite_component_label(
322 raidPtr->raid_cinfo[scol].ci_dev,
323 raidPtr->raid_cinfo[scol].ci_vp,
324 &c_label);
325
326
327 rf_update_component_labels(raidPtr,
328 RF_NORMAL_COMPONENT_UPDATE);
329
330 }
331 return (rc);
332 }
333
334 /*
335
336 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
337 and you don't get a spare until the next Monday. With this function
338 (and hot-swappable drives) you can now put your new disk containing
339 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
340 rebuild the data "on the spot".
341
342 */
343
344 int
345 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
346 {
347 RF_RaidDisk_t *spareDiskPtr = NULL;
348 RF_RaidReconDesc_t *reconDesc;
349 const RF_LayoutSW_t *lp;
350 RF_ComponentLabel_t c_label;
351 int numDisksDone = 0, rc;
352 struct partinfo dpart;
353 struct vnode *vp;
354 struct vattr va;
355 struct proc *proc;
356 int retcode;
357 int ac;
358
359 lp = raidPtr->Layout.map;
360 if (!lp->SubmitReconBuffer) {
361 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
362 lp->parityConfig);
363 /* wakeup anyone who might be waiting to do a reconstruct */
364 RF_SIGNAL_COND(raidPtr->waitForReconCond);
365 return(EIO);
366 }
367
368 /*
369 * The current infrastructure only supports reconstructing one
370 * disk at a time for each array.
371 */
372 RF_LOCK_MUTEX(raidPtr->mutex);
373
374 if (raidPtr->Disks[col].status != rf_ds_failed) {
375 /* "It's gone..." */
376 raidPtr->numFailures++;
377 raidPtr->Disks[col].status = rf_ds_failed;
378 raidPtr->status = rf_rs_degraded;
379 RF_UNLOCK_MUTEX(raidPtr->mutex);
380 rf_update_component_labels(raidPtr,
381 RF_NORMAL_COMPONENT_UPDATE);
382 RF_LOCK_MUTEX(raidPtr->mutex);
383 }
384
385 while (raidPtr->reconInProgress) {
386 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
387 }
388
389 raidPtr->reconInProgress++;
390
391 /* first look for a spare drive onto which to reconstruct the
392 data. spare disk descriptors are stored in row 0. This
393 may have to change eventually */
394
395 /* Actually, we don't care if it's failed or not... On a RAID
396 set with correct parity, this function should be callable
397 on any component without ill affects. */
398 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
399
400 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
401 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
402 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
403
404 raidPtr->reconInProgress--;
405 RF_UNLOCK_MUTEX(raidPtr->mutex);
406 RF_SIGNAL_COND(raidPtr->waitForReconCond);
407 return (EINVAL);
408 }
409 #endif
410 proc = raidPtr->engine_thread;
411
412 /* This device may have been opened successfully the
413 first time. Close it before trying to open it again.. */
414
415 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
416 #if 0
417 printf("Closed the open device: %s\n",
418 raidPtr->Disks[col].devname);
419 #endif
420 vp = raidPtr->raid_cinfo[col].ci_vp;
421 ac = raidPtr->Disks[col].auto_configured;
422 RF_UNLOCK_MUTEX(raidPtr->mutex);
423 rf_close_component(raidPtr, vp, ac);
424 RF_LOCK_MUTEX(raidPtr->mutex);
425 raidPtr->raid_cinfo[col].ci_vp = NULL;
426 }
427 /* note that this disk was *not* auto_configured (any longer)*/
428 raidPtr->Disks[col].auto_configured = 0;
429
430 #if 0
431 printf("About to (re-)open the device for rebuilding: %s\n",
432 raidPtr->Disks[col].devname);
433 #endif
434 RF_UNLOCK_MUTEX(raidPtr->mutex);
435 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
436
437 if (retcode) {
438 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
439 raidPtr->Disks[col].devname, retcode);
440
441 /* the component isn't responding properly...
442 must be still dead :-( */
443 RF_LOCK_MUTEX(raidPtr->mutex);
444 raidPtr->reconInProgress--;
445 RF_UNLOCK_MUTEX(raidPtr->mutex);
446 RF_SIGNAL_COND(raidPtr->waitForReconCond);
447 return(retcode);
448 }
449
450 /* Ok, so we can at least do a lookup...
451 How about actually getting a vp for it? */
452
453 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
454 RF_LOCK_MUTEX(raidPtr->mutex);
455 raidPtr->reconInProgress--;
456 RF_UNLOCK_MUTEX(raidPtr->mutex);
457 RF_SIGNAL_COND(raidPtr->waitForReconCond);
458 return(retcode);
459 }
460
461 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
462 if (retcode) {
463 RF_LOCK_MUTEX(raidPtr->mutex);
464 raidPtr->reconInProgress--;
465 RF_UNLOCK_MUTEX(raidPtr->mutex);
466 RF_SIGNAL_COND(raidPtr->waitForReconCond);
467 return(retcode);
468 }
469 RF_LOCK_MUTEX(raidPtr->mutex);
470 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
471
472 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
473 rf_protectedSectors;
474
475 raidPtr->raid_cinfo[col].ci_vp = vp;
476 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
477
478 raidPtr->Disks[col].dev = va.va_rdev;
479
480 /* we allow the user to specify that only a fraction
481 of the disks should be used this is just for debug:
482 it speeds up * the parity scan */
483 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
484 rf_sizePercentage / 100;
485 RF_UNLOCK_MUTEX(raidPtr->mutex);
486
487 spareDiskPtr = &raidPtr->Disks[col];
488 spareDiskPtr->status = rf_ds_used_spare;
489
490 printf("raid%d: initiating in-place reconstruction on column %d\n",
491 raidPtr->raidid, col);
492
493 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
494 numDisksDone, col);
495 raidPtr->reconDesc = (void *) reconDesc;
496 #if RF_RECON_STATS > 0
497 reconDesc->hsStallCount = 0;
498 reconDesc->numReconExecDelays = 0;
499 reconDesc->numReconEventWaits = 0;
500 #endif /* RF_RECON_STATS > 0 */
501 reconDesc->reconExecTimerRunning = 0;
502 reconDesc->reconExecTicks = 0;
503 reconDesc->maxReconExecTicks = 0;
504 rc = rf_ContinueReconstructFailedDisk(reconDesc);
505
506 RF_LOCK_MUTEX(raidPtr->mutex);
507 raidPtr->reconInProgress--;
508 RF_UNLOCK_MUTEX(raidPtr->mutex);
509
510 if (!rc) {
511 RF_LOCK_MUTEX(raidPtr->mutex);
512 /* Need to set these here, as at this point it'll be claiming
513 that the disk is in rf_ds_spared! But we know better :-) */
514
515 raidPtr->Disks[col].status = rf_ds_optimal;
516 raidPtr->status = rf_rs_optimal;
517 RF_UNLOCK_MUTEX(raidPtr->mutex);
518
519 /* fix up the component label */
520 /* Don't actually need the read here.. */
521 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
522 raidPtr->raid_cinfo[col].ci_vp,
523 &c_label);
524
525 RF_LOCK_MUTEX(raidPtr->mutex);
526 raid_init_component_label(raidPtr, &c_label);
527
528 c_label.row = 0;
529 c_label.column = col;
530
531 /* We've just done a rebuild based on all the other
532 disks, so at this point the parity is known to be
533 clean, even if it wasn't before. */
534
535 /* XXX doesn't hold for RAID 6!!*/
536
537 raidPtr->parity_good = RF_RAID_CLEAN;
538 RF_UNLOCK_MUTEX(raidPtr->mutex);
539
540 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
541 raidPtr->raid_cinfo[col].ci_vp,
542 &c_label);
543
544 rf_update_component_labels(raidPtr,
545 RF_NORMAL_COMPONENT_UPDATE);
546
547 }
548 RF_SIGNAL_COND(raidPtr->waitForReconCond);
549 return (rc);
550 }
551
552
553 int
554 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
555 {
556 RF_Raid_t *raidPtr = reconDesc->raidPtr;
557 RF_RowCol_t col = reconDesc->col;
558 RF_RowCol_t scol = reconDesc->scol;
559 RF_ReconMap_t *mapPtr;
560 RF_ReconCtrl_t *tmp_reconctrl;
561 RF_ReconEvent_t *event;
562 struct timeval etime, elpsd;
563 unsigned long xor_s, xor_resid_us;
564 int i, ds;
565
566 switch (reconDesc->state) {
567
568
569 case 0:
570
571 raidPtr->accumXorTimeUs = 0;
572 #if RF_ACC_TRACE > 0
573 /* create one trace record per physical disk */
574 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
575 #endif
576
577 /* quiesce the array prior to starting recon. this is needed
578 * to assure no nasty interactions with pending user writes.
579 * We need to do this before we change the disk or row status. */
580 reconDesc->state = 1;
581
582 Dprintf("RECON: begin request suspend\n");
583 rf_SuspendNewRequestsAndWait(raidPtr);
584 Dprintf("RECON: end request suspend\n");
585 rf_StartUserStats(raidPtr); /* zero out the stats kept on
586 * user accs */
587
588 /* fall through to state 1 */
589
590 case 1:
591
592 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
593 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
594
595 RF_LOCK_MUTEX(raidPtr->mutex);
596
597 /* create the reconstruction control pointer and install it in
598 * the right slot */
599 raidPtr->reconControl = tmp_reconctrl;
600 mapPtr = raidPtr->reconControl->reconMap;
601 raidPtr->status = rf_rs_reconstructing;
602 raidPtr->Disks[col].status = rf_ds_reconstructing;
603 raidPtr->Disks[col].spareCol = scol;
604
605 RF_UNLOCK_MUTEX(raidPtr->mutex);
606
607 RF_GETTIME(raidPtr->reconControl->starttime);
608
609 /* now start up the actual reconstruction: issue a read for
610 * each surviving disk */
611
612 reconDesc->numDisksDone = 0;
613 for (i = 0; i < raidPtr->numCol; i++) {
614 if (i != col) {
615 /* find and issue the next I/O on the
616 * indicated disk */
617 if (IssueNextReadRequest(raidPtr, i)) {
618 Dprintf1("RECON: done issuing for c%d\n", i);
619 reconDesc->numDisksDone++;
620 }
621 }
622 }
623
624 case 2:
625 Dprintf("RECON: resume requests\n");
626 rf_ResumeNewRequests(raidPtr);
627
628
629 reconDesc->state = 3;
630
631 case 3:
632
633 /* process reconstruction events until all disks report that
634 * they've completed all work */
635 mapPtr = raidPtr->reconControl->reconMap;
636
637
638
639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
640
641 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
642 RF_ASSERT(event);
643
644 if (ProcessReconEvent(raidPtr, event))
645 reconDesc->numDisksDone++;
646 raidPtr->reconControl->numRUsTotal =
647 mapPtr->totalRUs;
648 raidPtr->reconControl->numRUsComplete =
649 mapPtr->totalRUs -
650 rf_UnitsLeftToReconstruct(mapPtr);
651 #if RF_DEBUG_RECON
652 raidPtr->reconControl->percentComplete =
653 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
654 if (rf_prReconSched) {
655 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
656 }
657 #endif
658 }
659
660
661
662 reconDesc->state = 4;
663
664
665 case 4:
666 mapPtr = raidPtr->reconControl->reconMap;
667 if (rf_reconDebug) {
668 printf("RECON: all reads completed\n");
669 }
670 /* at this point all the reads have completed. We now wait
671 * for any pending writes to complete, and then we're done */
672
673 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
674
675 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
676 RF_ASSERT(event);
677
678 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
679 #if RF_DEBUG_RECON
680 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
681 if (rf_prReconSched) {
682 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
683 }
684 #endif
685 }
686 reconDesc->state = 5;
687
688 case 5:
689 /* Success: mark the dead disk as reconstructed. We quiesce
690 * the array here to assure no nasty interactions with pending
691 * user accesses when we free up the psstatus structure as
692 * part of FreeReconControl() */
693
694 reconDesc->state = 6;
695
696 rf_SuspendNewRequestsAndWait(raidPtr);
697 rf_StopUserStats(raidPtr);
698 rf_PrintUserStats(raidPtr); /* print out the stats on user
699 * accs accumulated during
700 * recon */
701
702 /* fall through to state 6 */
703 case 6:
704
705
706
707 RF_LOCK_MUTEX(raidPtr->mutex);
708 raidPtr->numFailures--;
709 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
710 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
711 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
712 RF_UNLOCK_MUTEX(raidPtr->mutex);
713 RF_GETTIME(etime);
714 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
715
716 /* XXX -- why is state 7 different from state 6 if there is no
717 * return() here? -- XXX Note that I set elpsd above & use it
718 * below, so if you put a return here you'll have to fix this.
719 * (also, FreeReconControl is called below) */
720
721 case 7:
722
723 rf_ResumeNewRequests(raidPtr);
724
725 printf("raid%d: Reconstruction of disk at col %d completed\n",
726 raidPtr->raidid, col);
727 xor_s = raidPtr->accumXorTimeUs / 1000000;
728 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
729 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
730 raidPtr->raidid,
731 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
732 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
733 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
734 raidPtr->raidid,
735 (int) raidPtr->reconControl->starttime.tv_sec,
736 (int) raidPtr->reconControl->starttime.tv_usec,
737 (int) etime.tv_sec, (int) etime.tv_usec);
738
739 #if RF_RECON_STATS > 0
740 printf("raid%d: Total head-sep stall count was %d\n",
741 raidPtr->raidid, (int) reconDesc->hsStallCount);
742 #endif /* RF_RECON_STATS > 0 */
743 rf_FreeReconControl(raidPtr);
744 #if RF_ACC_TRACE > 0
745 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
746 #endif
747 FreeReconDesc(reconDesc);
748
749 }
750
751 return (0);
752 }
753 /*****************************************************************************
754 * do the right thing upon each reconstruction event.
755 * returns nonzero if and only if there is nothing left unread on the
756 * indicated disk
757 *****************************************************************************/
758 static int
759 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
760 {
761 int retcode = 0, submitblocked;
762 RF_ReconBuffer_t *rbuf;
763 RF_SectorCount_t sectorsPerRU;
764
765 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
766 switch (event->type) {
767
768 /* a read I/O has completed */
769 case RF_REVENT_READDONE:
770 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
771 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
772 event->col, rbuf->parityStripeID);
773 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
774 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
775 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
776 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
777 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
778 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
779 if (!submitblocked)
780 retcode = IssueNextReadRequest(raidPtr, event->col);
781 break;
782
783 /* a write I/O has completed */
784 case RF_REVENT_WRITEDONE:
785 #if RF_DEBUG_RECON
786 if (rf_floatingRbufDebug) {
787 rf_CheckFloatingRbufCount(raidPtr, 1);
788 }
789 #endif
790 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
791 rbuf = (RF_ReconBuffer_t *) event->arg;
792 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
793 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
794 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
795 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
796 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
797 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
798
799 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
800 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
801 raidPtr->numFullReconBuffers--;
802 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
803 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
804 } else
805 if (rbuf->type == RF_RBUF_TYPE_FORCED)
806 rf_FreeReconBuffer(rbuf);
807 else
808 RF_ASSERT(0);
809 break;
810
811 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
812 * cleared */
813 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
814 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
815 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
816 * BUFCLEAR event if we
817 * couldn't submit */
818 retcode = IssueNextReadRequest(raidPtr, event->col);
819 break;
820
821 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
822 * blockage has been cleared */
823 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
824 retcode = TryToRead(raidPtr, event->col);
825 break;
826
827 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
828 * reconstruction blockage has been
829 * cleared */
830 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
831 retcode = TryToRead(raidPtr, event->col);
832 break;
833
834 /* a buffer has become ready to write */
835 case RF_REVENT_BUFREADY:
836 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
837 retcode = IssueNextWriteRequest(raidPtr);
838 #if RF_DEBUG_RECON
839 if (rf_floatingRbufDebug) {
840 rf_CheckFloatingRbufCount(raidPtr, 1);
841 }
842 #endif
843 break;
844
845 /* we need to skip the current RU entirely because it got
846 * recon'd while we were waiting for something else to happen */
847 case RF_REVENT_SKIP:
848 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
849 retcode = IssueNextReadRequest(raidPtr, event->col);
850 break;
851
852 /* a forced-reconstruction read access has completed. Just
853 * submit the buffer */
854 case RF_REVENT_FORCEDREADDONE:
855 rbuf = (RF_ReconBuffer_t *) event->arg;
856 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
857 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
858 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
859 RF_ASSERT(!submitblocked);
860 break;
861
862 /* A read I/O failed to complete */
863 case RF_REVENT_READ_FAILED:
864 /* fallthru to panic... */
865
866 /* A write I/O failed to complete */
867 case RF_REVENT_WRITE_FAILED:
868 /* fallthru to panic... */
869
870 /* a forced read I/O failed to complete */
871 case RF_REVENT_FORCEDREAD_FAILED:
872 /* fallthru to panic... */
873
874 default:
875 RF_PANIC();
876 }
877 rf_FreeReconEventDesc(event);
878 return (retcode);
879 }
880 /*****************************************************************************
881 *
882 * find the next thing that's needed on the indicated disk, and issue
883 * a read request for it. We assume that the reconstruction buffer
884 * associated with this process is free to receive the data. If
885 * reconstruction is blocked on the indicated RU, we issue a
886 * blockage-release request instead of a physical disk read request.
887 * If the current disk gets too far ahead of the others, we issue a
888 * head-separation wait request and return.
889 *
890 * ctrl->{ru_count, curPSID, diskOffset} and
891 * rbuf->failedDiskSectorOffset are maintained to point to the unit
892 * we're currently accessing. Note that this deviates from the
893 * standard C idiom of having counters point to the next thing to be
894 * accessed. This allows us to easily retry when we're blocked by
895 * head separation or reconstruction-blockage events.
896 *
897 * returns nonzero if and only if there is nothing left unread on the
898 * indicated disk
899 *
900 *****************************************************************************/
901 static int
902 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
903 {
904 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
905 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
906 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
907 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
908 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
909 int do_new_check = 0, retcode = 0, status;
910
911 /* if we are currently the slowest disk, mark that we have to do a new
912 * check */
913 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
914 do_new_check = 1;
915
916 while (1) {
917
918 ctrl->ru_count++;
919 if (ctrl->ru_count < RUsPerPU) {
920 ctrl->diskOffset += sectorsPerRU;
921 rbuf->failedDiskSectorOffset += sectorsPerRU;
922 } else {
923 ctrl->curPSID++;
924 ctrl->ru_count = 0;
925 /* code left over from when head-sep was based on
926 * parity stripe id */
927 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
928 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
929 return (1); /* finito! */
930 }
931 /* find the disk offsets of the start of the parity
932 * stripe on both the current disk and the failed
933 * disk. skip this entire parity stripe if either disk
934 * does not appear in the indicated PS */
935 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
936 &rbuf->spCol, &rbuf->spOffset);
937 if (status) {
938 ctrl->ru_count = RUsPerPU - 1;
939 continue;
940 }
941 }
942 rbuf->which_ru = ctrl->ru_count;
943
944 /* skip this RU if it's already been reconstructed */
945 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
946 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
947 continue;
948 }
949 break;
950 }
951 ctrl->headSepCounter++;
952 if (do_new_check)
953 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
954
955
956 /* at this point, we have definitely decided what to do, and we have
957 * only to see if we can actually do it now */
958 rbuf->parityStripeID = ctrl->curPSID;
959 rbuf->which_ru = ctrl->ru_count;
960 #if RF_ACC_TRACE > 0
961 memset((char *) &raidPtr->recon_tracerecs[col], 0,
962 sizeof(raidPtr->recon_tracerecs[col]));
963 raidPtr->recon_tracerecs[col].reconacc = 1;
964 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
965 #endif
966 retcode = TryToRead(raidPtr, col);
967 return (retcode);
968 }
969
970 /*
971 * tries to issue the next read on the indicated disk. We may be
972 * blocked by (a) the heads being too far apart, or (b) recon on the
973 * indicated RU being blocked due to a write by a user thread. In
974 * this case, we issue a head-sep or blockage wait request, which will
975 * cause this same routine to be invoked again later when the blockage
976 * has cleared.
977 */
978
979 static int
980 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
981 {
982 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
983 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
984 RF_StripeNum_t psid = ctrl->curPSID;
985 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
986 RF_DiskQueueData_t *req;
987 int status;
988 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
989
990 /* if the current disk is too far ahead of the others, issue a
991 * head-separation wait and return */
992 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
993 return (0);
994
995 /* allocate a new PSS in case we need it */
996 newpssPtr = rf_AllocPSStatus(raidPtr);
997
998 RF_LOCK_PSS_MUTEX(raidPtr, psid);
999 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1000
1001 if (pssPtr != newpssPtr) {
1002 rf_FreePSStatus(raidPtr, newpssPtr);
1003 }
1004
1005 /* if recon is blocked on the indicated parity stripe, issue a
1006 * block-wait request and return. this also must mark the indicated RU
1007 * in the stripe as under reconstruction if not blocked. */
1008 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1009 if (status == RF_PSS_RECON_BLOCKED) {
1010 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1011 goto out;
1012 } else
1013 if (status == RF_PSS_FORCED_ON_WRITE) {
1014 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1015 goto out;
1016 }
1017 /* make one last check to be sure that the indicated RU didn't get
1018 * reconstructed while we were waiting for something else to happen.
1019 * This is unfortunate in that it causes us to make this check twice
1020 * in the normal case. Might want to make some attempt to re-work
1021 * this so that we only do this check if we've definitely blocked on
1022 * one of the above checks. When this condition is detected, we may
1023 * have just created a bogus status entry, which we need to delete. */
1024 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1025 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1026 if (pssPtr == newpssPtr)
1027 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1028 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1029 goto out;
1030 }
1031 /* found something to read. issue the I/O */
1032 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1033 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1034 #if RF_ACC_TRACE > 0
1035 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1036 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1037 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1038 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1039 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1040 #endif
1041 /* should be ok to use a NULL proc pointer here, all the bufs we use
1042 * should be in kernel space */
1043 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1044 ReconReadDoneProc, (void *) ctrl, NULL,
1045 #if RF_ACC_TRACE > 0
1046 &raidPtr->recon_tracerecs[col],
1047 #else
1048 NULL,
1049 #endif
1050 (void *) raidPtr, 0, NULL);
1051
1052 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1053
1054 ctrl->rbuf->arg = (void *) req;
1055 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1056 pssPtr->issued[col] = 1;
1057
1058 out:
1059 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1060 return (0);
1061 }
1062
1063
1064 /*
1065 * given a parity stripe ID, we want to find out whether both the
1066 * current disk and the failed disk exist in that parity stripe. If
1067 * not, we want to skip this whole PS. If so, we want to find the
1068 * disk offset of the start of the PS on both the current disk and the
1069 * failed disk.
1070 *
1071 * this works by getting a list of disks comprising the indicated
1072 * parity stripe, and searching the list for the current and failed
1073 * disks. Once we've decided they both exist in the parity stripe, we
1074 * need to decide whether each is data or parity, so that we'll know
1075 * which mapping function to call to get the corresponding disk
1076 * offsets.
1077 *
1078 * this is kind of unpleasant, but doing it this way allows the
1079 * reconstruction code to use parity stripe IDs rather than physical
1080 * disks address to march through the failed disk, which greatly
1081 * simplifies a lot of code, as well as eliminating the need for a
1082 * reverse-mapping function. I also think it will execute faster,
1083 * since the calls to the mapping module are kept to a minimum.
1084 *
1085 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1086 * THE STRIPE IN THE CORRECT ORDER
1087 *
1088 * raidPtr - raid descriptor
1089 * psid - parity stripe identifier
1090 * col - column of disk to find the offsets for
1091 * spCol - out: col of spare unit for failed unit
1092 * spOffset - out: offset into disk containing spare unit
1093 *
1094 */
1095
1096
1097 static int
1098 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1099 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1100 RF_SectorNum_t *outFailedDiskSectorOffset,
1101 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1102 {
1103 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1104 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1105 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1106 RF_RowCol_t *diskids;
1107 u_int i, j, k, i_offset, j_offset;
1108 RF_RowCol_t pcol;
1109 int testcol;
1110 RF_SectorNum_t poffset;
1111 char i_is_parity = 0, j_is_parity = 0;
1112 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1113
1114 /* get a listing of the disks comprising that stripe */
1115 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1116 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1117 RF_ASSERT(diskids);
1118
1119 /* reject this entire parity stripe if it does not contain the
1120 * indicated disk or it does not contain the failed disk */
1121
1122 for (i = 0; i < stripeWidth; i++) {
1123 if (col == diskids[i])
1124 break;
1125 }
1126 if (i == stripeWidth)
1127 goto skipit;
1128 for (j = 0; j < stripeWidth; j++) {
1129 if (fcol == diskids[j])
1130 break;
1131 }
1132 if (j == stripeWidth) {
1133 goto skipit;
1134 }
1135 /* find out which disk the parity is on */
1136 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1137
1138 /* find out if either the current RU or the failed RU is parity */
1139 /* also, if the parity occurs in this stripe prior to the data and/or
1140 * failed col, we need to decrement i and/or j */
1141 for (k = 0; k < stripeWidth; k++)
1142 if (diskids[k] == pcol)
1143 break;
1144 RF_ASSERT(k < stripeWidth);
1145 i_offset = i;
1146 j_offset = j;
1147 if (k < i)
1148 i_offset--;
1149 else
1150 if (k == i) {
1151 i_is_parity = 1;
1152 i_offset = 0;
1153 } /* set offsets to zero to disable multiply
1154 * below */
1155 if (k < j)
1156 j_offset--;
1157 else
1158 if (k == j) {
1159 j_is_parity = 1;
1160 j_offset = 0;
1161 }
1162 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1163 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1164 * tells us how far into the stripe the [current,failed] disk is. */
1165
1166 /* call the mapping routine to get the offset into the current disk,
1167 * repeat for failed disk. */
1168 if (i_is_parity)
1169 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1170 else
1171 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1172
1173 RF_ASSERT(col == testcol);
1174
1175 if (j_is_parity)
1176 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1177 else
1178 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1179 RF_ASSERT(fcol == testcol);
1180
1181 /* now locate the spare unit for the failed unit */
1182 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1183 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1184 if (j_is_parity)
1185 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1186 else
1187 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1188 } else {
1189 #endif
1190 *spCol = raidPtr->reconControl->spareCol;
1191 *spOffset = *outFailedDiskSectorOffset;
1192 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1193 }
1194 #endif
1195 return (0);
1196
1197 skipit:
1198 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1199 psid, col);
1200 return (1);
1201 }
1202 /* this is called when a buffer has become ready to write to the replacement disk */
1203 static int
1204 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1205 {
1206 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1207 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1208 #if RF_ACC_TRACE > 0
1209 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1210 #endif
1211 RF_ReconBuffer_t *rbuf;
1212 RF_DiskQueueData_t *req;
1213
1214 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1215 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1216 * have gotten the event that sent us here */
1217 RF_ASSERT(rbuf->pssPtr);
1218
1219 rbuf->pssPtr->writeRbuf = rbuf;
1220 rbuf->pssPtr = NULL;
1221
1222 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1223 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1224 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1225 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1226 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1227 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1228
1229 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1230 * kernel space */
1231 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1232 sectorsPerRU, rbuf->buffer,
1233 rbuf->parityStripeID, rbuf->which_ru,
1234 ReconWriteDoneProc, (void *) rbuf, NULL,
1235 #if RF_ACC_TRACE > 0
1236 &raidPtr->recon_tracerecs[fcol],
1237 #else
1238 NULL,
1239 #endif
1240 (void *) raidPtr, 0, NULL);
1241
1242 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1243
1244 rbuf->arg = (void *) req;
1245 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1246
1247 return (0);
1248 }
1249
1250 /*
1251 * this gets called upon the completion of a reconstruction read
1252 * operation the arg is a pointer to the per-disk reconstruction
1253 * control structure for the process that just finished a read.
1254 *
1255 * called at interrupt context in the kernel, so don't do anything
1256 * illegal here.
1257 */
1258 static int
1259 ReconReadDoneProc(void *arg, int status)
1260 {
1261 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1262 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1263
1264 if (status) {
1265 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1266 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1267 return(0);
1268 }
1269 #if RF_ACC_TRACE > 0
1270 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1271 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1272 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1273 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1274 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1275 #endif
1276 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1277 return (0);
1278 }
1279 /* this gets called upon the completion of a reconstruction write operation.
1280 * the arg is a pointer to the rbuf that was just written
1281 *
1282 * called at interrupt context in the kernel, so don't do anything illegal here.
1283 */
1284 static int
1285 ReconWriteDoneProc(void *arg, int status)
1286 {
1287 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1288
1289 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1290 if (status) {
1291 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1292 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1293 return(0);
1294 }
1295 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1296 return (0);
1297 }
1298
1299
1300 /*
1301 * computes a new minimum head sep, and wakes up anyone who needs to
1302 * be woken as a result
1303 */
1304 static void
1305 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1306 {
1307 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1308 RF_HeadSepLimit_t new_min;
1309 RF_RowCol_t i;
1310 RF_CallbackDesc_t *p;
1311 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1312 * of a minimum */
1313
1314
1315 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1316
1317 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1318 for (i = 0; i < raidPtr->numCol; i++)
1319 if (i != reconCtrlPtr->fcol) {
1320 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1321 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1322 }
1323 /* set the new minimum and wake up anyone who can now run again */
1324 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1325 reconCtrlPtr->minHeadSepCounter = new_min;
1326 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1327 while (reconCtrlPtr->headSepCBList) {
1328 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1329 break;
1330 p = reconCtrlPtr->headSepCBList;
1331 reconCtrlPtr->headSepCBList = p->next;
1332 p->next = NULL;
1333 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1334 rf_FreeCallbackDesc(p);
1335 }
1336
1337 }
1338 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1339 }
1340
1341 /*
1342 * checks to see that the maximum head separation will not be violated
1343 * if we initiate a reconstruction I/O on the indicated disk.
1344 * Limiting the maximum head separation between two disks eliminates
1345 * the nasty buffer-stall conditions that occur when one disk races
1346 * ahead of the others and consumes all of the floating recon buffers.
1347 * This code is complex and unpleasant but it's necessary to avoid
1348 * some very nasty, albeit fairly rare, reconstruction behavior.
1349 *
1350 * returns non-zero if and only if we have to stop working on the
1351 * indicated disk due to a head-separation delay.
1352 */
1353 static int
1354 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1355 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1356 RF_ReconUnitNum_t which_ru)
1357 {
1358 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1359 RF_CallbackDesc_t *cb, *p, *pt;
1360 int retval = 0;
1361
1362 /* if we're too far ahead of the slowest disk, stop working on this
1363 * disk until the slower ones catch up. We do this by scheduling a
1364 * wakeup callback for the time when the slowest disk has caught up.
1365 * We define "caught up" with 20% hysteresis, i.e. the head separation
1366 * must have fallen to at most 80% of the max allowable head
1367 * separation before we'll wake up.
1368 *
1369 */
1370 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1371 if ((raidPtr->headSepLimit >= 0) &&
1372 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1373 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1374 raidPtr->raidid, col, ctrl->headSepCounter,
1375 reconCtrlPtr->minHeadSepCounter,
1376 raidPtr->headSepLimit);
1377 cb = rf_AllocCallbackDesc();
1378 /* the minHeadSepCounter value we have to get to before we'll
1379 * wake up. build in 20% hysteresis. */
1380 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1381 cb->col = col;
1382 cb->next = NULL;
1383
1384 /* insert this callback descriptor into the sorted list of
1385 * pending head-sep callbacks */
1386 p = reconCtrlPtr->headSepCBList;
1387 if (!p)
1388 reconCtrlPtr->headSepCBList = cb;
1389 else
1390 if (cb->callbackArg.v < p->callbackArg.v) {
1391 cb->next = reconCtrlPtr->headSepCBList;
1392 reconCtrlPtr->headSepCBList = cb;
1393 } else {
1394 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1395 cb->next = p;
1396 pt->next = cb;
1397 }
1398 retval = 1;
1399 #if RF_RECON_STATS > 0
1400 ctrl->reconCtrl->reconDesc->hsStallCount++;
1401 #endif /* RF_RECON_STATS > 0 */
1402 }
1403 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1404
1405 return (retval);
1406 }
1407 /*
1408 * checks to see if reconstruction has been either forced or blocked
1409 * by a user operation. if forced, we skip this RU entirely. else if
1410 * blocked, put ourselves on the wait list. else return 0.
1411 *
1412 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1413 */
1414 static int
1415 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1416 RF_ReconParityStripeStatus_t *pssPtr,
1417 RF_PerDiskReconCtrl_t *ctrl,
1418 RF_RowCol_t col, RF_StripeNum_t psid,
1419 RF_ReconUnitNum_t which_ru)
1420 {
1421 RF_CallbackDesc_t *cb;
1422 int retcode = 0;
1423
1424 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1425 retcode = RF_PSS_FORCED_ON_WRITE;
1426 else
1427 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1428 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1429 cb = rf_AllocCallbackDesc(); /* append ourselves to
1430 * the blockage-wait
1431 * list */
1432 cb->col = col;
1433 cb->next = pssPtr->blockWaitList;
1434 pssPtr->blockWaitList = cb;
1435 retcode = RF_PSS_RECON_BLOCKED;
1436 }
1437 if (!retcode)
1438 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1439 * reconstruction */
1440
1441 return (retcode);
1442 }
1443 /*
1444 * if reconstruction is currently ongoing for the indicated stripeID,
1445 * reconstruction is forced to completion and we return non-zero to
1446 * indicate that the caller must wait. If not, then reconstruction is
1447 * blocked on the indicated stripe and the routine returns zero. If
1448 * and only if we return non-zero, we'll cause the cbFunc to get
1449 * invoked with the cbArg when the reconstruction has completed.
1450 */
1451 int
1452 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1453 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1454 {
1455 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1456 * forcing recon on */
1457 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1458 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1459 * stripe status structure */
1460 RF_StripeNum_t psid; /* parity stripe id */
1461 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1462 * offset */
1463 RF_RowCol_t *diskids;
1464 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1465 RF_RowCol_t fcol, diskno, i;
1466 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1467 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1468 RF_CallbackDesc_t *cb;
1469 int nPromoted;
1470
1471 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1472
1473 /* allocate a new PSS in case we need it */
1474 newpssPtr = rf_AllocPSStatus(raidPtr);
1475
1476 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1477
1478 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1479
1480 if (pssPtr != newpssPtr) {
1481 rf_FreePSStatus(raidPtr, newpssPtr);
1482 }
1483
1484 /* if recon is not ongoing on this PS, just return */
1485 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1486 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1487 return (0);
1488 }
1489 /* otherwise, we have to wait for reconstruction to complete on this
1490 * RU. */
1491 /* In order to avoid waiting for a potentially large number of
1492 * low-priority accesses to complete, we force a normal-priority (i.e.
1493 * not low-priority) reconstruction on this RU. */
1494 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1495 DDprintf1("Forcing recon on psid %ld\n", psid);
1496 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1497 * forced recon */
1498 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1499 * that we just set */
1500 fcol = raidPtr->reconControl->fcol;
1501
1502 /* get a listing of the disks comprising the indicated stripe */
1503 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1504
1505 /* For previously issued reads, elevate them to normal
1506 * priority. If the I/O has already completed, it won't be
1507 * found in the queue, and hence this will be a no-op. For
1508 * unissued reads, allocate buffers and issue new reads. The
1509 * fact that we've set the FORCED bit means that the regular
1510 * recon procs will not re-issue these reqs */
1511 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1512 if ((diskno = diskids[i]) != fcol) {
1513 if (pssPtr->issued[diskno]) {
1514 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1515 if (rf_reconDebug && nPromoted)
1516 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1517 } else {
1518 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1519 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1520 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1521 * location */
1522 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1523 new_rbuf->which_ru = which_ru;
1524 new_rbuf->failedDiskSectorOffset = fd_offset;
1525 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1526
1527 /* use NULL b_proc b/c all addrs
1528 * should be in kernel space */
1529 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1530 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1531 NULL, (void *) raidPtr, 0, NULL);
1532
1533 RF_ASSERT(req); /* XXX -- fix this --
1534 * XXX */
1535
1536 new_rbuf->arg = req;
1537 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1538 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1539 }
1540 }
1541 /* if the write is sitting in the disk queue, elevate its
1542 * priority */
1543 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1544 printf("raid%d: promoted write to col %d\n",
1545 raidPtr->raidid, fcol);
1546 }
1547 /* install a callback descriptor to be invoked when recon completes on
1548 * this parity stripe. */
1549 cb = rf_AllocCallbackDesc();
1550 /* XXX the following is bogus.. These functions don't really match!!
1551 * GO */
1552 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1553 cb->callbackArg.p = (void *) cbArg;
1554 cb->next = pssPtr->procWaitList;
1555 pssPtr->procWaitList = cb;
1556 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1557 raidPtr->raidid, psid);
1558
1559 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1560 return (1);
1561 }
1562 /* called upon the completion of a forced reconstruction read.
1563 * all we do is schedule the FORCEDREADONE event.
1564 * called at interrupt context in the kernel, so don't do anything illegal here.
1565 */
1566 static void
1567 ForceReconReadDoneProc(void *arg, int status)
1568 {
1569 RF_ReconBuffer_t *rbuf = arg;
1570
1571 if (status) {
1572 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1573 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1574 }
1575 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1576 }
1577 /* releases a block on the reconstruction of the indicated stripe */
1578 int
1579 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1580 {
1581 RF_StripeNum_t stripeID = asmap->stripeID;
1582 RF_ReconParityStripeStatus_t *pssPtr;
1583 RF_ReconUnitNum_t which_ru;
1584 RF_StripeNum_t psid;
1585 RF_CallbackDesc_t *cb;
1586
1587 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1588 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1589 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1590
1591 /* When recon is forced, the pss desc can get deleted before we get
1592 * back to unblock recon. But, this can _only_ happen when recon is
1593 * forced. It would be good to put some kind of sanity check here, but
1594 * how to decide if recon was just forced or not? */
1595 if (!pssPtr) {
1596 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1597 * RU %d\n",psid,which_ru); */
1598 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1599 if (rf_reconDebug || rf_pssDebug)
1600 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1601 #endif
1602 goto out;
1603 }
1604 pssPtr->blockCount--;
1605 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1606 raidPtr->raidid, psid, pssPtr->blockCount);
1607 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1608
1609 /* unblock recon before calling CauseReconEvent in case
1610 * CauseReconEvent causes us to try to issue a new read before
1611 * returning here. */
1612 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1613
1614
1615 while (pssPtr->blockWaitList) {
1616 /* spin through the block-wait list and
1617 release all the waiters */
1618 cb = pssPtr->blockWaitList;
1619 pssPtr->blockWaitList = cb->next;
1620 cb->next = NULL;
1621 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1622 rf_FreeCallbackDesc(cb);
1623 }
1624 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1625 /* if no recon was requested while recon was blocked */
1626 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1627 }
1628 }
1629 out:
1630 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1631 return (0);
1632 }
1633