rf_reconstruct.c revision 1.76.4.1 1 /* $NetBSD: rf_reconstruct.c,v 1.76.4.1 2005/04/16 10:56:37 tron Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.76.4.1 2005/04/16 10:56:37 tron Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 #define RF_MAX_FREE_RECOND 10
99 #define RF_MIN_FREE_RECOND 4
100
101 #define RF_MAX_FREE_RECONBUFFER 32
102 #define RF_MIN_FREE_RECONBUFFER 16
103
104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
105 RF_RaidDisk_t *, int, RF_RowCol_t);
106 static void FreeReconDesc(RF_RaidReconDesc_t *);
107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
109 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
111 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
112 RF_SectorNum_t *);
113 static int IssueNextWriteRequest(RF_Raid_t *);
114 static int ReconReadDoneProc(void *, int);
115 static int ReconWriteDoneProc(void *, int);
116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
118 RF_RowCol_t, RF_HeadSepLimit_t,
119 RF_ReconUnitNum_t);
120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
121 RF_ReconParityStripeStatus_t *,
122 RF_PerDiskReconCtrl_t *,
123 RF_RowCol_t, RF_StripeNum_t,
124 RF_ReconUnitNum_t);
125 static void ForceReconReadDoneProc(void *, int);
126 static void rf_ShutdownReconstruction(void *);
127
128 struct RF_ReconDoneProc_s {
129 void (*proc) (RF_Raid_t *, void *);
130 void *arg;
131 RF_ReconDoneProc_t *next;
132 };
133
134 /**************************************************************************
135 *
136 * sets up the parameters that will be used by the reconstruction process
137 * currently there are none, except for those that the layout-specific
138 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
139 *
140 * in the kernel, we fire off the recon thread.
141 *
142 **************************************************************************/
143 static void
144 rf_ShutdownReconstruction(void *ignored)
145 {
146 pool_destroy(&rf_pools.recond);
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.recond, sizeof(RF_RaidReconDesc_t),
155 "rf_recond_pl", RF_MIN_FREE_RECOND, RF_MAX_FREE_RECOND);
156 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
157 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
158 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
159
160 return (0);
161 }
162
163 static RF_RaidReconDesc_t *
164 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
165 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
166 RF_RowCol_t scol)
167 {
168
169 RF_RaidReconDesc_t *reconDesc;
170
171 reconDesc = pool_get(&rf_pools.recond, PR_WAITOK);
172 reconDesc->raidPtr = raidPtr;
173 reconDesc->col = col;
174 reconDesc->spareDiskPtr = spareDiskPtr;
175 reconDesc->numDisksDone = numDisksDone;
176 reconDesc->scol = scol;
177 reconDesc->state = 0;
178 reconDesc->next = NULL;
179
180 return (reconDesc);
181 }
182
183 static void
184 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
185 {
186 #if RF_RECON_STATS > 0
187 printf("raid%d: %lu recon event waits, %lu recon delays\n",
188 reconDesc->raidPtr->raidid,
189 (long) reconDesc->numReconEventWaits,
190 (long) reconDesc->numReconExecDelays);
191 #endif /* RF_RECON_STATS > 0 */
192 printf("raid%d: %lu max exec ticks\n",
193 reconDesc->raidPtr->raidid,
194 (long) reconDesc->maxReconExecTicks);
195 #if (RF_RECON_STATS > 0) || defined(KERNEL)
196 printf("\n");
197 #endif /* (RF_RECON_STATS > 0) || KERNEL */
198 pool_put(&rf_pools.recond, reconDesc);
199 }
200
201
202 /*****************************************************************************
203 *
204 * primary routine to reconstruct a failed disk. This should be called from
205 * within its own thread. It won't return until reconstruction completes,
206 * fails, or is aborted.
207 *****************************************************************************/
208 int
209 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
210 {
211 const RF_LayoutSW_t *lp;
212 int rc;
213
214 lp = raidPtr->Layout.map;
215 if (lp->SubmitReconBuffer) {
216 /*
217 * The current infrastructure only supports reconstructing one
218 * disk at a time for each array.
219 */
220 RF_LOCK_MUTEX(raidPtr->mutex);
221 while (raidPtr->reconInProgress) {
222 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
223 }
224 raidPtr->reconInProgress++;
225 RF_UNLOCK_MUTEX(raidPtr->mutex);
226 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
227 RF_LOCK_MUTEX(raidPtr->mutex);
228 raidPtr->reconInProgress--;
229 RF_UNLOCK_MUTEX(raidPtr->mutex);
230 } else {
231 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
232 lp->parityConfig);
233 rc = EIO;
234 }
235 RF_SIGNAL_COND(raidPtr->waitForReconCond);
236 return (rc);
237 }
238
239 int
240 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
241 {
242 RF_ComponentLabel_t c_label;
243 RF_RaidDisk_t *spareDiskPtr = NULL;
244 RF_RaidReconDesc_t *reconDesc;
245 RF_RowCol_t scol;
246 int numDisksDone = 0, rc;
247
248 /* first look for a spare drive onto which to reconstruct the data */
249 /* spare disk descriptors are stored in row 0. This may have to
250 * change eventually */
251
252 RF_LOCK_MUTEX(raidPtr->mutex);
253 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
254 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
255 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
256 if (raidPtr->status != rf_rs_degraded) {
257 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
258 RF_UNLOCK_MUTEX(raidPtr->mutex);
259 return (EINVAL);
260 }
261 scol = (-1);
262 } else {
263 #endif
264 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
265 if (raidPtr->Disks[scol].status == rf_ds_spare) {
266 spareDiskPtr = &raidPtr->Disks[scol];
267 spareDiskPtr->status = rf_ds_used_spare;
268 break;
269 }
270 }
271 if (!spareDiskPtr) {
272 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
273 RF_UNLOCK_MUTEX(raidPtr->mutex);
274 return (ENOSPC);
275 }
276 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
277 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
278 }
279 #endif
280 RF_UNLOCK_MUTEX(raidPtr->mutex);
281
282 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
283 raidPtr->reconDesc = (void *) reconDesc;
284 #if RF_RECON_STATS > 0
285 reconDesc->hsStallCount = 0;
286 reconDesc->numReconExecDelays = 0;
287 reconDesc->numReconEventWaits = 0;
288 #endif /* RF_RECON_STATS > 0 */
289 reconDesc->reconExecTimerRunning = 0;
290 reconDesc->reconExecTicks = 0;
291 reconDesc->maxReconExecTicks = 0;
292 rc = rf_ContinueReconstructFailedDisk(reconDesc);
293
294 if (!rc) {
295 /* fix up the component label */
296 /* Don't actually need the read here.. */
297 raidread_component_label(
298 raidPtr->raid_cinfo[scol].ci_dev,
299 raidPtr->raid_cinfo[scol].ci_vp,
300 &c_label);
301
302 raid_init_component_label( raidPtr, &c_label);
303 c_label.row = 0;
304 c_label.column = col;
305 c_label.clean = RF_RAID_DIRTY;
306 c_label.status = rf_ds_optimal;
307 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
308
309 /* We've just done a rebuild based on all the other
310 disks, so at this point the parity is known to be
311 clean, even if it wasn't before. */
312
313 /* XXX doesn't hold for RAID 6!!*/
314
315 RF_LOCK_MUTEX(raidPtr->mutex);
316 raidPtr->parity_good = RF_RAID_CLEAN;
317 RF_UNLOCK_MUTEX(raidPtr->mutex);
318
319 /* XXXX MORE NEEDED HERE */
320
321 raidwrite_component_label(
322 raidPtr->raid_cinfo[scol].ci_dev,
323 raidPtr->raid_cinfo[scol].ci_vp,
324 &c_label);
325
326
327 rf_update_component_labels(raidPtr,
328 RF_NORMAL_COMPONENT_UPDATE);
329
330 }
331 return (rc);
332 }
333
334 /*
335
336 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
337 and you don't get a spare until the next Monday. With this function
338 (and hot-swappable drives) you can now put your new disk containing
339 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
340 rebuild the data "on the spot".
341
342 */
343
344 int
345 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
346 {
347 RF_RaidDisk_t *spareDiskPtr = NULL;
348 RF_RaidReconDesc_t *reconDesc;
349 const RF_LayoutSW_t *lp;
350 RF_ComponentLabel_t c_label;
351 int numDisksDone = 0, rc;
352 struct partinfo dpart;
353 struct vnode *vp;
354 struct vattr va;
355 struct proc *proc;
356 int retcode;
357 int ac;
358
359 lp = raidPtr->Layout.map;
360 if (!lp->SubmitReconBuffer) {
361 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
362 lp->parityConfig);
363 /* wakeup anyone who might be waiting to do a reconstruct */
364 RF_SIGNAL_COND(raidPtr->waitForReconCond);
365 return(EIO);
366 }
367
368 /*
369 * The current infrastructure only supports reconstructing one
370 * disk at a time for each array.
371 */
372 RF_LOCK_MUTEX(raidPtr->mutex);
373
374 if (raidPtr->Disks[col].status != rf_ds_failed) {
375 /* "It's gone..." */
376 raidPtr->numFailures++;
377 raidPtr->Disks[col].status = rf_ds_failed;
378 raidPtr->status = rf_rs_degraded;
379 RF_UNLOCK_MUTEX(raidPtr->mutex);
380 rf_update_component_labels(raidPtr,
381 RF_NORMAL_COMPONENT_UPDATE);
382 RF_LOCK_MUTEX(raidPtr->mutex);
383 }
384
385 while (raidPtr->reconInProgress) {
386 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
387 }
388
389 raidPtr->reconInProgress++;
390
391 /* first look for a spare drive onto which to reconstruct the
392 data. spare disk descriptors are stored in row 0. This
393 may have to change eventually */
394
395 /* Actually, we don't care if it's failed or not... On a RAID
396 set with correct parity, this function should be callable
397 on any component without ill affects. */
398 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
399
400 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
401 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
402 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
403
404 raidPtr->reconInProgress--;
405 RF_UNLOCK_MUTEX(raidPtr->mutex);
406 RF_SIGNAL_COND(raidPtr->waitForReconCond);
407 return (EINVAL);
408 }
409 #endif
410 proc = raidPtr->engine_thread;
411
412 /* This device may have been opened successfully the
413 first time. Close it before trying to open it again.. */
414
415 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
416 #if 0
417 printf("Closed the open device: %s\n",
418 raidPtr->Disks[col].devname);
419 #endif
420 vp = raidPtr->raid_cinfo[col].ci_vp;
421 ac = raidPtr->Disks[col].auto_configured;
422 RF_UNLOCK_MUTEX(raidPtr->mutex);
423 rf_close_component(raidPtr, vp, ac);
424 RF_LOCK_MUTEX(raidPtr->mutex);
425 raidPtr->raid_cinfo[col].ci_vp = NULL;
426 }
427 /* note that this disk was *not* auto_configured (any longer)*/
428 raidPtr->Disks[col].auto_configured = 0;
429
430 #if 0
431 printf("About to (re-)open the device for rebuilding: %s\n",
432 raidPtr->Disks[col].devname);
433 #endif
434 RF_UNLOCK_MUTEX(raidPtr->mutex);
435 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
436
437 if (retcode) {
438 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
439 raidPtr->Disks[col].devname, retcode);
440
441 /* the component isn't responding properly...
442 must be still dead :-( */
443 RF_LOCK_MUTEX(raidPtr->mutex);
444 raidPtr->reconInProgress--;
445 RF_UNLOCK_MUTEX(raidPtr->mutex);
446 RF_SIGNAL_COND(raidPtr->waitForReconCond);
447 return(retcode);
448 }
449
450 /* Ok, so we can at least do a lookup...
451 How about actually getting a vp for it? */
452
453 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
454 RF_LOCK_MUTEX(raidPtr->mutex);
455 raidPtr->reconInProgress--;
456 RF_UNLOCK_MUTEX(raidPtr->mutex);
457 RF_SIGNAL_COND(raidPtr->waitForReconCond);
458 return(retcode);
459 }
460
461 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
462 if (retcode) {
463 RF_LOCK_MUTEX(raidPtr->mutex);
464 raidPtr->reconInProgress--;
465 RF_UNLOCK_MUTEX(raidPtr->mutex);
466 RF_SIGNAL_COND(raidPtr->waitForReconCond);
467 return(retcode);
468 }
469 RF_LOCK_MUTEX(raidPtr->mutex);
470 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
471
472 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
473 rf_protectedSectors;
474
475 raidPtr->raid_cinfo[col].ci_vp = vp;
476 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
477
478 raidPtr->Disks[col].dev = va.va_rdev;
479
480 /* we allow the user to specify that only a fraction
481 of the disks should be used this is just for debug:
482 it speeds up * the parity scan */
483 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
484 rf_sizePercentage / 100;
485 RF_UNLOCK_MUTEX(raidPtr->mutex);
486
487 spareDiskPtr = &raidPtr->Disks[col];
488 spareDiskPtr->status = rf_ds_used_spare;
489
490 printf("raid%d: initiating in-place reconstruction on column %d\n",
491 raidPtr->raidid, col);
492
493 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
494 numDisksDone, col);
495 raidPtr->reconDesc = (void *) reconDesc;
496 #if RF_RECON_STATS > 0
497 reconDesc->hsStallCount = 0;
498 reconDesc->numReconExecDelays = 0;
499 reconDesc->numReconEventWaits = 0;
500 #endif /* RF_RECON_STATS > 0 */
501 reconDesc->reconExecTimerRunning = 0;
502 reconDesc->reconExecTicks = 0;
503 reconDesc->maxReconExecTicks = 0;
504 rc = rf_ContinueReconstructFailedDisk(reconDesc);
505
506 RF_LOCK_MUTEX(raidPtr->mutex);
507 raidPtr->reconInProgress--;
508 RF_UNLOCK_MUTEX(raidPtr->mutex);
509
510 if (!rc) {
511 RF_LOCK_MUTEX(raidPtr->mutex);
512 /* Need to set these here, as at this point it'll be claiming
513 that the disk is in rf_ds_spared! But we know better :-) */
514
515 raidPtr->Disks[col].status = rf_ds_optimal;
516 raidPtr->status = rf_rs_optimal;
517 RF_UNLOCK_MUTEX(raidPtr->mutex);
518
519 /* fix up the component label */
520 /* Don't actually need the read here.. */
521 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
522 raidPtr->raid_cinfo[col].ci_vp,
523 &c_label);
524
525 RF_LOCK_MUTEX(raidPtr->mutex);
526 raid_init_component_label(raidPtr, &c_label);
527
528 c_label.row = 0;
529 c_label.column = col;
530
531 /* We've just done a rebuild based on all the other
532 disks, so at this point the parity is known to be
533 clean, even if it wasn't before. */
534
535 /* XXX doesn't hold for RAID 6!!*/
536
537 raidPtr->parity_good = RF_RAID_CLEAN;
538 RF_UNLOCK_MUTEX(raidPtr->mutex);
539
540 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
541 raidPtr->raid_cinfo[col].ci_vp,
542 &c_label);
543
544 rf_update_component_labels(raidPtr,
545 RF_NORMAL_COMPONENT_UPDATE);
546
547 }
548 RF_SIGNAL_COND(raidPtr->waitForReconCond);
549 return (rc);
550 }
551
552
553 int
554 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
555 {
556 RF_Raid_t *raidPtr = reconDesc->raidPtr;
557 RF_RowCol_t col = reconDesc->col;
558 RF_RowCol_t scol = reconDesc->scol;
559 RF_ReconMap_t *mapPtr;
560 RF_ReconCtrl_t *tmp_reconctrl;
561 RF_ReconEvent_t *event;
562 struct timeval etime, elpsd;
563 unsigned long xor_s, xor_resid_us;
564 int i, ds;
565
566 switch (reconDesc->state) {
567
568
569 case 0:
570
571 raidPtr->accumXorTimeUs = 0;
572 #if RF_ACC_TRACE > 0
573 /* create one trace record per physical disk */
574 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
575 #endif
576
577 /* quiesce the array prior to starting recon. this is needed
578 * to assure no nasty interactions with pending user writes.
579 * We need to do this before we change the disk or row status. */
580 reconDesc->state = 1;
581
582 Dprintf("RECON: begin request suspend\n");
583 rf_SuspendNewRequestsAndWait(raidPtr);
584 Dprintf("RECON: end request suspend\n");
585
586 /* fall through to state 1 */
587
588 case 1:
589
590 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
591 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
592
593 RF_LOCK_MUTEX(raidPtr->mutex);
594
595 /* create the reconstruction control pointer and install it in
596 * the right slot */
597 raidPtr->reconControl = tmp_reconctrl;
598 mapPtr = raidPtr->reconControl->reconMap;
599 raidPtr->status = rf_rs_reconstructing;
600 raidPtr->Disks[col].status = rf_ds_reconstructing;
601 raidPtr->Disks[col].spareCol = scol;
602
603 RF_UNLOCK_MUTEX(raidPtr->mutex);
604
605 RF_GETTIME(raidPtr->reconControl->starttime);
606
607 /* now start up the actual reconstruction: issue a read for
608 * each surviving disk */
609
610 reconDesc->numDisksDone = 0;
611 for (i = 0; i < raidPtr->numCol; i++) {
612 if (i != col) {
613 /* find and issue the next I/O on the
614 * indicated disk */
615 if (IssueNextReadRequest(raidPtr, i)) {
616 Dprintf1("RECON: done issuing for c%d\n", i);
617 reconDesc->numDisksDone++;
618 }
619 }
620 }
621
622 case 2:
623 Dprintf("RECON: resume requests\n");
624 rf_ResumeNewRequests(raidPtr);
625
626
627 reconDesc->state = 3;
628
629 case 3:
630
631 /* process reconstruction events until all disks report that
632 * they've completed all work */
633 mapPtr = raidPtr->reconControl->reconMap;
634
635
636
637 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
638
639 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
640 RF_ASSERT(event);
641
642 if (ProcessReconEvent(raidPtr, event))
643 reconDesc->numDisksDone++;
644 raidPtr->reconControl->numRUsTotal =
645 mapPtr->totalRUs;
646 raidPtr->reconControl->numRUsComplete =
647 mapPtr->totalRUs -
648 rf_UnitsLeftToReconstruct(mapPtr);
649 #if RF_DEBUG_RECON
650 raidPtr->reconControl->percentComplete =
651 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
652 if (rf_prReconSched) {
653 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
654 }
655 #endif
656 }
657
658
659
660 reconDesc->state = 4;
661
662
663 case 4:
664 mapPtr = raidPtr->reconControl->reconMap;
665 if (rf_reconDebug) {
666 printf("RECON: all reads completed\n");
667 }
668 /* at this point all the reads have completed. We now wait
669 * for any pending writes to complete, and then we're done */
670
671 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
672
673 event = rf_GetNextReconEvent(reconDesc, (void (*) (void *)) rf_ContinueReconstructFailedDisk, reconDesc);
674 RF_ASSERT(event);
675
676 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
677 #if RF_DEBUG_RECON
678 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
679 if (rf_prReconSched) {
680 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
681 }
682 #endif
683 }
684 reconDesc->state = 5;
685
686 case 5:
687 /* Success: mark the dead disk as reconstructed. We quiesce
688 * the array here to assure no nasty interactions with pending
689 * user accesses when we free up the psstatus structure as
690 * part of FreeReconControl() */
691
692 reconDesc->state = 6;
693
694 rf_SuspendNewRequestsAndWait(raidPtr);
695
696 /* fall through to state 6 */
697 case 6:
698
699
700
701 RF_LOCK_MUTEX(raidPtr->mutex);
702 raidPtr->numFailures--;
703 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
704 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
705 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
706 RF_UNLOCK_MUTEX(raidPtr->mutex);
707 RF_GETTIME(etime);
708 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
709
710 /* XXX -- why is state 7 different from state 6 if there is no
711 * return() here? -- XXX Note that I set elpsd above & use it
712 * below, so if you put a return here you'll have to fix this.
713 * (also, FreeReconControl is called below) */
714
715 case 7:
716
717 rf_ResumeNewRequests(raidPtr);
718
719 printf("raid%d: Reconstruction of disk at col %d completed\n",
720 raidPtr->raidid, col);
721 xor_s = raidPtr->accumXorTimeUs / 1000000;
722 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
723 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
724 raidPtr->raidid,
725 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
726 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
727 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
728 raidPtr->raidid,
729 (int) raidPtr->reconControl->starttime.tv_sec,
730 (int) raidPtr->reconControl->starttime.tv_usec,
731 (int) etime.tv_sec, (int) etime.tv_usec);
732
733 #if RF_RECON_STATS > 0
734 printf("raid%d: Total head-sep stall count was %d\n",
735 raidPtr->raidid, (int) reconDesc->hsStallCount);
736 #endif /* RF_RECON_STATS > 0 */
737 rf_FreeReconControl(raidPtr);
738 #if RF_ACC_TRACE > 0
739 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
740 #endif
741 FreeReconDesc(reconDesc);
742
743 }
744
745 return (0);
746 }
747 /*****************************************************************************
748 * do the right thing upon each reconstruction event.
749 * returns nonzero if and only if there is nothing left unread on the
750 * indicated disk
751 *****************************************************************************/
752 static int
753 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
754 {
755 int retcode = 0, submitblocked;
756 RF_ReconBuffer_t *rbuf;
757 RF_SectorCount_t sectorsPerRU;
758
759 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
760 switch (event->type) {
761
762 /* a read I/O has completed */
763 case RF_REVENT_READDONE:
764 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
765 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
766 event->col, rbuf->parityStripeID);
767 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
768 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
769 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
770 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
771 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
772 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
773 if (!submitblocked)
774 retcode = IssueNextReadRequest(raidPtr, event->col);
775 break;
776
777 /* a write I/O has completed */
778 case RF_REVENT_WRITEDONE:
779 #if RF_DEBUG_RECON
780 if (rf_floatingRbufDebug) {
781 rf_CheckFloatingRbufCount(raidPtr, 1);
782 }
783 #endif
784 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
785 rbuf = (RF_ReconBuffer_t *) event->arg;
786 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
787 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
788 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
789 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
790 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
791 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
792
793 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
794 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
795 while(raidPtr->reconControl->rb_lock) {
796 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
797 &raidPtr->reconControl->rb_mutex);
798 }
799 raidPtr->reconControl->rb_lock = 1;
800 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
801
802 raidPtr->numFullReconBuffers--;
803 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
804
805 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
806 raidPtr->reconControl->rb_lock = 0;
807 wakeup(&raidPtr->reconControl->rb_lock);
808 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
809 } else
810 if (rbuf->type == RF_RBUF_TYPE_FORCED)
811 rf_FreeReconBuffer(rbuf);
812 else
813 RF_ASSERT(0);
814 break;
815
816 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
817 * cleared */
818 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
819 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
820 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
821 * BUFCLEAR event if we
822 * couldn't submit */
823 retcode = IssueNextReadRequest(raidPtr, event->col);
824 break;
825
826 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
827 * blockage has been cleared */
828 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
829 retcode = TryToRead(raidPtr, event->col);
830 break;
831
832 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
833 * reconstruction blockage has been
834 * cleared */
835 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
836 retcode = TryToRead(raidPtr, event->col);
837 break;
838
839 /* a buffer has become ready to write */
840 case RF_REVENT_BUFREADY:
841 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
842 retcode = IssueNextWriteRequest(raidPtr);
843 #if RF_DEBUG_RECON
844 if (rf_floatingRbufDebug) {
845 rf_CheckFloatingRbufCount(raidPtr, 1);
846 }
847 #endif
848 break;
849
850 /* we need to skip the current RU entirely because it got
851 * recon'd while we were waiting for something else to happen */
852 case RF_REVENT_SKIP:
853 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
854 retcode = IssueNextReadRequest(raidPtr, event->col);
855 break;
856
857 /* a forced-reconstruction read access has completed. Just
858 * submit the buffer */
859 case RF_REVENT_FORCEDREADDONE:
860 rbuf = (RF_ReconBuffer_t *) event->arg;
861 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
862 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
863 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
864 RF_ASSERT(!submitblocked);
865 break;
866
867 /* A read I/O failed to complete */
868 case RF_REVENT_READ_FAILED:
869 /* fallthru to panic... */
870
871 /* A write I/O failed to complete */
872 case RF_REVENT_WRITE_FAILED:
873 /* fallthru to panic... */
874
875 /* a forced read I/O failed to complete */
876 case RF_REVENT_FORCEDREAD_FAILED:
877 /* fallthru to panic... */
878
879 default:
880 RF_PANIC();
881 }
882 rf_FreeReconEventDesc(event);
883 return (retcode);
884 }
885 /*****************************************************************************
886 *
887 * find the next thing that's needed on the indicated disk, and issue
888 * a read request for it. We assume that the reconstruction buffer
889 * associated with this process is free to receive the data. If
890 * reconstruction is blocked on the indicated RU, we issue a
891 * blockage-release request instead of a physical disk read request.
892 * If the current disk gets too far ahead of the others, we issue a
893 * head-separation wait request and return.
894 *
895 * ctrl->{ru_count, curPSID, diskOffset} and
896 * rbuf->failedDiskSectorOffset are maintained to point to the unit
897 * we're currently accessing. Note that this deviates from the
898 * standard C idiom of having counters point to the next thing to be
899 * accessed. This allows us to easily retry when we're blocked by
900 * head separation or reconstruction-blockage events.
901 *
902 * returns nonzero if and only if there is nothing left unread on the
903 * indicated disk
904 *
905 *****************************************************************************/
906 static int
907 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
908 {
909 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
910 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
911 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
912 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
913 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
914 int do_new_check = 0, retcode = 0, status;
915
916 /* if we are currently the slowest disk, mark that we have to do a new
917 * check */
918 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
919 do_new_check = 1;
920
921 while (1) {
922
923 ctrl->ru_count++;
924 if (ctrl->ru_count < RUsPerPU) {
925 ctrl->diskOffset += sectorsPerRU;
926 rbuf->failedDiskSectorOffset += sectorsPerRU;
927 } else {
928 ctrl->curPSID++;
929 ctrl->ru_count = 0;
930 /* code left over from when head-sep was based on
931 * parity stripe id */
932 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
933 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
934 return (1); /* finito! */
935 }
936 /* find the disk offsets of the start of the parity
937 * stripe on both the current disk and the failed
938 * disk. skip this entire parity stripe if either disk
939 * does not appear in the indicated PS */
940 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
941 &rbuf->spCol, &rbuf->spOffset);
942 if (status) {
943 ctrl->ru_count = RUsPerPU - 1;
944 continue;
945 }
946 }
947 rbuf->which_ru = ctrl->ru_count;
948
949 /* skip this RU if it's already been reconstructed */
950 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
951 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
952 continue;
953 }
954 break;
955 }
956 ctrl->headSepCounter++;
957 if (do_new_check)
958 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
959
960
961 /* at this point, we have definitely decided what to do, and we have
962 * only to see if we can actually do it now */
963 rbuf->parityStripeID = ctrl->curPSID;
964 rbuf->which_ru = ctrl->ru_count;
965 #if RF_ACC_TRACE > 0
966 memset((char *) &raidPtr->recon_tracerecs[col], 0,
967 sizeof(raidPtr->recon_tracerecs[col]));
968 raidPtr->recon_tracerecs[col].reconacc = 1;
969 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
970 #endif
971 retcode = TryToRead(raidPtr, col);
972 return (retcode);
973 }
974
975 /*
976 * tries to issue the next read on the indicated disk. We may be
977 * blocked by (a) the heads being too far apart, or (b) recon on the
978 * indicated RU being blocked due to a write by a user thread. In
979 * this case, we issue a head-sep or blockage wait request, which will
980 * cause this same routine to be invoked again later when the blockage
981 * has cleared.
982 */
983
984 static int
985 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
986 {
987 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
988 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
989 RF_StripeNum_t psid = ctrl->curPSID;
990 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
991 RF_DiskQueueData_t *req;
992 int status;
993 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
994
995 /* if the current disk is too far ahead of the others, issue a
996 * head-separation wait and return */
997 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
998 return (0);
999
1000 /* allocate a new PSS in case we need it */
1001 newpssPtr = rf_AllocPSStatus(raidPtr);
1002
1003 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1004 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1005
1006 if (pssPtr != newpssPtr) {
1007 rf_FreePSStatus(raidPtr, newpssPtr);
1008 }
1009
1010 /* if recon is blocked on the indicated parity stripe, issue a
1011 * block-wait request and return. this also must mark the indicated RU
1012 * in the stripe as under reconstruction if not blocked. */
1013 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1014 if (status == RF_PSS_RECON_BLOCKED) {
1015 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1016 goto out;
1017 } else
1018 if (status == RF_PSS_FORCED_ON_WRITE) {
1019 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1020 goto out;
1021 }
1022 /* make one last check to be sure that the indicated RU didn't get
1023 * reconstructed while we were waiting for something else to happen.
1024 * This is unfortunate in that it causes us to make this check twice
1025 * in the normal case. Might want to make some attempt to re-work
1026 * this so that we only do this check if we've definitely blocked on
1027 * one of the above checks. When this condition is detected, we may
1028 * have just created a bogus status entry, which we need to delete. */
1029 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1030 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1031 if (pssPtr == newpssPtr)
1032 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1033 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1034 goto out;
1035 }
1036 /* found something to read. issue the I/O */
1037 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1038 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1039 #if RF_ACC_TRACE > 0
1040 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1041 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1042 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1043 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1044 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1045 #endif
1046 /* should be ok to use a NULL proc pointer here, all the bufs we use
1047 * should be in kernel space */
1048 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1049 ReconReadDoneProc, (void *) ctrl, NULL,
1050 #if RF_ACC_TRACE > 0
1051 &raidPtr->recon_tracerecs[col],
1052 #else
1053 NULL,
1054 #endif
1055 (void *) raidPtr, 0, NULL);
1056
1057 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1058
1059 ctrl->rbuf->arg = (void *) req;
1060 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1061 pssPtr->issued[col] = 1;
1062
1063 out:
1064 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1065 return (0);
1066 }
1067
1068
1069 /*
1070 * given a parity stripe ID, we want to find out whether both the
1071 * current disk and the failed disk exist in that parity stripe. If
1072 * not, we want to skip this whole PS. If so, we want to find the
1073 * disk offset of the start of the PS on both the current disk and the
1074 * failed disk.
1075 *
1076 * this works by getting a list of disks comprising the indicated
1077 * parity stripe, and searching the list for the current and failed
1078 * disks. Once we've decided they both exist in the parity stripe, we
1079 * need to decide whether each is data or parity, so that we'll know
1080 * which mapping function to call to get the corresponding disk
1081 * offsets.
1082 *
1083 * this is kind of unpleasant, but doing it this way allows the
1084 * reconstruction code to use parity stripe IDs rather than physical
1085 * disks address to march through the failed disk, which greatly
1086 * simplifies a lot of code, as well as eliminating the need for a
1087 * reverse-mapping function. I also think it will execute faster,
1088 * since the calls to the mapping module are kept to a minimum.
1089 *
1090 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1091 * THE STRIPE IN THE CORRECT ORDER
1092 *
1093 * raidPtr - raid descriptor
1094 * psid - parity stripe identifier
1095 * col - column of disk to find the offsets for
1096 * spCol - out: col of spare unit for failed unit
1097 * spOffset - out: offset into disk containing spare unit
1098 *
1099 */
1100
1101
1102 static int
1103 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1104 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1105 RF_SectorNum_t *outFailedDiskSectorOffset,
1106 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1107 {
1108 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1109 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1110 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1111 RF_RowCol_t *diskids;
1112 u_int i, j, k, i_offset, j_offset;
1113 RF_RowCol_t pcol;
1114 int testcol;
1115 RF_SectorNum_t poffset;
1116 char i_is_parity = 0, j_is_parity = 0;
1117 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1118
1119 /* get a listing of the disks comprising that stripe */
1120 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1121 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1122 RF_ASSERT(diskids);
1123
1124 /* reject this entire parity stripe if it does not contain the
1125 * indicated disk or it does not contain the failed disk */
1126
1127 for (i = 0; i < stripeWidth; i++) {
1128 if (col == diskids[i])
1129 break;
1130 }
1131 if (i == stripeWidth)
1132 goto skipit;
1133 for (j = 0; j < stripeWidth; j++) {
1134 if (fcol == diskids[j])
1135 break;
1136 }
1137 if (j == stripeWidth) {
1138 goto skipit;
1139 }
1140 /* find out which disk the parity is on */
1141 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1142
1143 /* find out if either the current RU or the failed RU is parity */
1144 /* also, if the parity occurs in this stripe prior to the data and/or
1145 * failed col, we need to decrement i and/or j */
1146 for (k = 0; k < stripeWidth; k++)
1147 if (diskids[k] == pcol)
1148 break;
1149 RF_ASSERT(k < stripeWidth);
1150 i_offset = i;
1151 j_offset = j;
1152 if (k < i)
1153 i_offset--;
1154 else
1155 if (k == i) {
1156 i_is_parity = 1;
1157 i_offset = 0;
1158 } /* set offsets to zero to disable multiply
1159 * below */
1160 if (k < j)
1161 j_offset--;
1162 else
1163 if (k == j) {
1164 j_is_parity = 1;
1165 j_offset = 0;
1166 }
1167 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1168 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1169 * tells us how far into the stripe the [current,failed] disk is. */
1170
1171 /* call the mapping routine to get the offset into the current disk,
1172 * repeat for failed disk. */
1173 if (i_is_parity)
1174 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1175 else
1176 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1177
1178 RF_ASSERT(col == testcol);
1179
1180 if (j_is_parity)
1181 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1182 else
1183 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1184 RF_ASSERT(fcol == testcol);
1185
1186 /* now locate the spare unit for the failed unit */
1187 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1188 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1189 if (j_is_parity)
1190 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1191 else
1192 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1193 } else {
1194 #endif
1195 *spCol = raidPtr->reconControl->spareCol;
1196 *spOffset = *outFailedDiskSectorOffset;
1197 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1198 }
1199 #endif
1200 return (0);
1201
1202 skipit:
1203 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1204 psid, col);
1205 return (1);
1206 }
1207 /* this is called when a buffer has become ready to write to the replacement disk */
1208 static int
1209 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1210 {
1211 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1212 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1213 #if RF_ACC_TRACE > 0
1214 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1215 #endif
1216 RF_ReconBuffer_t *rbuf;
1217 RF_DiskQueueData_t *req;
1218
1219 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1220 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1221 * have gotten the event that sent us here */
1222 RF_ASSERT(rbuf->pssPtr);
1223
1224 rbuf->pssPtr->writeRbuf = rbuf;
1225 rbuf->pssPtr = NULL;
1226
1227 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1228 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1229 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1230 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1231 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1232 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1233
1234 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1235 * kernel space */
1236 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1237 sectorsPerRU, rbuf->buffer,
1238 rbuf->parityStripeID, rbuf->which_ru,
1239 ReconWriteDoneProc, (void *) rbuf, NULL,
1240 #if RF_ACC_TRACE > 0
1241 &raidPtr->recon_tracerecs[fcol],
1242 #else
1243 NULL,
1244 #endif
1245 (void *) raidPtr, 0, NULL);
1246
1247 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1248
1249 rbuf->arg = (void *) req;
1250 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1251
1252 return (0);
1253 }
1254
1255 /*
1256 * this gets called upon the completion of a reconstruction read
1257 * operation the arg is a pointer to the per-disk reconstruction
1258 * control structure for the process that just finished a read.
1259 *
1260 * called at interrupt context in the kernel, so don't do anything
1261 * illegal here.
1262 */
1263 static int
1264 ReconReadDoneProc(void *arg, int status)
1265 {
1266 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1267 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1268
1269 if (status) {
1270 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1271 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1272 return(0);
1273 }
1274 #if RF_ACC_TRACE > 0
1275 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1276 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1277 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1278 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1279 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1280 #endif
1281 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1282 return (0);
1283 }
1284 /* this gets called upon the completion of a reconstruction write operation.
1285 * the arg is a pointer to the rbuf that was just written
1286 *
1287 * called at interrupt context in the kernel, so don't do anything illegal here.
1288 */
1289 static int
1290 ReconWriteDoneProc(void *arg, int status)
1291 {
1292 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1293
1294 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1295 if (status) {
1296 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1297 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1298 return(0);
1299 }
1300 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1301 return (0);
1302 }
1303
1304
1305 /*
1306 * computes a new minimum head sep, and wakes up anyone who needs to
1307 * be woken as a result
1308 */
1309 static void
1310 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1311 {
1312 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1313 RF_HeadSepLimit_t new_min;
1314 RF_RowCol_t i;
1315 RF_CallbackDesc_t *p;
1316 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1317 * of a minimum */
1318
1319
1320 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1321 while(reconCtrlPtr->rb_lock) {
1322 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1323 }
1324 reconCtrlPtr->rb_lock = 1;
1325 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1326
1327 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1328 for (i = 0; i < raidPtr->numCol; i++)
1329 if (i != reconCtrlPtr->fcol) {
1330 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1331 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1332 }
1333 /* set the new minimum and wake up anyone who can now run again */
1334 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1335 reconCtrlPtr->minHeadSepCounter = new_min;
1336 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1337 while (reconCtrlPtr->headSepCBList) {
1338 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1339 break;
1340 p = reconCtrlPtr->headSepCBList;
1341 reconCtrlPtr->headSepCBList = p->next;
1342 p->next = NULL;
1343 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1344 rf_FreeCallbackDesc(p);
1345 }
1346
1347 }
1348 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1349 reconCtrlPtr->rb_lock = 0;
1350 wakeup(&reconCtrlPtr->rb_lock);
1351 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1352 }
1353
1354 /*
1355 * checks to see that the maximum head separation will not be violated
1356 * if we initiate a reconstruction I/O on the indicated disk.
1357 * Limiting the maximum head separation between two disks eliminates
1358 * the nasty buffer-stall conditions that occur when one disk races
1359 * ahead of the others and consumes all of the floating recon buffers.
1360 * This code is complex and unpleasant but it's necessary to avoid
1361 * some very nasty, albeit fairly rare, reconstruction behavior.
1362 *
1363 * returns non-zero if and only if we have to stop working on the
1364 * indicated disk due to a head-separation delay.
1365 */
1366 static int
1367 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1368 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1369 RF_ReconUnitNum_t which_ru)
1370 {
1371 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1372 RF_CallbackDesc_t *cb, *p, *pt;
1373 int retval = 0;
1374
1375 /* if we're too far ahead of the slowest disk, stop working on this
1376 * disk until the slower ones catch up. We do this by scheduling a
1377 * wakeup callback for the time when the slowest disk has caught up.
1378 * We define "caught up" with 20% hysteresis, i.e. the head separation
1379 * must have fallen to at most 80% of the max allowable head
1380 * separation before we'll wake up.
1381 *
1382 */
1383 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1384 while(reconCtrlPtr->rb_lock) {
1385 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1386 }
1387 reconCtrlPtr->rb_lock = 1;
1388 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1389 if ((raidPtr->headSepLimit >= 0) &&
1390 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1391 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1392 raidPtr->raidid, col, ctrl->headSepCounter,
1393 reconCtrlPtr->minHeadSepCounter,
1394 raidPtr->headSepLimit);
1395 cb = rf_AllocCallbackDesc();
1396 /* the minHeadSepCounter value we have to get to before we'll
1397 * wake up. build in 20% hysteresis. */
1398 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1399 cb->col = col;
1400 cb->next = NULL;
1401
1402 /* insert this callback descriptor into the sorted list of
1403 * pending head-sep callbacks */
1404 p = reconCtrlPtr->headSepCBList;
1405 if (!p)
1406 reconCtrlPtr->headSepCBList = cb;
1407 else
1408 if (cb->callbackArg.v < p->callbackArg.v) {
1409 cb->next = reconCtrlPtr->headSepCBList;
1410 reconCtrlPtr->headSepCBList = cb;
1411 } else {
1412 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1413 cb->next = p;
1414 pt->next = cb;
1415 }
1416 retval = 1;
1417 #if RF_RECON_STATS > 0
1418 ctrl->reconCtrl->reconDesc->hsStallCount++;
1419 #endif /* RF_RECON_STATS > 0 */
1420 }
1421 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1422 reconCtrlPtr->rb_lock = 0;
1423 wakeup(&reconCtrlPtr->rb_lock);
1424 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1425
1426 return (retval);
1427 }
1428 /*
1429 * checks to see if reconstruction has been either forced or blocked
1430 * by a user operation. if forced, we skip this RU entirely. else if
1431 * blocked, put ourselves on the wait list. else return 0.
1432 *
1433 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1434 */
1435 static int
1436 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1437 RF_ReconParityStripeStatus_t *pssPtr,
1438 RF_PerDiskReconCtrl_t *ctrl,
1439 RF_RowCol_t col, RF_StripeNum_t psid,
1440 RF_ReconUnitNum_t which_ru)
1441 {
1442 RF_CallbackDesc_t *cb;
1443 int retcode = 0;
1444
1445 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1446 retcode = RF_PSS_FORCED_ON_WRITE;
1447 else
1448 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1449 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1450 cb = rf_AllocCallbackDesc(); /* append ourselves to
1451 * the blockage-wait
1452 * list */
1453 cb->col = col;
1454 cb->next = pssPtr->blockWaitList;
1455 pssPtr->blockWaitList = cb;
1456 retcode = RF_PSS_RECON_BLOCKED;
1457 }
1458 if (!retcode)
1459 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1460 * reconstruction */
1461
1462 return (retcode);
1463 }
1464 /*
1465 * if reconstruction is currently ongoing for the indicated stripeID,
1466 * reconstruction is forced to completion and we return non-zero to
1467 * indicate that the caller must wait. If not, then reconstruction is
1468 * blocked on the indicated stripe and the routine returns zero. If
1469 * and only if we return non-zero, we'll cause the cbFunc to get
1470 * invoked with the cbArg when the reconstruction has completed.
1471 */
1472 int
1473 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1474 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1475 {
1476 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1477 * forcing recon on */
1478 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1479 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1480 * stripe status structure */
1481 RF_StripeNum_t psid; /* parity stripe id */
1482 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1483 * offset */
1484 RF_RowCol_t *diskids;
1485 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1486 RF_RowCol_t fcol, diskno, i;
1487 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1488 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1489 RF_CallbackDesc_t *cb;
1490 int nPromoted;
1491
1492 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1493
1494 /* allocate a new PSS in case we need it */
1495 newpssPtr = rf_AllocPSStatus(raidPtr);
1496
1497 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1498
1499 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1500
1501 if (pssPtr != newpssPtr) {
1502 rf_FreePSStatus(raidPtr, newpssPtr);
1503 }
1504
1505 /* if recon is not ongoing on this PS, just return */
1506 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1507 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1508 return (0);
1509 }
1510 /* otherwise, we have to wait for reconstruction to complete on this
1511 * RU. */
1512 /* In order to avoid waiting for a potentially large number of
1513 * low-priority accesses to complete, we force a normal-priority (i.e.
1514 * not low-priority) reconstruction on this RU. */
1515 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1516 DDprintf1("Forcing recon on psid %ld\n", psid);
1517 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1518 * forced recon */
1519 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1520 * that we just set */
1521 fcol = raidPtr->reconControl->fcol;
1522
1523 /* get a listing of the disks comprising the indicated stripe */
1524 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1525
1526 /* For previously issued reads, elevate them to normal
1527 * priority. If the I/O has already completed, it won't be
1528 * found in the queue, and hence this will be a no-op. For
1529 * unissued reads, allocate buffers and issue new reads. The
1530 * fact that we've set the FORCED bit means that the regular
1531 * recon procs will not re-issue these reqs */
1532 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1533 if ((diskno = diskids[i]) != fcol) {
1534 if (pssPtr->issued[diskno]) {
1535 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1536 if (rf_reconDebug && nPromoted)
1537 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1538 } else {
1539 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1540 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1541 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1542 * location */
1543 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1544 new_rbuf->which_ru = which_ru;
1545 new_rbuf->failedDiskSectorOffset = fd_offset;
1546 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1547
1548 /* use NULL b_proc b/c all addrs
1549 * should be in kernel space */
1550 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1551 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1552 NULL, (void *) raidPtr, 0, NULL);
1553
1554 RF_ASSERT(req); /* XXX -- fix this --
1555 * XXX */
1556
1557 new_rbuf->arg = req;
1558 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1559 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1560 }
1561 }
1562 /* if the write is sitting in the disk queue, elevate its
1563 * priority */
1564 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1565 printf("raid%d: promoted write to col %d\n",
1566 raidPtr->raidid, fcol);
1567 }
1568 /* install a callback descriptor to be invoked when recon completes on
1569 * this parity stripe. */
1570 cb = rf_AllocCallbackDesc();
1571 /* XXX the following is bogus.. These functions don't really match!!
1572 * GO */
1573 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1574 cb->callbackArg.p = (void *) cbArg;
1575 cb->next = pssPtr->procWaitList;
1576 pssPtr->procWaitList = cb;
1577 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1578 raidPtr->raidid, psid);
1579
1580 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1581 return (1);
1582 }
1583 /* called upon the completion of a forced reconstruction read.
1584 * all we do is schedule the FORCEDREADONE event.
1585 * called at interrupt context in the kernel, so don't do anything illegal here.
1586 */
1587 static void
1588 ForceReconReadDoneProc(void *arg, int status)
1589 {
1590 RF_ReconBuffer_t *rbuf = arg;
1591
1592 if (status) {
1593 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1594 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1595 return;
1596 }
1597 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1598 }
1599 /* releases a block on the reconstruction of the indicated stripe */
1600 int
1601 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1602 {
1603 RF_StripeNum_t stripeID = asmap->stripeID;
1604 RF_ReconParityStripeStatus_t *pssPtr;
1605 RF_ReconUnitNum_t which_ru;
1606 RF_StripeNum_t psid;
1607 RF_CallbackDesc_t *cb;
1608
1609 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1610 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1611 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1612
1613 /* When recon is forced, the pss desc can get deleted before we get
1614 * back to unblock recon. But, this can _only_ happen when recon is
1615 * forced. It would be good to put some kind of sanity check here, but
1616 * how to decide if recon was just forced or not? */
1617 if (!pssPtr) {
1618 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1619 * RU %d\n",psid,which_ru); */
1620 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1621 if (rf_reconDebug || rf_pssDebug)
1622 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1623 #endif
1624 goto out;
1625 }
1626 pssPtr->blockCount--;
1627 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1628 raidPtr->raidid, psid, pssPtr->blockCount);
1629 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1630
1631 /* unblock recon before calling CauseReconEvent in case
1632 * CauseReconEvent causes us to try to issue a new read before
1633 * returning here. */
1634 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1635
1636
1637 while (pssPtr->blockWaitList) {
1638 /* spin through the block-wait list and
1639 release all the waiters */
1640 cb = pssPtr->blockWaitList;
1641 pssPtr->blockWaitList = cb->next;
1642 cb->next = NULL;
1643 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1644 rf_FreeCallbackDesc(cb);
1645 }
1646 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1647 /* if no recon was requested while recon was blocked */
1648 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1649 }
1650 }
1651 out:
1652 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1653 return (0);
1654 }
1655