rf_reconstruct.c revision 1.81 1 /* $NetBSD: rf_reconstruct.c,v 1.81 2005/01/22 02:24:31 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.81 2005/01/22 02:24:31 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_MAX_FREE_RECONBUFFER 32
98 #define RF_MIN_FREE_RECONBUFFER 16
99
100 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
101 RF_RaidDisk_t *, int, RF_RowCol_t);
102 static void FreeReconDesc(RF_RaidReconDesc_t *);
103 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
104 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
105 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
106 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
107 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
108 RF_SectorNum_t *);
109 static int IssueNextWriteRequest(RF_Raid_t *);
110 static int ReconReadDoneProc(void *, int);
111 static int ReconWriteDoneProc(void *, int);
112 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
113 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
114 RF_RowCol_t, RF_HeadSepLimit_t,
115 RF_ReconUnitNum_t);
116 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
117 RF_ReconParityStripeStatus_t *,
118 RF_PerDiskReconCtrl_t *,
119 RF_RowCol_t, RF_StripeNum_t,
120 RF_ReconUnitNum_t);
121 static void ForceReconReadDoneProc(void *, int);
122 static void rf_ShutdownReconstruction(void *);
123
124 struct RF_ReconDoneProc_s {
125 void (*proc) (RF_Raid_t *, void *);
126 void *arg;
127 RF_ReconDoneProc_t *next;
128 };
129
130 /**************************************************************************
131 *
132 * sets up the parameters that will be used by the reconstruction process
133 * currently there are none, except for those that the layout-specific
134 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
135 *
136 * in the kernel, we fire off the recon thread.
137 *
138 **************************************************************************/
139 static void
140 rf_ShutdownReconstruction(void *ignored)
141 {
142 pool_destroy(&rf_pools.reconbuffer);
143 }
144
145 int
146 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
147 {
148
149 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
150 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
151 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
152
153 return (0);
154 }
155
156 static RF_RaidReconDesc_t *
157 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
158 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
159 RF_RowCol_t scol)
160 {
161
162 RF_RaidReconDesc_t *reconDesc;
163
164 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
165 (RF_RaidReconDesc_t *));
166 reconDesc->raidPtr = raidPtr;
167 reconDesc->col = col;
168 reconDesc->spareDiskPtr = spareDiskPtr;
169 reconDesc->numDisksDone = numDisksDone;
170 reconDesc->scol = scol;
171 reconDesc->next = NULL;
172
173 return (reconDesc);
174 }
175
176 static void
177 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
178 {
179 #if RF_RECON_STATS > 0
180 printf("raid%d: %lu recon event waits, %lu recon delays\n",
181 reconDesc->raidPtr->raidid,
182 (long) reconDesc->numReconEventWaits,
183 (long) reconDesc->numReconExecDelays);
184 #endif /* RF_RECON_STATS > 0 */
185 printf("raid%d: %lu max exec ticks\n",
186 reconDesc->raidPtr->raidid,
187 (long) reconDesc->maxReconExecTicks);
188 #if (RF_RECON_STATS > 0) || defined(KERNEL)
189 printf("\n");
190 #endif /* (RF_RECON_STATS > 0) || KERNEL */
191 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
192 }
193
194
195 /*****************************************************************************
196 *
197 * primary routine to reconstruct a failed disk. This should be called from
198 * within its own thread. It won't return until reconstruction completes,
199 * fails, or is aborted.
200 *****************************************************************************/
201 int
202 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
203 {
204 const RF_LayoutSW_t *lp;
205 int rc;
206
207 lp = raidPtr->Layout.map;
208 if (lp->SubmitReconBuffer) {
209 /*
210 * The current infrastructure only supports reconstructing one
211 * disk at a time for each array.
212 */
213 RF_LOCK_MUTEX(raidPtr->mutex);
214 while (raidPtr->reconInProgress) {
215 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
216 }
217 raidPtr->reconInProgress++;
218 RF_UNLOCK_MUTEX(raidPtr->mutex);
219 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
220 RF_LOCK_MUTEX(raidPtr->mutex);
221 raidPtr->reconInProgress--;
222 RF_UNLOCK_MUTEX(raidPtr->mutex);
223 } else {
224 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
225 lp->parityConfig);
226 rc = EIO;
227 }
228 RF_SIGNAL_COND(raidPtr->waitForReconCond);
229 return (rc);
230 }
231
232 int
233 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
234 {
235 RF_ComponentLabel_t c_label;
236 RF_RaidDisk_t *spareDiskPtr = NULL;
237 RF_RaidReconDesc_t *reconDesc;
238 RF_RowCol_t scol;
239 int numDisksDone = 0, rc;
240
241 /* first look for a spare drive onto which to reconstruct the data */
242 /* spare disk descriptors are stored in row 0. This may have to
243 * change eventually */
244
245 RF_LOCK_MUTEX(raidPtr->mutex);
246 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
247 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
248 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
249 if (raidPtr->status != rf_rs_degraded) {
250 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
251 RF_UNLOCK_MUTEX(raidPtr->mutex);
252 return (EINVAL);
253 }
254 scol = (-1);
255 } else {
256 #endif
257 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
258 if (raidPtr->Disks[scol].status == rf_ds_spare) {
259 spareDiskPtr = &raidPtr->Disks[scol];
260 spareDiskPtr->status = rf_ds_used_spare;
261 break;
262 }
263 }
264 if (!spareDiskPtr) {
265 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
266 RF_UNLOCK_MUTEX(raidPtr->mutex);
267 return (ENOSPC);
268 }
269 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
270 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
271 }
272 #endif
273 RF_UNLOCK_MUTEX(raidPtr->mutex);
274
275 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
276 raidPtr->reconDesc = (void *) reconDesc;
277 #if RF_RECON_STATS > 0
278 reconDesc->hsStallCount = 0;
279 reconDesc->numReconExecDelays = 0;
280 reconDesc->numReconEventWaits = 0;
281 #endif /* RF_RECON_STATS > 0 */
282 reconDesc->reconExecTimerRunning = 0;
283 reconDesc->reconExecTicks = 0;
284 reconDesc->maxReconExecTicks = 0;
285 rc = rf_ContinueReconstructFailedDisk(reconDesc);
286
287 if (!rc) {
288 /* fix up the component label */
289 /* Don't actually need the read here.. */
290 raidread_component_label(
291 raidPtr->raid_cinfo[scol].ci_dev,
292 raidPtr->raid_cinfo[scol].ci_vp,
293 &c_label);
294
295 raid_init_component_label( raidPtr, &c_label);
296 c_label.row = 0;
297 c_label.column = col;
298 c_label.clean = RF_RAID_DIRTY;
299 c_label.status = rf_ds_optimal;
300 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
301
302 /* We've just done a rebuild based on all the other
303 disks, so at this point the parity is known to be
304 clean, even if it wasn't before. */
305
306 /* XXX doesn't hold for RAID 6!!*/
307
308 RF_LOCK_MUTEX(raidPtr->mutex);
309 raidPtr->parity_good = RF_RAID_CLEAN;
310 RF_UNLOCK_MUTEX(raidPtr->mutex);
311
312 /* XXXX MORE NEEDED HERE */
313
314 raidwrite_component_label(
315 raidPtr->raid_cinfo[scol].ci_dev,
316 raidPtr->raid_cinfo[scol].ci_vp,
317 &c_label);
318
319
320 rf_update_component_labels(raidPtr,
321 RF_NORMAL_COMPONENT_UPDATE);
322
323 }
324 return (rc);
325 }
326
327 /*
328
329 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
330 and you don't get a spare until the next Monday. With this function
331 (and hot-swappable drives) you can now put your new disk containing
332 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
333 rebuild the data "on the spot".
334
335 */
336
337 int
338 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
339 {
340 RF_RaidDisk_t *spareDiskPtr = NULL;
341 RF_RaidReconDesc_t *reconDesc;
342 const RF_LayoutSW_t *lp;
343 RF_ComponentLabel_t c_label;
344 int numDisksDone = 0, rc;
345 struct partinfo dpart;
346 struct vnode *vp;
347 struct vattr va;
348 struct proc *proc;
349 int retcode;
350 int ac;
351
352 lp = raidPtr->Layout.map;
353 if (!lp->SubmitReconBuffer) {
354 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
355 lp->parityConfig);
356 /* wakeup anyone who might be waiting to do a reconstruct */
357 RF_SIGNAL_COND(raidPtr->waitForReconCond);
358 return(EIO);
359 }
360
361 /*
362 * The current infrastructure only supports reconstructing one
363 * disk at a time for each array.
364 */
365 RF_LOCK_MUTEX(raidPtr->mutex);
366
367 if (raidPtr->Disks[col].status != rf_ds_failed) {
368 /* "It's gone..." */
369 raidPtr->numFailures++;
370 raidPtr->Disks[col].status = rf_ds_failed;
371 raidPtr->status = rf_rs_degraded;
372 RF_UNLOCK_MUTEX(raidPtr->mutex);
373 rf_update_component_labels(raidPtr,
374 RF_NORMAL_COMPONENT_UPDATE);
375 RF_LOCK_MUTEX(raidPtr->mutex);
376 }
377
378 while (raidPtr->reconInProgress) {
379 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
380 }
381
382 raidPtr->reconInProgress++;
383
384 /* first look for a spare drive onto which to reconstruct the
385 data. spare disk descriptors are stored in row 0. This
386 may have to change eventually */
387
388 /* Actually, we don't care if it's failed or not... On a RAID
389 set with correct parity, this function should be callable
390 on any component without ill affects. */
391 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
392
393 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
394 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
395 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
396
397 raidPtr->reconInProgress--;
398 RF_UNLOCK_MUTEX(raidPtr->mutex);
399 RF_SIGNAL_COND(raidPtr->waitForReconCond);
400 return (EINVAL);
401 }
402 #endif
403 proc = raidPtr->engine_thread;
404
405 /* This device may have been opened successfully the
406 first time. Close it before trying to open it again.. */
407
408 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
409 #if 0
410 printf("Closed the open device: %s\n",
411 raidPtr->Disks[col].devname);
412 #endif
413 vp = raidPtr->raid_cinfo[col].ci_vp;
414 ac = raidPtr->Disks[col].auto_configured;
415 RF_UNLOCK_MUTEX(raidPtr->mutex);
416 rf_close_component(raidPtr, vp, ac);
417 RF_LOCK_MUTEX(raidPtr->mutex);
418 raidPtr->raid_cinfo[col].ci_vp = NULL;
419 }
420 /* note that this disk was *not* auto_configured (any longer)*/
421 raidPtr->Disks[col].auto_configured = 0;
422
423 #if 0
424 printf("About to (re-)open the device for rebuilding: %s\n",
425 raidPtr->Disks[col].devname);
426 #endif
427 RF_UNLOCK_MUTEX(raidPtr->mutex);
428 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
429
430 if (retcode) {
431 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
432 raidPtr->Disks[col].devname, retcode);
433
434 /* the component isn't responding properly...
435 must be still dead :-( */
436 RF_LOCK_MUTEX(raidPtr->mutex);
437 raidPtr->reconInProgress--;
438 RF_UNLOCK_MUTEX(raidPtr->mutex);
439 RF_SIGNAL_COND(raidPtr->waitForReconCond);
440 return(retcode);
441 }
442
443 /* Ok, so we can at least do a lookup...
444 How about actually getting a vp for it? */
445
446 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
447 RF_LOCK_MUTEX(raidPtr->mutex);
448 raidPtr->reconInProgress--;
449 RF_UNLOCK_MUTEX(raidPtr->mutex);
450 RF_SIGNAL_COND(raidPtr->waitForReconCond);
451 return(retcode);
452 }
453
454 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
455 if (retcode) {
456 RF_LOCK_MUTEX(raidPtr->mutex);
457 raidPtr->reconInProgress--;
458 RF_UNLOCK_MUTEX(raidPtr->mutex);
459 RF_SIGNAL_COND(raidPtr->waitForReconCond);
460 return(retcode);
461 }
462 RF_LOCK_MUTEX(raidPtr->mutex);
463 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
464
465 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
466 rf_protectedSectors;
467
468 raidPtr->raid_cinfo[col].ci_vp = vp;
469 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
470
471 raidPtr->Disks[col].dev = va.va_rdev;
472
473 /* we allow the user to specify that only a fraction
474 of the disks should be used this is just for debug:
475 it speeds up * the parity scan */
476 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
477 rf_sizePercentage / 100;
478 RF_UNLOCK_MUTEX(raidPtr->mutex);
479
480 spareDiskPtr = &raidPtr->Disks[col];
481 spareDiskPtr->status = rf_ds_used_spare;
482
483 printf("raid%d: initiating in-place reconstruction on column %d\n",
484 raidPtr->raidid, col);
485
486 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
487 numDisksDone, col);
488 raidPtr->reconDesc = (void *) reconDesc;
489 #if RF_RECON_STATS > 0
490 reconDesc->hsStallCount = 0;
491 reconDesc->numReconExecDelays = 0;
492 reconDesc->numReconEventWaits = 0;
493 #endif /* RF_RECON_STATS > 0 */
494 reconDesc->reconExecTimerRunning = 0;
495 reconDesc->reconExecTicks = 0;
496 reconDesc->maxReconExecTicks = 0;
497 rc = rf_ContinueReconstructFailedDisk(reconDesc);
498
499 RF_LOCK_MUTEX(raidPtr->mutex);
500 raidPtr->reconInProgress--;
501 RF_UNLOCK_MUTEX(raidPtr->mutex);
502
503 if (!rc) {
504 RF_LOCK_MUTEX(raidPtr->mutex);
505 /* Need to set these here, as at this point it'll be claiming
506 that the disk is in rf_ds_spared! But we know better :-) */
507
508 raidPtr->Disks[col].status = rf_ds_optimal;
509 raidPtr->status = rf_rs_optimal;
510 RF_UNLOCK_MUTEX(raidPtr->mutex);
511
512 /* fix up the component label */
513 /* Don't actually need the read here.. */
514 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
515 raidPtr->raid_cinfo[col].ci_vp,
516 &c_label);
517
518 RF_LOCK_MUTEX(raidPtr->mutex);
519 raid_init_component_label(raidPtr, &c_label);
520
521 c_label.row = 0;
522 c_label.column = col;
523
524 /* We've just done a rebuild based on all the other
525 disks, so at this point the parity is known to be
526 clean, even if it wasn't before. */
527
528 /* XXX doesn't hold for RAID 6!!*/
529
530 raidPtr->parity_good = RF_RAID_CLEAN;
531 RF_UNLOCK_MUTEX(raidPtr->mutex);
532
533 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
534 raidPtr->raid_cinfo[col].ci_vp,
535 &c_label);
536
537 rf_update_component_labels(raidPtr,
538 RF_NORMAL_COMPONENT_UPDATE);
539
540 }
541 RF_SIGNAL_COND(raidPtr->waitForReconCond);
542 return (rc);
543 }
544
545
546 int
547 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
548 {
549 RF_Raid_t *raidPtr = reconDesc->raidPtr;
550 RF_RowCol_t col = reconDesc->col;
551 RF_RowCol_t scol = reconDesc->scol;
552 RF_ReconMap_t *mapPtr;
553 RF_ReconCtrl_t *tmp_reconctrl;
554 RF_ReconEvent_t *event;
555 struct timeval etime, elpsd;
556 unsigned long xor_s, xor_resid_us;
557 int i, ds;
558
559 raidPtr->accumXorTimeUs = 0;
560 #if RF_ACC_TRACE > 0
561 /* create one trace record per physical disk */
562 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
563 #endif
564
565 /* quiesce the array prior to starting recon. this is needed
566 * to assure no nasty interactions with pending user writes.
567 * We need to do this before we change the disk or row status. */
568
569 Dprintf("RECON: begin request suspend\n");
570 rf_SuspendNewRequestsAndWait(raidPtr);
571 Dprintf("RECON: end request suspend\n");
572
573 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
574 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
575
576 RF_LOCK_MUTEX(raidPtr->mutex);
577
578 /* create the reconstruction control pointer and install it in
579 * the right slot */
580 raidPtr->reconControl = tmp_reconctrl;
581 mapPtr = raidPtr->reconControl->reconMap;
582 raidPtr->status = rf_rs_reconstructing;
583 raidPtr->Disks[col].status = rf_ds_reconstructing;
584 raidPtr->Disks[col].spareCol = scol;
585
586 RF_UNLOCK_MUTEX(raidPtr->mutex);
587
588 RF_GETTIME(raidPtr->reconControl->starttime);
589
590 /* now start up the actual reconstruction: issue a read for
591 * each surviving disk */
592
593 reconDesc->numDisksDone = 0;
594 for (i = 0; i < raidPtr->numCol; i++) {
595 if (i != col) {
596 /* find and issue the next I/O on the
597 * indicated disk */
598 if (IssueNextReadRequest(raidPtr, i)) {
599 Dprintf1("RECON: done issuing for c%d\n", i);
600 reconDesc->numDisksDone++;
601 }
602 }
603 }
604
605 Dprintf("RECON: resume requests\n");
606 rf_ResumeNewRequests(raidPtr);
607
608 /* process reconstruction events until all disks report that
609 * they've completed all work */
610
611 mapPtr = raidPtr->reconControl->reconMap;
612
613 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
614
615 event = rf_GetNextReconEvent(reconDesc);
616 RF_ASSERT(event);
617
618 if (ProcessReconEvent(raidPtr, event))
619 reconDesc->numDisksDone++;
620 raidPtr->reconControl->numRUsTotal =
621 mapPtr->totalRUs;
622 raidPtr->reconControl->numRUsComplete =
623 mapPtr->totalRUs -
624 rf_UnitsLeftToReconstruct(mapPtr);
625 #if RF_DEBUG_RECON
626 raidPtr->reconControl->percentComplete =
627 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
628 if (rf_prReconSched) {
629 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
630 }
631 #endif
632 }
633
634 mapPtr = raidPtr->reconControl->reconMap;
635 if (rf_reconDebug) {
636 printf("RECON: all reads completed\n");
637 }
638 /* at this point all the reads have completed. We now wait
639 * for any pending writes to complete, and then we're done */
640
641 while (rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
642
643 event = rf_GetNextReconEvent(reconDesc);
644 RF_ASSERT(event);
645
646 (void) ProcessReconEvent(raidPtr, event); /* ignore return code */
647 #if RF_DEBUG_RECON
648 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
649 if (rf_prReconSched) {
650 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
651 }
652 #endif
653 }
654
655 /* Success: mark the dead disk as reconstructed. We quiesce
656 * the array here to assure no nasty interactions with pending
657 * user accesses when we free up the psstatus structure as
658 * part of FreeReconControl() */
659
660 rf_SuspendNewRequestsAndWait(raidPtr);
661
662 RF_LOCK_MUTEX(raidPtr->mutex);
663 raidPtr->numFailures--;
664 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
665 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
666 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
667 RF_UNLOCK_MUTEX(raidPtr->mutex);
668 RF_GETTIME(etime);
669 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
670
671 rf_ResumeNewRequests(raidPtr);
672
673 printf("raid%d: Reconstruction of disk at col %d completed\n",
674 raidPtr->raidid, col);
675 xor_s = raidPtr->accumXorTimeUs / 1000000;
676 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
677 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
678 raidPtr->raidid,
679 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
680 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
681 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
682 raidPtr->raidid,
683 (int) raidPtr->reconControl->starttime.tv_sec,
684 (int) raidPtr->reconControl->starttime.tv_usec,
685 (int) etime.tv_sec, (int) etime.tv_usec);
686
687 #if RF_RECON_STATS > 0
688 printf("raid%d: Total head-sep stall count was %d\n",
689 raidPtr->raidid, (int) reconDesc->hsStallCount);
690 #endif /* RF_RECON_STATS > 0 */
691 rf_FreeReconControl(raidPtr);
692 #if RF_ACC_TRACE > 0
693 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
694 #endif
695 FreeReconDesc(reconDesc);
696
697 return (0);
698 }
699 /*****************************************************************************
700 * do the right thing upon each reconstruction event.
701 * returns nonzero if and only if there is nothing left unread on the
702 * indicated disk
703 *****************************************************************************/
704 static int
705 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
706 {
707 int retcode = 0, submitblocked;
708 RF_ReconBuffer_t *rbuf;
709 RF_SectorCount_t sectorsPerRU;
710
711 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
712 switch (event->type) {
713
714 /* a read I/O has completed */
715 case RF_REVENT_READDONE:
716 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
717 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
718 event->col, rbuf->parityStripeID);
719 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
720 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
721 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
722 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
723 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
724 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
725 if (!submitblocked)
726 retcode = IssueNextReadRequest(raidPtr, event->col);
727 break;
728
729 /* a write I/O has completed */
730 case RF_REVENT_WRITEDONE:
731 #if RF_DEBUG_RECON
732 if (rf_floatingRbufDebug) {
733 rf_CheckFloatingRbufCount(raidPtr, 1);
734 }
735 #endif
736 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
737 rbuf = (RF_ReconBuffer_t *) event->arg;
738 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
739 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
740 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
741 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
742 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
743 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
744
745 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
746 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
747 while(raidPtr->reconControl->rb_lock) {
748 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
749 &raidPtr->reconControl->rb_mutex);
750 }
751 raidPtr->reconControl->rb_lock = 1;
752 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
753
754 raidPtr->numFullReconBuffers--;
755 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
756
757 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
758 raidPtr->reconControl->rb_lock = 0;
759 wakeup(&raidPtr->reconControl->rb_lock);
760 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
761 } else
762 if (rbuf->type == RF_RBUF_TYPE_FORCED)
763 rf_FreeReconBuffer(rbuf);
764 else
765 RF_ASSERT(0);
766 break;
767
768 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
769 * cleared */
770 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
771 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf, 0, (int) (long) event->arg);
772 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
773 * BUFCLEAR event if we
774 * couldn't submit */
775 retcode = IssueNextReadRequest(raidPtr, event->col);
776 break;
777
778 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
779 * blockage has been cleared */
780 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
781 retcode = TryToRead(raidPtr, event->col);
782 break;
783
784 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
785 * reconstruction blockage has been
786 * cleared */
787 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
788 retcode = TryToRead(raidPtr, event->col);
789 break;
790
791 /* a buffer has become ready to write */
792 case RF_REVENT_BUFREADY:
793 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
794 retcode = IssueNextWriteRequest(raidPtr);
795 #if RF_DEBUG_RECON
796 if (rf_floatingRbufDebug) {
797 rf_CheckFloatingRbufCount(raidPtr, 1);
798 }
799 #endif
800 break;
801
802 /* we need to skip the current RU entirely because it got
803 * recon'd while we were waiting for something else to happen */
804 case RF_REVENT_SKIP:
805 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
806 retcode = IssueNextReadRequest(raidPtr, event->col);
807 break;
808
809 /* a forced-reconstruction read access has completed. Just
810 * submit the buffer */
811 case RF_REVENT_FORCEDREADDONE:
812 rbuf = (RF_ReconBuffer_t *) event->arg;
813 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
814 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
815 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
816 RF_ASSERT(!submitblocked);
817 break;
818
819 /* A read I/O failed to complete */
820 case RF_REVENT_READ_FAILED:
821 /* fallthru to panic... */
822
823 /* A write I/O failed to complete */
824 case RF_REVENT_WRITE_FAILED:
825 /* fallthru to panic... */
826
827 /* a forced read I/O failed to complete */
828 case RF_REVENT_FORCEDREAD_FAILED:
829 /* fallthru to panic... */
830
831 default:
832 RF_PANIC();
833 }
834 rf_FreeReconEventDesc(event);
835 return (retcode);
836 }
837 /*****************************************************************************
838 *
839 * find the next thing that's needed on the indicated disk, and issue
840 * a read request for it. We assume that the reconstruction buffer
841 * associated with this process is free to receive the data. If
842 * reconstruction is blocked on the indicated RU, we issue a
843 * blockage-release request instead of a physical disk read request.
844 * If the current disk gets too far ahead of the others, we issue a
845 * head-separation wait request and return.
846 *
847 * ctrl->{ru_count, curPSID, diskOffset} and
848 * rbuf->failedDiskSectorOffset are maintained to point to the unit
849 * we're currently accessing. Note that this deviates from the
850 * standard C idiom of having counters point to the next thing to be
851 * accessed. This allows us to easily retry when we're blocked by
852 * head separation or reconstruction-blockage events.
853 *
854 * returns nonzero if and only if there is nothing left unread on the
855 * indicated disk
856 *
857 *****************************************************************************/
858 static int
859 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
860 {
861 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
862 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
863 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
864 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
865 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
866 int do_new_check = 0, retcode = 0, status;
867
868 /* if we are currently the slowest disk, mark that we have to do a new
869 * check */
870 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
871 do_new_check = 1;
872
873 while (1) {
874
875 ctrl->ru_count++;
876 if (ctrl->ru_count < RUsPerPU) {
877 ctrl->diskOffset += sectorsPerRU;
878 rbuf->failedDiskSectorOffset += sectorsPerRU;
879 } else {
880 ctrl->curPSID++;
881 ctrl->ru_count = 0;
882 /* code left over from when head-sep was based on
883 * parity stripe id */
884 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
885 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
886 return (1); /* finito! */
887 }
888 /* find the disk offsets of the start of the parity
889 * stripe on both the current disk and the failed
890 * disk. skip this entire parity stripe if either disk
891 * does not appear in the indicated PS */
892 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
893 &rbuf->spCol, &rbuf->spOffset);
894 if (status) {
895 ctrl->ru_count = RUsPerPU - 1;
896 continue;
897 }
898 }
899 rbuf->which_ru = ctrl->ru_count;
900
901 /* skip this RU if it's already been reconstructed */
902 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
903 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
904 continue;
905 }
906 break;
907 }
908 ctrl->headSepCounter++;
909 if (do_new_check)
910 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
911
912
913 /* at this point, we have definitely decided what to do, and we have
914 * only to see if we can actually do it now */
915 rbuf->parityStripeID = ctrl->curPSID;
916 rbuf->which_ru = ctrl->ru_count;
917 #if RF_ACC_TRACE > 0
918 memset((char *) &raidPtr->recon_tracerecs[col], 0,
919 sizeof(raidPtr->recon_tracerecs[col]));
920 raidPtr->recon_tracerecs[col].reconacc = 1;
921 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
922 #endif
923 retcode = TryToRead(raidPtr, col);
924 return (retcode);
925 }
926
927 /*
928 * tries to issue the next read on the indicated disk. We may be
929 * blocked by (a) the heads being too far apart, or (b) recon on the
930 * indicated RU being blocked due to a write by a user thread. In
931 * this case, we issue a head-sep or blockage wait request, which will
932 * cause this same routine to be invoked again later when the blockage
933 * has cleared.
934 */
935
936 static int
937 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
938 {
939 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
940 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
941 RF_StripeNum_t psid = ctrl->curPSID;
942 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
943 RF_DiskQueueData_t *req;
944 int status;
945 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
946
947 /* if the current disk is too far ahead of the others, issue a
948 * head-separation wait and return */
949 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
950 return (0);
951
952 /* allocate a new PSS in case we need it */
953 newpssPtr = rf_AllocPSStatus(raidPtr);
954
955 RF_LOCK_PSS_MUTEX(raidPtr, psid);
956 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
957
958 if (pssPtr != newpssPtr) {
959 rf_FreePSStatus(raidPtr, newpssPtr);
960 }
961
962 /* if recon is blocked on the indicated parity stripe, issue a
963 * block-wait request and return. this also must mark the indicated RU
964 * in the stripe as under reconstruction if not blocked. */
965 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
966 if (status == RF_PSS_RECON_BLOCKED) {
967 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
968 goto out;
969 } else
970 if (status == RF_PSS_FORCED_ON_WRITE) {
971 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
972 goto out;
973 }
974 /* make one last check to be sure that the indicated RU didn't get
975 * reconstructed while we were waiting for something else to happen.
976 * This is unfortunate in that it causes us to make this check twice
977 * in the normal case. Might want to make some attempt to re-work
978 * this so that we only do this check if we've definitely blocked on
979 * one of the above checks. When this condition is detected, we may
980 * have just created a bogus status entry, which we need to delete. */
981 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
982 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
983 if (pssPtr == newpssPtr)
984 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
985 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
986 goto out;
987 }
988 /* found something to read. issue the I/O */
989 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
990 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
991 #if RF_ACC_TRACE > 0
992 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
993 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
994 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
995 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
996 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
997 #endif
998 /* should be ok to use a NULL proc pointer here, all the bufs we use
999 * should be in kernel space */
1000 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1001 ReconReadDoneProc, (void *) ctrl, NULL,
1002 #if RF_ACC_TRACE > 0
1003 &raidPtr->recon_tracerecs[col],
1004 #else
1005 NULL,
1006 #endif
1007 (void *) raidPtr, 0, NULL);
1008
1009 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1010
1011 ctrl->rbuf->arg = (void *) req;
1012 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1013 pssPtr->issued[col] = 1;
1014
1015 out:
1016 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1017 return (0);
1018 }
1019
1020
1021 /*
1022 * given a parity stripe ID, we want to find out whether both the
1023 * current disk and the failed disk exist in that parity stripe. If
1024 * not, we want to skip this whole PS. If so, we want to find the
1025 * disk offset of the start of the PS on both the current disk and the
1026 * failed disk.
1027 *
1028 * this works by getting a list of disks comprising the indicated
1029 * parity stripe, and searching the list for the current and failed
1030 * disks. Once we've decided they both exist in the parity stripe, we
1031 * need to decide whether each is data or parity, so that we'll know
1032 * which mapping function to call to get the corresponding disk
1033 * offsets.
1034 *
1035 * this is kind of unpleasant, but doing it this way allows the
1036 * reconstruction code to use parity stripe IDs rather than physical
1037 * disks address to march through the failed disk, which greatly
1038 * simplifies a lot of code, as well as eliminating the need for a
1039 * reverse-mapping function. I also think it will execute faster,
1040 * since the calls to the mapping module are kept to a minimum.
1041 *
1042 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1043 * THE STRIPE IN THE CORRECT ORDER
1044 *
1045 * raidPtr - raid descriptor
1046 * psid - parity stripe identifier
1047 * col - column of disk to find the offsets for
1048 * spCol - out: col of spare unit for failed unit
1049 * spOffset - out: offset into disk containing spare unit
1050 *
1051 */
1052
1053
1054 static int
1055 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1056 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1057 RF_SectorNum_t *outFailedDiskSectorOffset,
1058 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1059 {
1060 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1061 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1062 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1063 RF_RowCol_t *diskids;
1064 u_int i, j, k, i_offset, j_offset;
1065 RF_RowCol_t pcol;
1066 int testcol;
1067 RF_SectorNum_t poffset;
1068 char i_is_parity = 0, j_is_parity = 0;
1069 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1070
1071 /* get a listing of the disks comprising that stripe */
1072 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1073 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1074 RF_ASSERT(diskids);
1075
1076 /* reject this entire parity stripe if it does not contain the
1077 * indicated disk or it does not contain the failed disk */
1078
1079 for (i = 0; i < stripeWidth; i++) {
1080 if (col == diskids[i])
1081 break;
1082 }
1083 if (i == stripeWidth)
1084 goto skipit;
1085 for (j = 0; j < stripeWidth; j++) {
1086 if (fcol == diskids[j])
1087 break;
1088 }
1089 if (j == stripeWidth) {
1090 goto skipit;
1091 }
1092 /* find out which disk the parity is on */
1093 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1094
1095 /* find out if either the current RU or the failed RU is parity */
1096 /* also, if the parity occurs in this stripe prior to the data and/or
1097 * failed col, we need to decrement i and/or j */
1098 for (k = 0; k < stripeWidth; k++)
1099 if (diskids[k] == pcol)
1100 break;
1101 RF_ASSERT(k < stripeWidth);
1102 i_offset = i;
1103 j_offset = j;
1104 if (k < i)
1105 i_offset--;
1106 else
1107 if (k == i) {
1108 i_is_parity = 1;
1109 i_offset = 0;
1110 } /* set offsets to zero to disable multiply
1111 * below */
1112 if (k < j)
1113 j_offset--;
1114 else
1115 if (k == j) {
1116 j_is_parity = 1;
1117 j_offset = 0;
1118 }
1119 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1120 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1121 * tells us how far into the stripe the [current,failed] disk is. */
1122
1123 /* call the mapping routine to get the offset into the current disk,
1124 * repeat for failed disk. */
1125 if (i_is_parity)
1126 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1127 else
1128 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1129
1130 RF_ASSERT(col == testcol);
1131
1132 if (j_is_parity)
1133 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1134 else
1135 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1136 RF_ASSERT(fcol == testcol);
1137
1138 /* now locate the spare unit for the failed unit */
1139 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1140 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1141 if (j_is_parity)
1142 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1143 else
1144 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1145 } else {
1146 #endif
1147 *spCol = raidPtr->reconControl->spareCol;
1148 *spOffset = *outFailedDiskSectorOffset;
1149 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1150 }
1151 #endif
1152 return (0);
1153
1154 skipit:
1155 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1156 psid, col);
1157 return (1);
1158 }
1159 /* this is called when a buffer has become ready to write to the replacement disk */
1160 static int
1161 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1162 {
1163 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1164 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1165 #if RF_ACC_TRACE > 0
1166 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1167 #endif
1168 RF_ReconBuffer_t *rbuf;
1169 RF_DiskQueueData_t *req;
1170
1171 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1172 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1173 * have gotten the event that sent us here */
1174 RF_ASSERT(rbuf->pssPtr);
1175
1176 rbuf->pssPtr->writeRbuf = rbuf;
1177 rbuf->pssPtr = NULL;
1178
1179 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1180 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1181 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1182 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1183 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1184 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1185
1186 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1187 * kernel space */
1188 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1189 sectorsPerRU, rbuf->buffer,
1190 rbuf->parityStripeID, rbuf->which_ru,
1191 ReconWriteDoneProc, (void *) rbuf, NULL,
1192 #if RF_ACC_TRACE > 0
1193 &raidPtr->recon_tracerecs[fcol],
1194 #else
1195 NULL,
1196 #endif
1197 (void *) raidPtr, 0, NULL);
1198
1199 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1200
1201 rbuf->arg = (void *) req;
1202 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1203
1204 return (0);
1205 }
1206
1207 /*
1208 * this gets called upon the completion of a reconstruction read
1209 * operation the arg is a pointer to the per-disk reconstruction
1210 * control structure for the process that just finished a read.
1211 *
1212 * called at interrupt context in the kernel, so don't do anything
1213 * illegal here.
1214 */
1215 static int
1216 ReconReadDoneProc(void *arg, int status)
1217 {
1218 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1219 RF_Raid_t *raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1220
1221 if (status) {
1222 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1223 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1224 return(0);
1225 }
1226 #if RF_ACC_TRACE > 0
1227 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1228 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1229 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1230 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1231 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1232 #endif
1233 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1234 return (0);
1235 }
1236 /* this gets called upon the completion of a reconstruction write operation.
1237 * the arg is a pointer to the rbuf that was just written
1238 *
1239 * called at interrupt context in the kernel, so don't do anything illegal here.
1240 */
1241 static int
1242 ReconWriteDoneProc(void *arg, int status)
1243 {
1244 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1245
1246 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1247 if (status) {
1248 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1249 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1250 return(0);
1251 }
1252 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1253 return (0);
1254 }
1255
1256
1257 /*
1258 * computes a new minimum head sep, and wakes up anyone who needs to
1259 * be woken as a result
1260 */
1261 static void
1262 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1263 {
1264 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1265 RF_HeadSepLimit_t new_min;
1266 RF_RowCol_t i;
1267 RF_CallbackDesc_t *p;
1268 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1269 * of a minimum */
1270
1271
1272 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1273 while(reconCtrlPtr->rb_lock) {
1274 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1275 }
1276 reconCtrlPtr->rb_lock = 1;
1277 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1278
1279 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1280 for (i = 0; i < raidPtr->numCol; i++)
1281 if (i != reconCtrlPtr->fcol) {
1282 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1283 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1284 }
1285 /* set the new minimum and wake up anyone who can now run again */
1286 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1287 reconCtrlPtr->minHeadSepCounter = new_min;
1288 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1289 while (reconCtrlPtr->headSepCBList) {
1290 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1291 break;
1292 p = reconCtrlPtr->headSepCBList;
1293 reconCtrlPtr->headSepCBList = p->next;
1294 p->next = NULL;
1295 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1296 rf_FreeCallbackDesc(p);
1297 }
1298
1299 }
1300 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1301 reconCtrlPtr->rb_lock = 0;
1302 wakeup(&reconCtrlPtr->rb_lock);
1303 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1304 }
1305
1306 /*
1307 * checks to see that the maximum head separation will not be violated
1308 * if we initiate a reconstruction I/O on the indicated disk.
1309 * Limiting the maximum head separation between two disks eliminates
1310 * the nasty buffer-stall conditions that occur when one disk races
1311 * ahead of the others and consumes all of the floating recon buffers.
1312 * This code is complex and unpleasant but it's necessary to avoid
1313 * some very nasty, albeit fairly rare, reconstruction behavior.
1314 *
1315 * returns non-zero if and only if we have to stop working on the
1316 * indicated disk due to a head-separation delay.
1317 */
1318 static int
1319 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1320 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1321 RF_ReconUnitNum_t which_ru)
1322 {
1323 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1324 RF_CallbackDesc_t *cb, *p, *pt;
1325 int retval = 0;
1326
1327 /* if we're too far ahead of the slowest disk, stop working on this
1328 * disk until the slower ones catch up. We do this by scheduling a
1329 * wakeup callback for the time when the slowest disk has caught up.
1330 * We define "caught up" with 20% hysteresis, i.e. the head separation
1331 * must have fallen to at most 80% of the max allowable head
1332 * separation before we'll wake up.
1333 *
1334 */
1335 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1336 while(reconCtrlPtr->rb_lock) {
1337 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1338 }
1339 reconCtrlPtr->rb_lock = 1;
1340 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1341 if ((raidPtr->headSepLimit >= 0) &&
1342 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1343 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1344 raidPtr->raidid, col, ctrl->headSepCounter,
1345 reconCtrlPtr->minHeadSepCounter,
1346 raidPtr->headSepLimit);
1347 cb = rf_AllocCallbackDesc();
1348 /* the minHeadSepCounter value we have to get to before we'll
1349 * wake up. build in 20% hysteresis. */
1350 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1351 cb->col = col;
1352 cb->next = NULL;
1353
1354 /* insert this callback descriptor into the sorted list of
1355 * pending head-sep callbacks */
1356 p = reconCtrlPtr->headSepCBList;
1357 if (!p)
1358 reconCtrlPtr->headSepCBList = cb;
1359 else
1360 if (cb->callbackArg.v < p->callbackArg.v) {
1361 cb->next = reconCtrlPtr->headSepCBList;
1362 reconCtrlPtr->headSepCBList = cb;
1363 } else {
1364 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1365 cb->next = p;
1366 pt->next = cb;
1367 }
1368 retval = 1;
1369 #if RF_RECON_STATS > 0
1370 ctrl->reconCtrl->reconDesc->hsStallCount++;
1371 #endif /* RF_RECON_STATS > 0 */
1372 }
1373 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1374 reconCtrlPtr->rb_lock = 0;
1375 wakeup(&reconCtrlPtr->rb_lock);
1376 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1377
1378 return (retval);
1379 }
1380 /*
1381 * checks to see if reconstruction has been either forced or blocked
1382 * by a user operation. if forced, we skip this RU entirely. else if
1383 * blocked, put ourselves on the wait list. else return 0.
1384 *
1385 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1386 */
1387 static int
1388 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1389 RF_ReconParityStripeStatus_t *pssPtr,
1390 RF_PerDiskReconCtrl_t *ctrl,
1391 RF_RowCol_t col, RF_StripeNum_t psid,
1392 RF_ReconUnitNum_t which_ru)
1393 {
1394 RF_CallbackDesc_t *cb;
1395 int retcode = 0;
1396
1397 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1398 retcode = RF_PSS_FORCED_ON_WRITE;
1399 else
1400 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1401 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1402 cb = rf_AllocCallbackDesc(); /* append ourselves to
1403 * the blockage-wait
1404 * list */
1405 cb->col = col;
1406 cb->next = pssPtr->blockWaitList;
1407 pssPtr->blockWaitList = cb;
1408 retcode = RF_PSS_RECON_BLOCKED;
1409 }
1410 if (!retcode)
1411 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1412 * reconstruction */
1413
1414 return (retcode);
1415 }
1416 /*
1417 * if reconstruction is currently ongoing for the indicated stripeID,
1418 * reconstruction is forced to completion and we return non-zero to
1419 * indicate that the caller must wait. If not, then reconstruction is
1420 * blocked on the indicated stripe and the routine returns zero. If
1421 * and only if we return non-zero, we'll cause the cbFunc to get
1422 * invoked with the cbArg when the reconstruction has completed.
1423 */
1424 int
1425 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1426 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1427 {
1428 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1429 * forcing recon on */
1430 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1431 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1432 * stripe status structure */
1433 RF_StripeNum_t psid; /* parity stripe id */
1434 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1435 * offset */
1436 RF_RowCol_t *diskids;
1437 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1438 RF_RowCol_t fcol, diskno, i;
1439 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1440 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1441 RF_CallbackDesc_t *cb;
1442 int nPromoted;
1443
1444 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1445
1446 /* allocate a new PSS in case we need it */
1447 newpssPtr = rf_AllocPSStatus(raidPtr);
1448
1449 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1450
1451 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1452
1453 if (pssPtr != newpssPtr) {
1454 rf_FreePSStatus(raidPtr, newpssPtr);
1455 }
1456
1457 /* if recon is not ongoing on this PS, just return */
1458 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1459 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1460 return (0);
1461 }
1462 /* otherwise, we have to wait for reconstruction to complete on this
1463 * RU. */
1464 /* In order to avoid waiting for a potentially large number of
1465 * low-priority accesses to complete, we force a normal-priority (i.e.
1466 * not low-priority) reconstruction on this RU. */
1467 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1468 DDprintf1("Forcing recon on psid %ld\n", psid);
1469 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1470 * forced recon */
1471 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1472 * that we just set */
1473 fcol = raidPtr->reconControl->fcol;
1474
1475 /* get a listing of the disks comprising the indicated stripe */
1476 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1477
1478 /* For previously issued reads, elevate them to normal
1479 * priority. If the I/O has already completed, it won't be
1480 * found in the queue, and hence this will be a no-op. For
1481 * unissued reads, allocate buffers and issue new reads. The
1482 * fact that we've set the FORCED bit means that the regular
1483 * recon procs will not re-issue these reqs */
1484 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1485 if ((diskno = diskids[i]) != fcol) {
1486 if (pssPtr->issued[diskno]) {
1487 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1488 if (rf_reconDebug && nPromoted)
1489 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1490 } else {
1491 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1492 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1493 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1494 * location */
1495 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1496 new_rbuf->which_ru = which_ru;
1497 new_rbuf->failedDiskSectorOffset = fd_offset;
1498 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1499
1500 /* use NULL b_proc b/c all addrs
1501 * should be in kernel space */
1502 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1503 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1504 NULL, (void *) raidPtr, 0, NULL);
1505
1506 RF_ASSERT(req); /* XXX -- fix this --
1507 * XXX */
1508
1509 new_rbuf->arg = req;
1510 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1511 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1512 }
1513 }
1514 /* if the write is sitting in the disk queue, elevate its
1515 * priority */
1516 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1517 printf("raid%d: promoted write to col %d\n",
1518 raidPtr->raidid, fcol);
1519 }
1520 /* install a callback descriptor to be invoked when recon completes on
1521 * this parity stripe. */
1522 cb = rf_AllocCallbackDesc();
1523 /* XXX the following is bogus.. These functions don't really match!!
1524 * GO */
1525 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1526 cb->callbackArg.p = (void *) cbArg;
1527 cb->next = pssPtr->procWaitList;
1528 pssPtr->procWaitList = cb;
1529 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1530 raidPtr->raidid, psid);
1531
1532 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1533 return (1);
1534 }
1535 /* called upon the completion of a forced reconstruction read.
1536 * all we do is schedule the FORCEDREADONE event.
1537 * called at interrupt context in the kernel, so don't do anything illegal here.
1538 */
1539 static void
1540 ForceReconReadDoneProc(void *arg, int status)
1541 {
1542 RF_ReconBuffer_t *rbuf = arg;
1543
1544 if (status) {
1545 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1546 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1547 return;
1548 }
1549 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1550 }
1551 /* releases a block on the reconstruction of the indicated stripe */
1552 int
1553 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1554 {
1555 RF_StripeNum_t stripeID = asmap->stripeID;
1556 RF_ReconParityStripeStatus_t *pssPtr;
1557 RF_ReconUnitNum_t which_ru;
1558 RF_StripeNum_t psid;
1559 RF_CallbackDesc_t *cb;
1560
1561 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1562 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1563 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1564
1565 /* When recon is forced, the pss desc can get deleted before we get
1566 * back to unblock recon. But, this can _only_ happen when recon is
1567 * forced. It would be good to put some kind of sanity check here, but
1568 * how to decide if recon was just forced or not? */
1569 if (!pssPtr) {
1570 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1571 * RU %d\n",psid,which_ru); */
1572 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1573 if (rf_reconDebug || rf_pssDebug)
1574 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1575 #endif
1576 goto out;
1577 }
1578 pssPtr->blockCount--;
1579 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1580 raidPtr->raidid, psid, pssPtr->blockCount);
1581 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1582
1583 /* unblock recon before calling CauseReconEvent in case
1584 * CauseReconEvent causes us to try to issue a new read before
1585 * returning here. */
1586 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1587
1588
1589 while (pssPtr->blockWaitList) {
1590 /* spin through the block-wait list and
1591 release all the waiters */
1592 cb = pssPtr->blockWaitList;
1593 pssPtr->blockWaitList = cb->next;
1594 cb->next = NULL;
1595 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1596 rf_FreeCallbackDesc(cb);
1597 }
1598 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1599 /* if no recon was requested while recon was blocked */
1600 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1601 }
1602 }
1603 out:
1604 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1605 return (0);
1606 }
1607