rf_reconstruct.c revision 1.78 1 /* $NetBSD: rf_reconstruct.c,v 1.78 2004/12/12 20:53:15 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.78 2004/12/12 20:53:15 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97
98 #define RF_MAX_FREE_RECOND 10
99 #define RF_MIN_FREE_RECOND 4
100
101 #define RF_MAX_FREE_RECONBUFFER 32
102 #define RF_MIN_FREE_RECONBUFFER 16
103
104 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
105 RF_RaidDisk_t *, int, RF_RowCol_t);
106 static void FreeReconDesc(RF_RaidReconDesc_t *);
107 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
108 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
109 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
110 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
111 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
112 RF_SectorNum_t *);
113 static int IssueNextWriteRequest(RF_Raid_t *);
114 static int ReconReadDoneProc(void *, int);
115 static int ReconWriteDoneProc(void *, int);
116 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
117 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
118 RF_RowCol_t, RF_HeadSepLimit_t,
119 RF_ReconUnitNum_t);
120 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
121 RF_ReconParityStripeStatus_t *,
122 RF_PerDiskReconCtrl_t *,
123 RF_RowCol_t, RF_StripeNum_t,
124 RF_ReconUnitNum_t);
125 static void ForceReconReadDoneProc(void *, int);
126 static void rf_ShutdownReconstruction(void *);
127
128 struct RF_ReconDoneProc_s {
129 void (*proc) (RF_Raid_t *, void *);
130 void *arg;
131 RF_ReconDoneProc_t *next;
132 };
133
134 /**************************************************************************
135 *
136 * sets up the parameters that will be used by the reconstruction process
137 * currently there are none, except for those that the layout-specific
138 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
139 *
140 * in the kernel, we fire off the recon thread.
141 *
142 **************************************************************************/
143 static void
144 rf_ShutdownReconstruction(void *ignored)
145 {
146 pool_destroy(&rf_pools.recond);
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.recond, sizeof(RF_RaidReconDesc_t),
155 "rf_recond_pl", RF_MIN_FREE_RECOND, RF_MAX_FREE_RECOND);
156 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
157 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
158 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
159
160 return (0);
161 }
162
163 static RF_RaidReconDesc_t *
164 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
165 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
166 RF_RowCol_t scol)
167 {
168
169 RF_RaidReconDesc_t *reconDesc;
170
171 reconDesc = pool_get(&rf_pools.recond, PR_WAITOK);
172 reconDesc->raidPtr = raidPtr;
173 reconDesc->col = col;
174 reconDesc->spareDiskPtr = spareDiskPtr;
175 reconDesc->numDisksDone = numDisksDone;
176 reconDesc->scol = scol;
177 reconDesc->next = NULL;
178
179 return (reconDesc);
180 }
181
182 static void
183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
184 {
185 #if RF_RECON_STATS > 0
186 printf("raid%d: %lu recon event waits, %lu recon delays\n",
187 reconDesc->raidPtr->raidid,
188 (long) reconDesc->numReconEventWaits,
189 (long) reconDesc->numReconExecDelays);
190 #endif /* RF_RECON_STATS > 0 */
191 printf("raid%d: %lu max exec ticks\n",
192 reconDesc->raidPtr->raidid,
193 (long) reconDesc->maxReconExecTicks);
194 #if (RF_RECON_STATS > 0) || defined(KERNEL)
195 printf("\n");
196 #endif /* (RF_RECON_STATS > 0) || KERNEL */
197 pool_put(&rf_pools.recond, reconDesc);
198 }
199
200
201 /*****************************************************************************
202 *
203 * primary routine to reconstruct a failed disk. This should be called from
204 * within its own thread. It won't return until reconstruction completes,
205 * fails, or is aborted.
206 *****************************************************************************/
207 int
208 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
209 {
210 const RF_LayoutSW_t *lp;
211 int rc;
212
213 lp = raidPtr->Layout.map;
214 if (lp->SubmitReconBuffer) {
215 /*
216 * The current infrastructure only supports reconstructing one
217 * disk at a time for each array.
218 */
219 RF_LOCK_MUTEX(raidPtr->mutex);
220 while (raidPtr->reconInProgress) {
221 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
222 }
223 raidPtr->reconInProgress++;
224 RF_UNLOCK_MUTEX(raidPtr->mutex);
225 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
226 RF_LOCK_MUTEX(raidPtr->mutex);
227 raidPtr->reconInProgress--;
228 RF_UNLOCK_MUTEX(raidPtr->mutex);
229 } else {
230 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
231 lp->parityConfig);
232 rc = EIO;
233 }
234 RF_SIGNAL_COND(raidPtr->waitForReconCond);
235 return (rc);
236 }
237
238 int
239 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
240 {
241 RF_ComponentLabel_t c_label;
242 RF_RaidDisk_t *spareDiskPtr = NULL;
243 RF_RaidReconDesc_t *reconDesc;
244 RF_RowCol_t scol;
245 int numDisksDone = 0, rc;
246
247 /* first look for a spare drive onto which to reconstruct the data */
248 /* spare disk descriptors are stored in row 0. This may have to
249 * change eventually */
250
251 RF_LOCK_MUTEX(raidPtr->mutex);
252 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
253 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
254 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
255 if (raidPtr->status != rf_rs_degraded) {
256 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
257 RF_UNLOCK_MUTEX(raidPtr->mutex);
258 return (EINVAL);
259 }
260 scol = (-1);
261 } else {
262 #endif
263 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
264 if (raidPtr->Disks[scol].status == rf_ds_spare) {
265 spareDiskPtr = &raidPtr->Disks[scol];
266 spareDiskPtr->status = rf_ds_used_spare;
267 break;
268 }
269 }
270 if (!spareDiskPtr) {
271 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
272 RF_UNLOCK_MUTEX(raidPtr->mutex);
273 return (ENOSPC);
274 }
275 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
276 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
277 }
278 #endif
279 RF_UNLOCK_MUTEX(raidPtr->mutex);
280
281 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
282 raidPtr->reconDesc = (void *) reconDesc;
283 #if RF_RECON_STATS > 0
284 reconDesc->hsStallCount = 0;
285 reconDesc->numReconExecDelays = 0;
286 reconDesc->numReconEventWaits = 0;
287 #endif /* RF_RECON_STATS > 0 */
288 reconDesc->reconExecTimerRunning = 0;
289 reconDesc->reconExecTicks = 0;
290 reconDesc->maxReconExecTicks = 0;
291 rc = rf_ContinueReconstructFailedDisk(reconDesc);
292
293 if (!rc) {
294 /* fix up the component label */
295 /* Don't actually need the read here.. */
296 raidread_component_label(
297 raidPtr->raid_cinfo[scol].ci_dev,
298 raidPtr->raid_cinfo[scol].ci_vp,
299 &c_label);
300
301 raid_init_component_label( raidPtr, &c_label);
302 c_label.row = 0;
303 c_label.column = col;
304 c_label.clean = RF_RAID_DIRTY;
305 c_label.status = rf_ds_optimal;
306 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
307
308 /* We've just done a rebuild based on all the other
309 disks, so at this point the parity is known to be
310 clean, even if it wasn't before. */
311
312 /* XXX doesn't hold for RAID 6!!*/
313
314 RF_LOCK_MUTEX(raidPtr->mutex);
315 raidPtr->parity_good = RF_RAID_CLEAN;
316 RF_UNLOCK_MUTEX(raidPtr->mutex);
317
318 /* XXXX MORE NEEDED HERE */
319
320 raidwrite_component_label(
321 raidPtr->raid_cinfo[scol].ci_dev,
322 raidPtr->raid_cinfo[scol].ci_vp,
323 &c_label);
324
325
326 rf_update_component_labels(raidPtr,
327 RF_NORMAL_COMPONENT_UPDATE);
328
329 }
330 return (rc);
331 }
332
333 /*
334
335 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
336 and you don't get a spare until the next Monday. With this function
337 (and hot-swappable drives) you can now put your new disk containing
338 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
339 rebuild the data "on the spot".
340
341 */
342
343 int
344 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
345 {
346 RF_RaidDisk_t *spareDiskPtr = NULL;
347 RF_RaidReconDesc_t *reconDesc;
348 const RF_LayoutSW_t *lp;
349 RF_ComponentLabel_t c_label;
350 int numDisksDone = 0, rc;
351 struct partinfo dpart;
352 struct vnode *vp;
353 struct vattr va;
354 struct proc *proc;
355 int retcode;
356 int ac;
357
358 lp = raidPtr->Layout.map;
359 if (!lp->SubmitReconBuffer) {
360 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
361 lp->parityConfig);
362 /* wakeup anyone who might be waiting to do a reconstruct */
363 RF_SIGNAL_COND(raidPtr->waitForReconCond);
364 return(EIO);
365 }
366
367 /*
368 * The current infrastructure only supports reconstructing one
369 * disk at a time for each array.
370 */
371 RF_LOCK_MUTEX(raidPtr->mutex);
372
373 if (raidPtr->Disks[col].status != rf_ds_failed) {
374 /* "It's gone..." */
375 raidPtr->numFailures++;
376 raidPtr->Disks[col].status = rf_ds_failed;
377 raidPtr->status = rf_rs_degraded;
378 RF_UNLOCK_MUTEX(raidPtr->mutex);
379 rf_update_component_labels(raidPtr,
380 RF_NORMAL_COMPONENT_UPDATE);
381 RF_LOCK_MUTEX(raidPtr->mutex);
382 }
383
384 while (raidPtr->reconInProgress) {
385 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
386 }
387
388 raidPtr->reconInProgress++;
389
390 /* first look for a spare drive onto which to reconstruct the
391 data. spare disk descriptors are stored in row 0. This
392 may have to change eventually */
393
394 /* Actually, we don't care if it's failed or not... On a RAID
395 set with correct parity, this function should be callable
396 on any component without ill affects. */
397 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
398
399 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
400 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
401 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
402
403 raidPtr->reconInProgress--;
404 RF_UNLOCK_MUTEX(raidPtr->mutex);
405 RF_SIGNAL_COND(raidPtr->waitForReconCond);
406 return (EINVAL);
407 }
408 #endif
409 proc = raidPtr->engine_thread;
410
411 /* This device may have been opened successfully the
412 first time. Close it before trying to open it again.. */
413
414 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
415 #if 0
416 printf("Closed the open device: %s\n",
417 raidPtr->Disks[col].devname);
418 #endif
419 vp = raidPtr->raid_cinfo[col].ci_vp;
420 ac = raidPtr->Disks[col].auto_configured;
421 RF_UNLOCK_MUTEX(raidPtr->mutex);
422 rf_close_component(raidPtr, vp, ac);
423 RF_LOCK_MUTEX(raidPtr->mutex);
424 raidPtr->raid_cinfo[col].ci_vp = NULL;
425 }
426 /* note that this disk was *not* auto_configured (any longer)*/
427 raidPtr->Disks[col].auto_configured = 0;
428
429 #if 0
430 printf("About to (re-)open the device for rebuilding: %s\n",
431 raidPtr->Disks[col].devname);
432 #endif
433 RF_UNLOCK_MUTEX(raidPtr->mutex);
434 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
435
436 if (retcode) {
437 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
438 raidPtr->Disks[col].devname, retcode);
439
440 /* the component isn't responding properly...
441 must be still dead :-( */
442 RF_LOCK_MUTEX(raidPtr->mutex);
443 raidPtr->reconInProgress--;
444 RF_UNLOCK_MUTEX(raidPtr->mutex);
445 RF_SIGNAL_COND(raidPtr->waitForReconCond);
446 return(retcode);
447 }
448
449 /* Ok, so we can at least do a lookup...
450 How about actually getting a vp for it? */
451
452 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
453 RF_LOCK_MUTEX(raidPtr->mutex);
454 raidPtr->reconInProgress--;
455 RF_UNLOCK_MUTEX(raidPtr->mutex);
456 RF_SIGNAL_COND(raidPtr->waitForReconCond);
457 return(retcode);
458 }
459
460 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
461 if (retcode) {
462 RF_LOCK_MUTEX(raidPtr->mutex);
463 raidPtr->reconInProgress--;
464 RF_UNLOCK_MUTEX(raidPtr->mutex);
465 RF_SIGNAL_COND(raidPtr->waitForReconCond);
466 return(retcode);
467 }
468 RF_LOCK_MUTEX(raidPtr->mutex);
469 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
470
471 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
472 rf_protectedSectors;
473
474 raidPtr->raid_cinfo[col].ci_vp = vp;
475 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
476
477 raidPtr->Disks[col].dev = va.va_rdev;
478
479 /* we allow the user to specify that only a fraction
480 of the disks should be used this is just for debug:
481 it speeds up * the parity scan */
482 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
483 rf_sizePercentage / 100;
484 RF_UNLOCK_MUTEX(raidPtr->mutex);
485
486 spareDiskPtr = &raidPtr->Disks[col];
487 spareDiskPtr->status = rf_ds_used_spare;
488
489 printf("raid%d: initiating in-place reconstruction on column %d\n",
490 raidPtr->raidid, col);
491
492 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
493 numDisksDone, col);
494 raidPtr->reconDesc = (void *) reconDesc;
495 #if RF_RECON_STATS > 0
496 reconDesc->hsStallCount = 0;
497 reconDesc->numReconExecDelays = 0;
498 reconDesc->numReconEventWaits = 0;
499 #endif /* RF_RECON_STATS > 0 */
500 reconDesc->reconExecTimerRunning = 0;
501 reconDesc->reconExecTicks = 0;
502 reconDesc->maxReconExecTicks = 0;
503 rc = rf_ContinueReconstructFailedDisk(reconDesc);
504
505 RF_LOCK_MUTEX(raidPtr->mutex);
506 raidPtr->reconInProgress--;
507 RF_UNLOCK_MUTEX(raidPtr->mutex);
508
509 if (!rc) {
510 RF_LOCK_MUTEX(raidPtr->mutex);
511 /* Need to set these here, as at this point it'll be claiming
512 that the disk is in rf_ds_spared! But we know better :-) */
513
514 raidPtr->Disks[col].status = rf_ds_optimal;
515 raidPtr->status = rf_rs_optimal;
516 RF_UNLOCK_MUTEX(raidPtr->mutex);
517
518 /* fix up the component label */
519 /* Don't actually need the read here.. */
520 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
521 raidPtr->raid_cinfo[col].ci_vp,
522 &c_label);
523
524 RF_LOCK_MUTEX(raidPtr->mutex);
525 raid_init_component_label(raidPtr, &c_label);
526
527 c_label.row = 0;
528 c_label.column = col;
529
530 /* We've just done a rebuild based on all the other
531 disks, so at this point the parity is known to be
532 clean, even if it wasn't before. */
533
534 /* XXX doesn't hold for RAID 6!!*/
535
536 raidPtr->parity_good = RF_RAID_CLEAN;
537 RF_UNLOCK_MUTEX(raidPtr->mutex);
538
539 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
540 raidPtr->raid_cinfo[col].ci_vp,
541 &c_label);
542
543 rf_update_component_labels(raidPtr,
544 RF_NORMAL_COMPONENT_UPDATE);
545
546 }
547 RF_SIGNAL_COND(raidPtr->waitForReconCond);
548 return (rc);
549 }
550
551
552 int
553 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
554 {
555 RF_Raid_t *raidPtr = reconDesc->raidPtr;
556 RF_RowCol_t col = reconDesc->col;
557 RF_RowCol_t scol = reconDesc->scol;
558 RF_ReconMap_t *mapPtr;
559 RF_ReconCtrl_t *tmp_reconctrl;
560 RF_ReconEvent_t *event;
561 struct timeval etime, elpsd;
562 unsigned long xor_s, xor_resid_us;
563 int i, ds;
564
565 raidPtr->accumXorTimeUs = 0;
566 #if RF_ACC_TRACE > 0
567 /* create one trace record per physical disk */
568 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
569 #endif
570
571 /* quiesce the array prior to starting recon. this is needed
572 * to assure no nasty interactions with pending user writes.
573 * We need to do this before we change the disk or row status. */
574
575 Dprintf("RECON: begin request suspend\n");
576 rf_SuspendNewRequestsAndWait(raidPtr);
577 Dprintf("RECON: end request suspend\n");
578
579 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
580 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
581
582 RF_LOCK_MUTEX(raidPtr->mutex);
583
584 /* create the reconstruction control pointer and install it in
585 * the right slot */
586 raidPtr->reconControl = tmp_reconctrl;
587 mapPtr = raidPtr->reconControl->reconMap;
588 raidPtr->status = rf_rs_reconstructing;
589 raidPtr->Disks[col].status = rf_ds_reconstructing;
590 raidPtr->Disks[col].spareCol = scol;
591
592 RF_UNLOCK_MUTEX(raidPtr->mutex);
593
594 RF_GETTIME(raidPtr->reconControl->starttime);
595
596 /* now start up the actual reconstruction: issue a read for
597 * each surviving disk */
598
599 reconDesc->numDisksDone = 0;
600 for (i = 0; i < raidPtr->numCol; i++) {
601 if (i != col) {
602 /* find and issue the next I/O on the
603 * indicated disk */
604 if (IssueNextReadRequest(raidPtr, i)) {
605 Dprintf1("RECON: done issuing for c%d\n", i);
606 reconDesc->numDisksDone++;
607 }
608 }
609 }
610
611 Dprintf("RECON: resume requests\n");
612 rf_ResumeNewRequests(raidPtr);
613
614 /* process reconstruction events until all disks report that
615 * they've completed all work */
616
617 mapPtr = raidPtr->reconControl->reconMap;
618
619 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
620
621 event = rf_GetNextReconEvent(reconDesc);
622 RF_ASSERT(event);
623
624 if (ProcessReconEvent(raidPtr, event))
625 reconDesc->numDisksDone++;
626 raidPtr->reconControl->numRUsTotal =
627 mapPtr->totalRUs;
628 raidPtr->reconControl->numRUsComplete =
629 mapPtr->totalRUs -
630 rf_UnitsLeftToReconstruct(mapPtr);
631 #if RF_DEBUG_RECON
632 raidPtr->reconControl->percentComplete =
633 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
634 if (rf_prReconSched) {
635 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
636 }
637 #endif
638 }
639
640 mapPtr = raidPtr->reconControl->reconMap;
641 if (rf_reconDebug) {
642 printf("RECON: all reads completed\n");
643 }
644 /* at this point all the reads have completed. We now wait
645 * for any pending writes to complete, and then we're done */
646
647 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
648
649 event = rf_GetNextReconEvent(reconDesc);
650 RF_ASSERT(event);
651
652 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
653 #if RF_DEBUG_RECON
654 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
655 if (rf_prReconSched) {
656 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
657 }
658 #endif
659 }
660
661 /* Success: mark the dead disk as reconstructed. We quiesce
662 * the array here to assure no nasty interactions with pending
663 * user accesses when we free up the psstatus structure as
664 * part of FreeReconControl() */
665
666 rf_SuspendNewRequestsAndWait(raidPtr);
667
668 RF_LOCK_MUTEX(raidPtr->mutex);
669 raidPtr->numFailures--;
670 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
671 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
672 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
673 RF_UNLOCK_MUTEX(raidPtr->mutex);
674 RF_GETTIME(etime);
675 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
676
677 rf_ResumeNewRequests(raidPtr);
678
679 printf("raid%d: Reconstruction of disk at col %d completed\n",
680 raidPtr->raidid, col);
681 xor_s = raidPtr->accumXorTimeUs / 1000000;
682 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
683 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
684 raidPtr->raidid,
685 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
686 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
687 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
688 raidPtr->raidid,
689 (int) raidPtr->reconControl->starttime.tv_sec,
690 (int) raidPtr->reconControl->starttime.tv_usec,
691 (int) etime.tv_sec, (int) etime.tv_usec);
692
693 #if RF_RECON_STATS > 0
694 printf("raid%d: Total head-sep stall count was %d\n",
695 raidPtr->raidid, (int) reconDesc->hsStallCount);
696 #endif /* RF_RECON_STATS > 0 */
697 rf_FreeReconControl(raidPtr);
698 #if RF_ACC_TRACE > 0
699 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
700 #endif
701 FreeReconDesc(reconDesc);
702
703 return (0);
704 }
705 /*****************************************************************************
706 * do the right thing upon each reconstruction event.
707 * returns nonzero if and only if there is nothing left unread on the
708 * indicated disk
709 *****************************************************************************/
710 static int
711 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
712 {
713 int retcode = 0, submitblocked;
714 RF_ReconBuffer_t *rbuf;
715 RF_SectorCount_t sectorsPerRU;
716
717 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
718 switch (event->type) {
719
720 /* a read I/O has completed */
721 case RF_REVENT_READDONE:
722 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
723 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
724 event->col, rbuf->parityStripeID);
725 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
726 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
727 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
728 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
729 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
730 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
731 if (!submitblocked)
732 retcode = IssueNextReadRequest(raidPtr, event->col);
733 break;
734
735 /* a write I/O has completed */
736 case RF_REVENT_WRITEDONE:
737 #if RF_DEBUG_RECON
738 if (rf_floatingRbufDebug) {
739 rf_CheckFloatingRbufCount(raidPtr, 1);
740 }
741 #endif
742 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
743 rbuf = (RF_ReconBuffer_t *) event->arg;
744 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
745 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
746 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
747 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
748 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
749 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
750
751 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
752 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
753 while(raidPtr->reconControl->rb_lock) {
754 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
755 &raidPtr->reconControl->rb_mutex);
756 }
757 raidPtr->reconControl->rb_lock = 1;
758 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
759
760 raidPtr->numFullReconBuffers--;
761 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
762
763 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
764 raidPtr->reconControl->rb_lock = 0;
765 wakeup(&raidPtr->reconControl->rb_lock);
766 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
767 } else
768 if (rbuf->type == RF_RBUF_TYPE_FORCED)
769 rf_FreeReconBuffer(rbuf);
770 else
771 RF_ASSERT(0);
772 break;
773
774 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
775 * cleared */
776 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
777 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
778 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
779 * BUFCLEAR event if we
780 * couldn't submit */
781 retcode = IssueNextReadRequest(raidPtr, event->col);
782 break;
783
784 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
785 * blockage has been cleared */
786 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
787 retcode = TryToRead(raidPtr, event->col);
788 break;
789
790 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
791 * reconstruction blockage has been
792 * cleared */
793 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
794 retcode = TryToRead(raidPtr, event->col);
795 break;
796
797 /* a buffer has become ready to write */
798 case RF_REVENT_BUFREADY:
799 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
800 retcode = IssueNextWriteRequest(raidPtr);
801 #if RF_DEBUG_RECON
802 if (rf_floatingRbufDebug) {
803 rf_CheckFloatingRbufCount(raidPtr, 1);
804 }
805 #endif
806 break;
807
808 /* we need to skip the current RU entirely because it got
809 * recon'd while we were waiting for something else to happen */
810 case RF_REVENT_SKIP:
811 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
812 retcode = IssueNextReadRequest(raidPtr, event->col);
813 break;
814
815 /* a forced-reconstruction read access has completed. Just
816 * submit the buffer */
817 case RF_REVENT_FORCEDREADDONE:
818 rbuf = (RF_ReconBuffer_t *) event->arg;
819 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
820 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
821 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
822 RF_ASSERT(!submitblocked);
823 break;
824
825 /* A read I/O failed to complete */
826 case RF_REVENT_READ_FAILED:
827 /* fallthru to panic... */
828
829 /* A write I/O failed to complete */
830 case RF_REVENT_WRITE_FAILED:
831 /* fallthru to panic... */
832
833 /* a forced read I/O failed to complete */
834 case RF_REVENT_FORCEDREAD_FAILED:
835 /* fallthru to panic... */
836
837 default:
838 RF_PANIC();
839 }
840 rf_FreeReconEventDesc(event);
841 return (retcode);
842 }
843 /*****************************************************************************
844 *
845 * find the next thing that's needed on the indicated disk, and issue
846 * a read request for it. We assume that the reconstruction buffer
847 * associated with this process is free to receive the data. If
848 * reconstruction is blocked on the indicated RU, we issue a
849 * blockage-release request instead of a physical disk read request.
850 * If the current disk gets too far ahead of the others, we issue a
851 * head-separation wait request and return.
852 *
853 * ctrl->{ru_count, curPSID, diskOffset} and
854 * rbuf->failedDiskSectorOffset are maintained to point to the unit
855 * we're currently accessing. Note that this deviates from the
856 * standard C idiom of having counters point to the next thing to be
857 * accessed. This allows us to easily retry when we're blocked by
858 * head separation or reconstruction-blockage events.
859 *
860 * returns nonzero if and only if there is nothing left unread on the
861 * indicated disk
862 *
863 *****************************************************************************/
864 static int
865 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
866 {
867 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
868 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
869 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
870 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
871 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
872 int do_new_check = 0, retcode = 0, status;
873
874 /* if we are currently the slowest disk, mark that we have to do a new
875 * check */
876 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
877 do_new_check = 1;
878
879 while (1) {
880
881 ctrl->ru_count++;
882 if (ctrl->ru_count < RUsPerPU) {
883 ctrl->diskOffset += sectorsPerRU;
884 rbuf->failedDiskSectorOffset += sectorsPerRU;
885 } else {
886 ctrl->curPSID++;
887 ctrl->ru_count = 0;
888 /* code left over from when head-sep was based on
889 * parity stripe id */
890 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
891 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
892 return (1); /* finito! */
893 }
894 /* find the disk offsets of the start of the parity
895 * stripe on both the current disk and the failed
896 * disk. skip this entire parity stripe if either disk
897 * does not appear in the indicated PS */
898 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
899 &rbuf->spCol, &rbuf->spOffset);
900 if (status) {
901 ctrl->ru_count = RUsPerPU - 1;
902 continue;
903 }
904 }
905 rbuf->which_ru = ctrl->ru_count;
906
907 /* skip this RU if it's already been reconstructed */
908 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
909 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
910 continue;
911 }
912 break;
913 }
914 ctrl->headSepCounter++;
915 if (do_new_check)
916 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
917
918
919 /* at this point, we have definitely decided what to do, and we have
920 * only to see if we can actually do it now */
921 rbuf->parityStripeID = ctrl->curPSID;
922 rbuf->which_ru = ctrl->ru_count;
923 #if RF_ACC_TRACE > 0
924 memset((char *) &raidPtr->recon_tracerecs[col], 0,
925 sizeof(raidPtr->recon_tracerecs[col]));
926 raidPtr->recon_tracerecs[col].reconacc = 1;
927 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
928 #endif
929 retcode = TryToRead(raidPtr, col);
930 return (retcode);
931 }
932
933 /*
934 * tries to issue the next read on the indicated disk. We may be
935 * blocked by (a) the heads being too far apart, or (b) recon on the
936 * indicated RU being blocked due to a write by a user thread. In
937 * this case, we issue a head-sep or blockage wait request, which will
938 * cause this same routine to be invoked again later when the blockage
939 * has cleared.
940 */
941
942 static int
943 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
944 {
945 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
946 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
947 RF_StripeNum_t psid = ctrl->curPSID;
948 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
949 RF_DiskQueueData_t *req;
950 int status;
951 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
952
953 /* if the current disk is too far ahead of the others, issue a
954 * head-separation wait and return */
955 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
956 return (0);
957
958 /* allocate a new PSS in case we need it */
959 newpssPtr = rf_AllocPSStatus(raidPtr);
960
961 RF_LOCK_PSS_MUTEX(raidPtr, psid);
962 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
963
964 if (pssPtr != newpssPtr) {
965 rf_FreePSStatus(raidPtr, newpssPtr);
966 }
967
968 /* if recon is blocked on the indicated parity stripe, issue a
969 * block-wait request and return. this also must mark the indicated RU
970 * in the stripe as under reconstruction if not blocked. */
971 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
972 if (status == RF_PSS_RECON_BLOCKED) {
973 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
974 goto out;
975 } else
976 if (status == RF_PSS_FORCED_ON_WRITE) {
977 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
978 goto out;
979 }
980 /* make one last check to be sure that the indicated RU didn't get
981 * reconstructed while we were waiting for something else to happen.
982 * This is unfortunate in that it causes us to make this check twice
983 * in the normal case. Might want to make some attempt to re-work
984 * this so that we only do this check if we've definitely blocked on
985 * one of the above checks. When this condition is detected, we may
986 * have just created a bogus status entry, which we need to delete. */
987 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
988 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
989 if (pssPtr == newpssPtr)
990 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
991 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
992 goto out;
993 }
994 /* found something to read. issue the I/O */
995 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
996 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
997 #if RF_ACC_TRACE > 0
998 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
999 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1000 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1001 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1002 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1003 #endif
1004 /* should be ok to use a NULL proc pointer here, all the bufs we use
1005 * should be in kernel space */
1006 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1007 ReconReadDoneProc, (void *) ctrl, NULL,
1008 #if RF_ACC_TRACE > 0
1009 &raidPtr->recon_tracerecs[col],
1010 #else
1011 NULL,
1012 #endif
1013 (void *) raidPtr, 0, NULL);
1014
1015 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1016
1017 ctrl->rbuf->arg = (void *) req;
1018 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1019 pssPtr->issued[col] = 1;
1020
1021 out:
1022 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1023 return (0);
1024 }
1025
1026
1027 /*
1028 * given a parity stripe ID, we want to find out whether both the
1029 * current disk and the failed disk exist in that parity stripe. If
1030 * not, we want to skip this whole PS. If so, we want to find the
1031 * disk offset of the start of the PS on both the current disk and the
1032 * failed disk.
1033 *
1034 * this works by getting a list of disks comprising the indicated
1035 * parity stripe, and searching the list for the current and failed
1036 * disks. Once we've decided they both exist in the parity stripe, we
1037 * need to decide whether each is data or parity, so that we'll know
1038 * which mapping function to call to get the corresponding disk
1039 * offsets.
1040 *
1041 * this is kind of unpleasant, but doing it this way allows the
1042 * reconstruction code to use parity stripe IDs rather than physical
1043 * disks address to march through the failed disk, which greatly
1044 * simplifies a lot of code, as well as eliminating the need for a
1045 * reverse-mapping function. I also think it will execute faster,
1046 * since the calls to the mapping module are kept to a minimum.
1047 *
1048 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1049 * THE STRIPE IN THE CORRECT ORDER
1050 *
1051 * raidPtr - raid descriptor
1052 * psid - parity stripe identifier
1053 * col - column of disk to find the offsets for
1054 * spCol - out: col of spare unit for failed unit
1055 * spOffset - out: offset into disk containing spare unit
1056 *
1057 */
1058
1059
1060 static int
1061 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1062 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1063 RF_SectorNum_t *outFailedDiskSectorOffset,
1064 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1065 {
1066 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1067 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1068 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1069 RF_RowCol_t *diskids;
1070 u_int i, j, k, i_offset, j_offset;
1071 RF_RowCol_t pcol;
1072 int testcol;
1073 RF_SectorNum_t poffset;
1074 char i_is_parity = 0, j_is_parity = 0;
1075 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1076
1077 /* get a listing of the disks comprising that stripe */
1078 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1079 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1080 RF_ASSERT(diskids);
1081
1082 /* reject this entire parity stripe if it does not contain the
1083 * indicated disk or it does not contain the failed disk */
1084
1085 for (i = 0; i < stripeWidth; i++) {
1086 if (col == diskids[i])
1087 break;
1088 }
1089 if (i == stripeWidth)
1090 goto skipit;
1091 for (j = 0; j < stripeWidth; j++) {
1092 if (fcol == diskids[j])
1093 break;
1094 }
1095 if (j == stripeWidth) {
1096 goto skipit;
1097 }
1098 /* find out which disk the parity is on */
1099 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1100
1101 /* find out if either the current RU or the failed RU is parity */
1102 /* also, if the parity occurs in this stripe prior to the data and/or
1103 * failed col, we need to decrement i and/or j */
1104 for (k = 0; k < stripeWidth; k++)
1105 if (diskids[k] == pcol)
1106 break;
1107 RF_ASSERT(k < stripeWidth);
1108 i_offset = i;
1109 j_offset = j;
1110 if (k < i)
1111 i_offset--;
1112 else
1113 if (k == i) {
1114 i_is_parity = 1;
1115 i_offset = 0;
1116 } /* set offsets to zero to disable multiply
1117 * below */
1118 if (k < j)
1119 j_offset--;
1120 else
1121 if (k == j) {
1122 j_is_parity = 1;
1123 j_offset = 0;
1124 }
1125 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1126 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1127 * tells us how far into the stripe the [current,failed] disk is. */
1128
1129 /* call the mapping routine to get the offset into the current disk,
1130 * repeat for failed disk. */
1131 if (i_is_parity)
1132 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1133 else
1134 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1135
1136 RF_ASSERT(col == testcol);
1137
1138 if (j_is_parity)
1139 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1140 else
1141 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1142 RF_ASSERT(fcol == testcol);
1143
1144 /* now locate the spare unit for the failed unit */
1145 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1146 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1147 if (j_is_parity)
1148 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1149 else
1150 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1151 } else {
1152 #endif
1153 *spCol = raidPtr->reconControl->spareCol;
1154 *spOffset = *outFailedDiskSectorOffset;
1155 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1156 }
1157 #endif
1158 return (0);
1159
1160 skipit:
1161 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1162 psid, col);
1163 return (1);
1164 }
1165 /* this is called when a buffer has become ready to write to the replacement disk */
1166 static int
1167 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1168 {
1169 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1170 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1171 #if RF_ACC_TRACE > 0
1172 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1173 #endif
1174 RF_ReconBuffer_t *rbuf;
1175 RF_DiskQueueData_t *req;
1176
1177 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1178 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1179 * have gotten the event that sent us here */
1180 RF_ASSERT(rbuf->pssPtr);
1181
1182 rbuf->pssPtr->writeRbuf = rbuf;
1183 rbuf->pssPtr = NULL;
1184
1185 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1186 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1187 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1188 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1189 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1190 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1191
1192 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1193 * kernel space */
1194 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1195 sectorsPerRU, rbuf->buffer,
1196 rbuf->parityStripeID, rbuf->which_ru,
1197 ReconWriteDoneProc, (void *) rbuf, NULL,
1198 #if RF_ACC_TRACE > 0
1199 &raidPtr->recon_tracerecs[fcol],
1200 #else
1201 NULL,
1202 #endif
1203 (void *) raidPtr, 0, NULL);
1204
1205 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1206
1207 rbuf->arg = (void *) req;
1208 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1209
1210 return (0);
1211 }
1212
1213 /*
1214 * this gets called upon the completion of a reconstruction read
1215 * operation the arg is a pointer to the per-disk reconstruction
1216 * control structure for the process that just finished a read.
1217 *
1218 * called at interrupt context in the kernel, so don't do anything
1219 * illegal here.
1220 */
1221 static int
1222 ReconReadDoneProc(void *arg, int status)
1223 {
1224 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1225 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1226
1227 if (status) {
1228 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1229 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1230 return(0);
1231 }
1232 #if RF_ACC_TRACE > 0
1233 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1234 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1235 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1236 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1237 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1238 #endif
1239 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1240 return (0);
1241 }
1242 /* this gets called upon the completion of a reconstruction write operation.
1243 * the arg is a pointer to the rbuf that was just written
1244 *
1245 * called at interrupt context in the kernel, so don't do anything illegal here.
1246 */
1247 static int
1248 ReconWriteDoneProc(void *arg, int status)
1249 {
1250 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1251
1252 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1253 if (status) {
1254 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1255 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1256 return(0);
1257 }
1258 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1259 return (0);
1260 }
1261
1262
1263 /*
1264 * computes a new minimum head sep, and wakes up anyone who needs to
1265 * be woken as a result
1266 */
1267 static void
1268 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1269 {
1270 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1271 RF_HeadSepLimit_t new_min;
1272 RF_RowCol_t i;
1273 RF_CallbackDesc_t *p;
1274 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1275 * of a minimum */
1276
1277
1278 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1279 while(reconCtrlPtr->rb_lock) {
1280 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1281 }
1282 reconCtrlPtr->rb_lock = 1;
1283 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1284
1285 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1286 for (i = 0; i < raidPtr->numCol; i++)
1287 if (i != reconCtrlPtr->fcol) {
1288 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1289 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1290 }
1291 /* set the new minimum and wake up anyone who can now run again */
1292 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1293 reconCtrlPtr->minHeadSepCounter = new_min;
1294 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1295 while (reconCtrlPtr->headSepCBList) {
1296 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1297 break;
1298 p = reconCtrlPtr->headSepCBList;
1299 reconCtrlPtr->headSepCBList = p->next;
1300 p->next = NULL;
1301 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1302 rf_FreeCallbackDesc(p);
1303 }
1304
1305 }
1306 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1307 reconCtrlPtr->rb_lock = 0;
1308 wakeup(&reconCtrlPtr->rb_lock);
1309 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1310 }
1311
1312 /*
1313 * checks to see that the maximum head separation will not be violated
1314 * if we initiate a reconstruction I/O on the indicated disk.
1315 * Limiting the maximum head separation between two disks eliminates
1316 * the nasty buffer-stall conditions that occur when one disk races
1317 * ahead of the others and consumes all of the floating recon buffers.
1318 * This code is complex and unpleasant but it's necessary to avoid
1319 * some very nasty, albeit fairly rare, reconstruction behavior.
1320 *
1321 * returns non-zero if and only if we have to stop working on the
1322 * indicated disk due to a head-separation delay.
1323 */
1324 static int
1325 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1326 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1327 RF_ReconUnitNum_t which_ru)
1328 {
1329 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1330 RF_CallbackDesc_t *cb, *p, *pt;
1331 int retval = 0;
1332
1333 /* if we're too far ahead of the slowest disk, stop working on this
1334 * disk until the slower ones catch up. We do this by scheduling a
1335 * wakeup callback for the time when the slowest disk has caught up.
1336 * We define "caught up" with 20% hysteresis, i.e. the head separation
1337 * must have fallen to at most 80% of the max allowable head
1338 * separation before we'll wake up.
1339 *
1340 */
1341 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1342 while(reconCtrlPtr->rb_lock) {
1343 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1344 }
1345 reconCtrlPtr->rb_lock = 1;
1346 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1347 if ((raidPtr->headSepLimit >= 0) &&
1348 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1349 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1350 raidPtr->raidid, col, ctrl->headSepCounter,
1351 reconCtrlPtr->minHeadSepCounter,
1352 raidPtr->headSepLimit);
1353 cb = rf_AllocCallbackDesc();
1354 /* the minHeadSepCounter value we have to get to before we'll
1355 * wake up. build in 20% hysteresis. */
1356 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1357 cb->col = col;
1358 cb->next = NULL;
1359
1360 /* insert this callback descriptor into the sorted list of
1361 * pending head-sep callbacks */
1362 p = reconCtrlPtr->headSepCBList;
1363 if (!p)
1364 reconCtrlPtr->headSepCBList = cb;
1365 else
1366 if (cb->callbackArg.v < p->callbackArg.v) {
1367 cb->next = reconCtrlPtr->headSepCBList;
1368 reconCtrlPtr->headSepCBList = cb;
1369 } else {
1370 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1371 cb->next = p;
1372 pt->next = cb;
1373 }
1374 retval = 1;
1375 #if RF_RECON_STATS > 0
1376 ctrl->reconCtrl->reconDesc->hsStallCount++;
1377 #endif /* RF_RECON_STATS > 0 */
1378 }
1379 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1380 reconCtrlPtr->rb_lock = 0;
1381 wakeup(&reconCtrlPtr->rb_lock);
1382 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1383
1384 return (retval);
1385 }
1386 /*
1387 * checks to see if reconstruction has been either forced or blocked
1388 * by a user operation. if forced, we skip this RU entirely. else if
1389 * blocked, put ourselves on the wait list. else return 0.
1390 *
1391 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1392 */
1393 static int
1394 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1395 RF_ReconParityStripeStatus_t *pssPtr,
1396 RF_PerDiskReconCtrl_t *ctrl,
1397 RF_RowCol_t col, RF_StripeNum_t psid,
1398 RF_ReconUnitNum_t which_ru)
1399 {
1400 RF_CallbackDesc_t *cb;
1401 int retcode = 0;
1402
1403 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1404 retcode = RF_PSS_FORCED_ON_WRITE;
1405 else
1406 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1407 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1408 cb = rf_AllocCallbackDesc(); /* append ourselves to
1409 * the blockage-wait
1410 * list */
1411 cb->col = col;
1412 cb->next = pssPtr->blockWaitList;
1413 pssPtr->blockWaitList = cb;
1414 retcode = RF_PSS_RECON_BLOCKED;
1415 }
1416 if (!retcode)
1417 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1418 * reconstruction */
1419
1420 return (retcode);
1421 }
1422 /*
1423 * if reconstruction is currently ongoing for the indicated stripeID,
1424 * reconstruction is forced to completion and we return non-zero to
1425 * indicate that the caller must wait. If not, then reconstruction is
1426 * blocked on the indicated stripe and the routine returns zero. If
1427 * and only if we return non-zero, we'll cause the cbFunc to get
1428 * invoked with the cbArg when the reconstruction has completed.
1429 */
1430 int
1431 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1432 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1433 {
1434 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1435 * forcing recon on */
1436 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1437 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1438 * stripe status structure */
1439 RF_StripeNum_t psid; /* parity stripe id */
1440 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1441 * offset */
1442 RF_RowCol_t *diskids;
1443 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1444 RF_RowCol_t fcol, diskno, i;
1445 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1446 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1447 RF_CallbackDesc_t *cb;
1448 int nPromoted;
1449
1450 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1451
1452 /* allocate a new PSS in case we need it */
1453 newpssPtr = rf_AllocPSStatus(raidPtr);
1454
1455 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1456
1457 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1458
1459 if (pssPtr != newpssPtr) {
1460 rf_FreePSStatus(raidPtr, newpssPtr);
1461 }
1462
1463 /* if recon is not ongoing on this PS, just return */
1464 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1465 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1466 return (0);
1467 }
1468 /* otherwise, we have to wait for reconstruction to complete on this
1469 * RU. */
1470 /* In order to avoid waiting for a potentially large number of
1471 * low-priority accesses to complete, we force a normal-priority (i.e.
1472 * not low-priority) reconstruction on this RU. */
1473 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1474 DDprintf1("Forcing recon on psid %ld\n", psid);
1475 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1476 * forced recon */
1477 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1478 * that we just set */
1479 fcol = raidPtr->reconControl->fcol;
1480
1481 /* get a listing of the disks comprising the indicated stripe */
1482 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1483
1484 /* For previously issued reads, elevate them to normal
1485 * priority. If the I/O has already completed, it won't be
1486 * found in the queue, and hence this will be a no-op. For
1487 * unissued reads, allocate buffers and issue new reads. The
1488 * fact that we've set the FORCED bit means that the regular
1489 * recon procs will not re-issue these reqs */
1490 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1491 if ((diskno = diskids[i]) != fcol) {
1492 if (pssPtr->issued[diskno]) {
1493 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1494 if (rf_reconDebug && nPromoted)
1495 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1496 } else {
1497 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1498 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1499 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1500 * location */
1501 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1502 new_rbuf->which_ru = which_ru;
1503 new_rbuf->failedDiskSectorOffset = fd_offset;
1504 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1505
1506 /* use NULL b_proc b/c all addrs
1507 * should be in kernel space */
1508 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1509 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1510 NULL, (void *) raidPtr, 0, NULL);
1511
1512 RF_ASSERT(req); /* XXX -- fix this --
1513 * XXX */
1514
1515 new_rbuf->arg = req;
1516 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1517 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1518 }
1519 }
1520 /* if the write is sitting in the disk queue, elevate its
1521 * priority */
1522 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1523 printf("raid%d: promoted write to col %d\n",
1524 raidPtr->raidid, fcol);
1525 }
1526 /* install a callback descriptor to be invoked when recon completes on
1527 * this parity stripe. */
1528 cb = rf_AllocCallbackDesc();
1529 /* XXX the following is bogus.. These functions don't really match!!
1530 * GO */
1531 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1532 cb->callbackArg.p = (void *) cbArg;
1533 cb->next = pssPtr->procWaitList;
1534 pssPtr->procWaitList = cb;
1535 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1536 raidPtr->raidid, psid);
1537
1538 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1539 return (1);
1540 }
1541 /* called upon the completion of a forced reconstruction read.
1542 * all we do is schedule the FORCEDREADONE event.
1543 * called at interrupt context in the kernel, so don't do anything illegal here.
1544 */
1545 static void
1546 ForceReconReadDoneProc(void *arg, int status)
1547 {
1548 RF_ReconBuffer_t *rbuf = arg;
1549
1550 if (status) {
1551 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1552 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1553 }
1554 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1555 }
1556 /* releases a block on the reconstruction of the indicated stripe */
1557 int
1558 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1559 {
1560 RF_StripeNum_t stripeID = asmap->stripeID;
1561 RF_ReconParityStripeStatus_t *pssPtr;
1562 RF_ReconUnitNum_t which_ru;
1563 RF_StripeNum_t psid;
1564 RF_CallbackDesc_t *cb;
1565
1566 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1567 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1568 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1569
1570 /* When recon is forced, the pss desc can get deleted before we get
1571 * back to unblock recon. But, this can _only_ happen when recon is
1572 * forced. It would be good to put some kind of sanity check here, but
1573 * how to decide if recon was just forced or not? */
1574 if (!pssPtr) {
1575 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1576 * RU %d\n",psid,which_ru); */
1577 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1578 if (rf_reconDebug || rf_pssDebug)
1579 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1580 #endif
1581 goto out;
1582 }
1583 pssPtr->blockCount--;
1584 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1585 raidPtr->raidid, psid, pssPtr->blockCount);
1586 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1587
1588 /* unblock recon before calling CauseReconEvent in case
1589 * CauseReconEvent causes us to try to issue a new read before
1590 * returning here. */
1591 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1592
1593
1594 while (pssPtr->blockWaitList) {
1595 /* spin through the block-wait list and
1596 release all the waiters */
1597 cb = pssPtr->blockWaitList;
1598 pssPtr->blockWaitList = cb->next;
1599 cb->next = NULL;
1600 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1601 rf_FreeCallbackDesc(cb);
1602 }
1603 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1604 /* if no recon was requested while recon was blocked */
1605 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1606 }
1607 }
1608 out:
1609 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1610 return (0);
1611 }
1612