rf_reconstruct.c revision 1.82 1 /* $NetBSD: rf_reconstruct.c,v 1.82 2005/02/05 23:32:43 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.82 2005/02/05 23:32:43 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 RF_RowCol_t, RF_HeadSepLimit_t,
120 RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 RF_ReconParityStripeStatus_t *,
123 RF_PerDiskReconCtrl_t *,
124 RF_RowCol_t, RF_StripeNum_t,
125 RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128
129 struct RF_ReconDoneProc_s {
130 void (*proc) (RF_Raid_t *, void *);
131 void *arg;
132 RF_ReconDoneProc_t *next;
133 };
134
135 /**************************************************************************
136 *
137 * sets up the parameters that will be used by the reconstruction process
138 * currently there are none, except for those that the layout-specific
139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140 *
141 * in the kernel, we fire off the recon thread.
142 *
143 **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157
158 return (0);
159 }
160
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 RF_RowCol_t scol)
165 {
166
167 RF_RaidReconDesc_t *reconDesc;
168
169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 (RF_RaidReconDesc_t *));
171 reconDesc->raidPtr = raidPtr;
172 reconDesc->col = col;
173 reconDesc->spareDiskPtr = spareDiskPtr;
174 reconDesc->numDisksDone = numDisksDone;
175 reconDesc->scol = scol;
176 reconDesc->next = NULL;
177
178 return (reconDesc);
179 }
180
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 reconDesc->raidPtr->raidid,
187 (long) reconDesc->numReconEventWaits,
188 (long) reconDesc->numReconExecDelays);
189 #endif /* RF_RECON_STATS > 0 */
190 printf("raid%d: %lu max exec ticks\n",
191 reconDesc->raidPtr->raidid,
192 (long) reconDesc->maxReconExecTicks);
193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
194 printf("\n");
195 #endif /* (RF_RECON_STATS > 0) || KERNEL */
196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
197 }
198
199
200 /*****************************************************************************
201 *
202 * primary routine to reconstruct a failed disk. This should be called from
203 * within its own thread. It won't return until reconstruction completes,
204 * fails, or is aborted.
205 *****************************************************************************/
206 int
207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
208 {
209 const RF_LayoutSW_t *lp;
210 int rc;
211
212 lp = raidPtr->Layout.map;
213 if (lp->SubmitReconBuffer) {
214 /*
215 * The current infrastructure only supports reconstructing one
216 * disk at a time for each array.
217 */
218 RF_LOCK_MUTEX(raidPtr->mutex);
219 while (raidPtr->reconInProgress) {
220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
221 }
222 raidPtr->reconInProgress++;
223 RF_UNLOCK_MUTEX(raidPtr->mutex);
224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
225 RF_LOCK_MUTEX(raidPtr->mutex);
226 raidPtr->reconInProgress--;
227 RF_UNLOCK_MUTEX(raidPtr->mutex);
228 } else {
229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 lp->parityConfig);
231 rc = EIO;
232 }
233 RF_SIGNAL_COND(raidPtr->waitForReconCond);
234 return (rc);
235 }
236
237 int
238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
239 {
240 RF_ComponentLabel_t c_label;
241 RF_RaidDisk_t *spareDiskPtr = NULL;
242 RF_RaidReconDesc_t *reconDesc;
243 RF_RowCol_t scol;
244 int numDisksDone = 0, rc;
245
246 /* first look for a spare drive onto which to reconstruct the data */
247 /* spare disk descriptors are stored in row 0. This may have to
248 * change eventually */
249
250 RF_LOCK_MUTEX(raidPtr->mutex);
251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
254 if (raidPtr->status != rf_rs_degraded) {
255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
256 RF_UNLOCK_MUTEX(raidPtr->mutex);
257 return (EINVAL);
258 }
259 scol = (-1);
260 } else {
261 #endif
262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
263 if (raidPtr->Disks[scol].status == rf_ds_spare) {
264 spareDiskPtr = &raidPtr->Disks[scol];
265 spareDiskPtr->status = rf_ds_used_spare;
266 break;
267 }
268 }
269 if (!spareDiskPtr) {
270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
271 RF_UNLOCK_MUTEX(raidPtr->mutex);
272 return (ENOSPC);
273 }
274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
276 }
277 #endif
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279
280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
281 raidPtr->reconDesc = (void *) reconDesc;
282 #if RF_RECON_STATS > 0
283 reconDesc->hsStallCount = 0;
284 reconDesc->numReconExecDelays = 0;
285 reconDesc->numReconEventWaits = 0;
286 #endif /* RF_RECON_STATS > 0 */
287 reconDesc->reconExecTimerRunning = 0;
288 reconDesc->reconExecTicks = 0;
289 reconDesc->maxReconExecTicks = 0;
290 rc = rf_ContinueReconstructFailedDisk(reconDesc);
291
292 if (!rc) {
293 /* fix up the component label */
294 /* Don't actually need the read here.. */
295 raidread_component_label(
296 raidPtr->raid_cinfo[scol].ci_dev,
297 raidPtr->raid_cinfo[scol].ci_vp,
298 &c_label);
299
300 raid_init_component_label( raidPtr, &c_label);
301 c_label.row = 0;
302 c_label.column = col;
303 c_label.clean = RF_RAID_DIRTY;
304 c_label.status = rf_ds_optimal;
305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
306
307 /* We've just done a rebuild based on all the other
308 disks, so at this point the parity is known to be
309 clean, even if it wasn't before. */
310
311 /* XXX doesn't hold for RAID 6!!*/
312
313 RF_LOCK_MUTEX(raidPtr->mutex);
314 raidPtr->parity_good = RF_RAID_CLEAN;
315 RF_UNLOCK_MUTEX(raidPtr->mutex);
316
317 /* XXXX MORE NEEDED HERE */
318
319 raidwrite_component_label(
320 raidPtr->raid_cinfo[scol].ci_dev,
321 raidPtr->raid_cinfo[scol].ci_vp,
322 &c_label);
323
324
325 rf_update_component_labels(raidPtr,
326 RF_NORMAL_COMPONENT_UPDATE);
327
328 } else {
329 /* Reconstruct failed. */
330
331 RF_LOCK_MUTEX(raidPtr->mutex);
332 /* Failed disk goes back to "failed" status */
333 raidPtr->Disks[col].status = rf_ds_failed;
334
335 /* Spare disk goes back to "spare" status. */
336 spareDiskPtr->status = rf_ds_spare;
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338 }
339 return (rc);
340 }
341
342 /*
343
344 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
345 and you don't get a spare until the next Monday. With this function
346 (and hot-swappable drives) you can now put your new disk containing
347 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
348 rebuild the data "on the spot".
349
350 */
351
352 int
353 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
354 {
355 RF_RaidDisk_t *spareDiskPtr = NULL;
356 RF_RaidReconDesc_t *reconDesc;
357 const RF_LayoutSW_t *lp;
358 RF_ComponentLabel_t c_label;
359 int numDisksDone = 0, rc;
360 struct partinfo dpart;
361 struct vnode *vp;
362 struct vattr va;
363 struct proc *proc;
364 int retcode;
365 int ac;
366
367 lp = raidPtr->Layout.map;
368 if (!lp->SubmitReconBuffer) {
369 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
370 lp->parityConfig);
371 /* wakeup anyone who might be waiting to do a reconstruct */
372 RF_SIGNAL_COND(raidPtr->waitForReconCond);
373 return(EIO);
374 }
375
376 /*
377 * The current infrastructure only supports reconstructing one
378 * disk at a time for each array.
379 */
380 RF_LOCK_MUTEX(raidPtr->mutex);
381
382 if (raidPtr->Disks[col].status != rf_ds_failed) {
383 /* "It's gone..." */
384 raidPtr->numFailures++;
385 raidPtr->Disks[col].status = rf_ds_failed;
386 raidPtr->status = rf_rs_degraded;
387 RF_UNLOCK_MUTEX(raidPtr->mutex);
388 rf_update_component_labels(raidPtr,
389 RF_NORMAL_COMPONENT_UPDATE);
390 RF_LOCK_MUTEX(raidPtr->mutex);
391 }
392
393 while (raidPtr->reconInProgress) {
394 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
395 }
396
397 raidPtr->reconInProgress++;
398
399 /* first look for a spare drive onto which to reconstruct the
400 data. spare disk descriptors are stored in row 0. This
401 may have to change eventually */
402
403 /* Actually, we don't care if it's failed or not... On a RAID
404 set with correct parity, this function should be callable
405 on any component without ill affects. */
406 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
407
408 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
409 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
410 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
411
412 raidPtr->reconInProgress--;
413 RF_UNLOCK_MUTEX(raidPtr->mutex);
414 RF_SIGNAL_COND(raidPtr->waitForReconCond);
415 return (EINVAL);
416 }
417 #endif
418 proc = raidPtr->engine_thread;
419
420 /* This device may have been opened successfully the
421 first time. Close it before trying to open it again.. */
422
423 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
424 #if 0
425 printf("Closed the open device: %s\n",
426 raidPtr->Disks[col].devname);
427 #endif
428 vp = raidPtr->raid_cinfo[col].ci_vp;
429 ac = raidPtr->Disks[col].auto_configured;
430 RF_UNLOCK_MUTEX(raidPtr->mutex);
431 rf_close_component(raidPtr, vp, ac);
432 RF_LOCK_MUTEX(raidPtr->mutex);
433 raidPtr->raid_cinfo[col].ci_vp = NULL;
434 }
435 /* note that this disk was *not* auto_configured (any longer)*/
436 raidPtr->Disks[col].auto_configured = 0;
437
438 #if 0
439 printf("About to (re-)open the device for rebuilding: %s\n",
440 raidPtr->Disks[col].devname);
441 #endif
442 RF_UNLOCK_MUTEX(raidPtr->mutex);
443 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
444
445 if (retcode) {
446 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
447 raidPtr->Disks[col].devname, retcode);
448
449 /* the component isn't responding properly...
450 must be still dead :-( */
451 RF_LOCK_MUTEX(raidPtr->mutex);
452 raidPtr->reconInProgress--;
453 RF_UNLOCK_MUTEX(raidPtr->mutex);
454 RF_SIGNAL_COND(raidPtr->waitForReconCond);
455 return(retcode);
456 }
457
458 /* Ok, so we can at least do a lookup...
459 How about actually getting a vp for it? */
460
461 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
462 RF_LOCK_MUTEX(raidPtr->mutex);
463 raidPtr->reconInProgress--;
464 RF_UNLOCK_MUTEX(raidPtr->mutex);
465 RF_SIGNAL_COND(raidPtr->waitForReconCond);
466 return(retcode);
467 }
468
469 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
470 if (retcode) {
471 RF_LOCK_MUTEX(raidPtr->mutex);
472 raidPtr->reconInProgress--;
473 RF_UNLOCK_MUTEX(raidPtr->mutex);
474 RF_SIGNAL_COND(raidPtr->waitForReconCond);
475 return(retcode);
476 }
477 RF_LOCK_MUTEX(raidPtr->mutex);
478 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
479
480 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
481 rf_protectedSectors;
482
483 raidPtr->raid_cinfo[col].ci_vp = vp;
484 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
485
486 raidPtr->Disks[col].dev = va.va_rdev;
487
488 /* we allow the user to specify that only a fraction
489 of the disks should be used this is just for debug:
490 it speeds up * the parity scan */
491 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
492 rf_sizePercentage / 100;
493 RF_UNLOCK_MUTEX(raidPtr->mutex);
494
495 spareDiskPtr = &raidPtr->Disks[col];
496 spareDiskPtr->status = rf_ds_used_spare;
497
498 printf("raid%d: initiating in-place reconstruction on column %d\n",
499 raidPtr->raidid, col);
500
501 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
502 numDisksDone, col);
503 raidPtr->reconDesc = (void *) reconDesc;
504 #if RF_RECON_STATS > 0
505 reconDesc->hsStallCount = 0;
506 reconDesc->numReconExecDelays = 0;
507 reconDesc->numReconEventWaits = 0;
508 #endif /* RF_RECON_STATS > 0 */
509 reconDesc->reconExecTimerRunning = 0;
510 reconDesc->reconExecTicks = 0;
511 reconDesc->maxReconExecTicks = 0;
512 rc = rf_ContinueReconstructFailedDisk(reconDesc);
513
514 if (!rc) {
515 RF_LOCK_MUTEX(raidPtr->mutex);
516 /* Need to set these here, as at this point it'll be claiming
517 that the disk is in rf_ds_spared! But we know better :-) */
518
519 raidPtr->Disks[col].status = rf_ds_optimal;
520 raidPtr->status = rf_rs_optimal;
521 RF_UNLOCK_MUTEX(raidPtr->mutex);
522
523 /* fix up the component label */
524 /* Don't actually need the read here.. */
525 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
526 raidPtr->raid_cinfo[col].ci_vp,
527 &c_label);
528
529 RF_LOCK_MUTEX(raidPtr->mutex);
530 raid_init_component_label(raidPtr, &c_label);
531
532 c_label.row = 0;
533 c_label.column = col;
534
535 /* We've just done a rebuild based on all the other
536 disks, so at this point the parity is known to be
537 clean, even if it wasn't before. */
538
539 /* XXX doesn't hold for RAID 6!!*/
540
541 raidPtr->parity_good = RF_RAID_CLEAN;
542 RF_UNLOCK_MUTEX(raidPtr->mutex);
543
544 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
545 raidPtr->raid_cinfo[col].ci_vp,
546 &c_label);
547
548 rf_update_component_labels(raidPtr,
549 RF_NORMAL_COMPONENT_UPDATE);
550 } else {
551 /* Reconstruct-in-place failed. Disk goes back to
552 "failed" status, regardless of what it was before. */
553 RF_LOCK_MUTEX(raidPtr->mutex);
554 raidPtr->Disks[col].status = rf_ds_failed;
555 RF_UNLOCK_MUTEX(raidPtr->mutex);
556 }
557
558 RF_LOCK_MUTEX(raidPtr->mutex);
559 raidPtr->reconInProgress--;
560 RF_UNLOCK_MUTEX(raidPtr->mutex);
561
562 RF_SIGNAL_COND(raidPtr->waitForReconCond);
563 return (rc);
564 }
565
566
567 int
568 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
569 {
570 RF_Raid_t *raidPtr = reconDesc->raidPtr;
571 RF_RowCol_t col = reconDesc->col;
572 RF_RowCol_t scol = reconDesc->scol;
573 RF_ReconMap_t *mapPtr;
574 RF_ReconCtrl_t *tmp_reconctrl;
575 RF_ReconEvent_t *event;
576 RF_CallbackDesc_t *p;
577 struct timeval etime, elpsd;
578 unsigned long xor_s, xor_resid_us;
579 int i, ds;
580 int status;
581 int recon_error, write_error;
582
583 raidPtr->accumXorTimeUs = 0;
584 #if RF_ACC_TRACE > 0
585 /* create one trace record per physical disk */
586 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
587 #endif
588
589 /* quiesce the array prior to starting recon. this is needed
590 * to assure no nasty interactions with pending user writes.
591 * We need to do this before we change the disk or row status. */
592
593 Dprintf("RECON: begin request suspend\n");
594 rf_SuspendNewRequestsAndWait(raidPtr);
595 Dprintf("RECON: end request suspend\n");
596
597 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
598 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
599
600 RF_LOCK_MUTEX(raidPtr->mutex);
601
602 /* create the reconstruction control pointer and install it in
603 * the right slot */
604 raidPtr->reconControl = tmp_reconctrl;
605 mapPtr = raidPtr->reconControl->reconMap;
606 raidPtr->status = rf_rs_reconstructing;
607 raidPtr->Disks[col].status = rf_ds_reconstructing;
608 raidPtr->Disks[col].spareCol = scol;
609
610 RF_UNLOCK_MUTEX(raidPtr->mutex);
611
612 RF_GETTIME(raidPtr->reconControl->starttime);
613
614 /* now start up the actual reconstruction: issue a read for
615 * each surviving disk */
616
617 reconDesc->numDisksDone = 0;
618 for (i = 0; i < raidPtr->numCol; i++) {
619 if (i != col) {
620 /* find and issue the next I/O on the
621 * indicated disk */
622 if (IssueNextReadRequest(raidPtr, i)) {
623 Dprintf1("RECON: done issuing for c%d\n", i);
624 reconDesc->numDisksDone++;
625 }
626 }
627 }
628
629 Dprintf("RECON: resume requests\n");
630 rf_ResumeNewRequests(raidPtr);
631
632 /* process reconstruction events until all disks report that
633 * they've completed all work */
634
635 mapPtr = raidPtr->reconControl->reconMap;
636 recon_error = 0;
637 write_error = 0;
638
639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
640
641 event = rf_GetNextReconEvent(reconDesc);
642 RF_ASSERT(event);
643
644 status = ProcessReconEvent(raidPtr, event);
645
646 /* the normal case is that a read completes, and all is well. */
647 if (status == RF_RECON_DONE_READS) {
648 reconDesc->numDisksDone++;
649 } else if ((status == RF_RECON_READ_ERROR) ||
650 (status == RF_RECON_WRITE_ERROR)) {
651 /* an error was encountered while reconstructing...
652 Pretend we've finished this disk.
653 */
654 recon_error = 1;
655 raidPtr->reconControl->error = 1;
656
657 /* bump the numDisksDone count for reads,
658 but not for writes */
659 if (status == RF_RECON_READ_ERROR)
660 reconDesc->numDisksDone++;
661
662 /* write errors are special -- when we are
663 done dealing with the reads that are
664 finished, we don't want to wait for any
665 writes */
666 if (status == RF_RECON_WRITE_ERROR)
667 write_error = 1;
668
669 } else if (status == RF_RECON_READ_STOPPED) {
670 /* count this component as being "done" */
671 reconDesc->numDisksDone++;
672 }
673
674 if (recon_error) {
675
676 /* make sure any stragglers are woken up so that
677 their theads will complete, and we can get out
678 of here with all IO processed */
679
680 while (raidPtr->reconControl->headSepCBList) {
681 p = raidPtr->reconControl->headSepCBList;
682 raidPtr->reconControl->headSepCBList = p->next;
683 p->next = NULL;
684 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
685 rf_FreeCallbackDesc(p);
686 }
687 }
688
689 raidPtr->reconControl->numRUsTotal =
690 mapPtr->totalRUs;
691 raidPtr->reconControl->numRUsComplete =
692 mapPtr->totalRUs -
693 rf_UnitsLeftToReconstruct(mapPtr);
694
695 #if RF_DEBUG_RECON
696 raidPtr->reconControl->percentComplete =
697 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
698 if (rf_prReconSched) {
699 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
700 }
701 #endif
702 }
703
704 mapPtr = raidPtr->reconControl->reconMap;
705 if (rf_reconDebug) {
706 printf("RECON: all reads completed\n");
707 }
708 /* at this point all the reads have completed. We now wait
709 * for any pending writes to complete, and then we're done */
710
711 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
712
713 event = rf_GetNextReconEvent(reconDesc);
714 RF_ASSERT(event);
715
716 status = ProcessReconEvent(raidPtr, event);
717 if (status == RF_RECON_WRITE_ERROR) {
718 recon_error = 1;
719 raidPtr->reconControl->error = 1;
720 /* an error was encountered at the very end... bail */
721 } else {
722 #if RF_DEBUG_RECON
723 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
724 if (rf_prReconSched) {
725 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
726 }
727 #endif
728 }
729 }
730
731 if (recon_error) {
732 /* we've encountered an error in reconstructing. */
733 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
734
735 /* we start by blocking IO to the RAID set. */
736 rf_SuspendNewRequestsAndWait(raidPtr);
737
738 RF_LOCK_MUTEX(raidPtr->mutex);
739 /* mark set as being degraded, rather than
740 rf_rs_reconstructing as we were before the problem.
741 After this is done we can update status of the
742 component disks without worrying about someone
743 trying to read from a failed component.
744 */
745 raidPtr->status = rf_rs_degraded;
746 RF_UNLOCK_MUTEX(raidPtr->mutex);
747
748 /* resume IO */
749 rf_ResumeNewRequests(raidPtr);
750
751 /* At this point there are two cases:
752 1) If we've experienced a read error, then we've
753 already waited for all the reads we're going to get,
754 and we just need to wait for the writes.
755
756 2) If we've experienced a write error, we've also
757 already waited for all the reads to complete,
758 but there is little point in waiting for the writes --
759 when they do complete, they will just be ignored.
760
761 So we just wait for writes to complete if we didn't have a
762 write error.
763 */
764
765 if (!write_error) {
766 /* wait for writes to complete */
767 while (raidPtr->reconControl->pending_writes > 0) {
768 event = rf_GetNextReconEvent(reconDesc);
769 status = ProcessReconEvent(raidPtr, event);
770
771 if (status == RF_RECON_WRITE_ERROR) {
772 raidPtr->reconControl->error = 1;
773 /* an error was encountered at the very end... bail.
774 This will be very bad news for the user, since
775 at this point there will have been a read error
776 on one component, and a write error on another!
777 */
778 break;
779 }
780 }
781 }
782
783
784 /* cleanup */
785
786 /* drain the event queue - after waiting for the writes above,
787 there shouldn't be much (if anything!) left in the queue. */
788
789 rf_DrainReconEventQueue(reconDesc);
790
791 /* XXX As much as we'd like to free the recon control structure
792 and the reconDesc, we have no way of knowing if/when those will
793 be touched by IO that has yet to occur. It is rather poor to be
794 basically causing a 'memory leak' here, but there doesn't seem to be
795 a cleaner alternative at this time. Perhaps when the reconstruct code
796 gets a makeover this problem will go away.
797 */
798 #if 0
799 rf_FreeReconControl(raidPtr);
800 #endif
801
802 #if RF_ACC_TRACE > 0
803 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
804 #endif
805 /* XXX see comment above */
806 #if 0
807 FreeReconDesc(reconDesc);
808 #endif
809
810 return (1);
811 }
812
813 /* Success: mark the dead disk as reconstructed. We quiesce
814 * the array here to assure no nasty interactions with pending
815 * user accesses when we free up the psstatus structure as
816 * part of FreeReconControl() */
817
818 rf_SuspendNewRequestsAndWait(raidPtr);
819
820 RF_LOCK_MUTEX(raidPtr->mutex);
821 raidPtr->numFailures--;
822 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
823 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
824 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
825 RF_UNLOCK_MUTEX(raidPtr->mutex);
826 RF_GETTIME(etime);
827 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
828
829 rf_ResumeNewRequests(raidPtr);
830
831 printf("raid%d: Reconstruction of disk at col %d completed\n",
832 raidPtr->raidid, col);
833 xor_s = raidPtr->accumXorTimeUs / 1000000;
834 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
835 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
836 raidPtr->raidid,
837 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
838 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
839 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
840 raidPtr->raidid,
841 (int) raidPtr->reconControl->starttime.tv_sec,
842 (int) raidPtr->reconControl->starttime.tv_usec,
843 (int) etime.tv_sec, (int) etime.tv_usec);
844 #if RF_RECON_STATS > 0
845 printf("raid%d: Total head-sep stall count was %d\n",
846 raidPtr->raidid, (int) reconDesc->hsStallCount);
847 #endif /* RF_RECON_STATS > 0 */
848 rf_FreeReconControl(raidPtr);
849 #if RF_ACC_TRACE > 0
850 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
851 #endif
852 FreeReconDesc(reconDesc);
853
854 return (0);
855
856 }
857 /*****************************************************************************
858 * do the right thing upon each reconstruction event.
859 *****************************************************************************/
860 static int
861 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
862 {
863 int retcode = 0, submitblocked;
864 RF_ReconBuffer_t *rbuf;
865 RF_SectorCount_t sectorsPerRU;
866
867 retcode = RF_RECON_READ_STOPPED;
868
869 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
870 switch (event->type) {
871
872 /* a read I/O has completed */
873 case RF_REVENT_READDONE:
874 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
875 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
876 event->col, rbuf->parityStripeID);
877 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
878 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
879 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
880 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
881 if (!raidPtr->reconControl->error) {
882 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
883 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
884 if (!submitblocked)
885 retcode = IssueNextReadRequest(raidPtr, event->col);
886 }
887 break;
888
889 /* a write I/O has completed */
890 case RF_REVENT_WRITEDONE:
891 #if RF_DEBUG_RECON
892 if (rf_floatingRbufDebug) {
893 rf_CheckFloatingRbufCount(raidPtr, 1);
894 }
895 #endif
896 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
897 rbuf = (RF_ReconBuffer_t *) event->arg;
898 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
899 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
900 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
901 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
902 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
903 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
904
905 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
906 raidPtr->reconControl->pending_writes--;
907 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
908
909 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
910 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
911 while(raidPtr->reconControl->rb_lock) {
912 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
913 &raidPtr->reconControl->rb_mutex);
914 }
915 raidPtr->reconControl->rb_lock = 1;
916 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
917
918 raidPtr->numFullReconBuffers--;
919 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
920
921 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
922 raidPtr->reconControl->rb_lock = 0;
923 wakeup(&raidPtr->reconControl->rb_lock);
924 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
925 } else
926 if (rbuf->type == RF_RBUF_TYPE_FORCED)
927 rf_FreeReconBuffer(rbuf);
928 else
929 RF_ASSERT(0);
930 retcode = 0;
931 break;
932
933 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
934 * cleared */
935 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
936 if (!raidPtr->reconControl->error) {
937 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
938 0, (int) (long) event->arg);
939 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
940 * BUFCLEAR event if we
941 * couldn't submit */
942 retcode = IssueNextReadRequest(raidPtr, event->col);
943 }
944 break;
945
946 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
947 * blockage has been cleared */
948 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
949 if (!raidPtr->reconControl->error) {
950 retcode = TryToRead(raidPtr, event->col);
951 }
952 break;
953
954 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
955 * reconstruction blockage has been
956 * cleared */
957 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
958 if (!raidPtr->reconControl->error) {
959 retcode = TryToRead(raidPtr, event->col);
960 }
961 break;
962
963 /* a buffer has become ready to write */
964 case RF_REVENT_BUFREADY:
965 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
966 if (!raidPtr->reconControl->error) {
967 retcode = IssueNextWriteRequest(raidPtr);
968 #if RF_DEBUG_RECON
969 if (rf_floatingRbufDebug) {
970 rf_CheckFloatingRbufCount(raidPtr, 1);
971 }
972 #endif
973 }
974 break;
975
976 /* we need to skip the current RU entirely because it got
977 * recon'd while we were waiting for something else to happen */
978 case RF_REVENT_SKIP:
979 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
980 if (!raidPtr->reconControl->error) {
981 retcode = IssueNextReadRequest(raidPtr, event->col);
982 }
983 break;
984
985 /* a forced-reconstruction read access has completed. Just
986 * submit the buffer */
987 case RF_REVENT_FORCEDREADDONE:
988 rbuf = (RF_ReconBuffer_t *) event->arg;
989 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
990 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
991 if (!raidPtr->reconControl->error) {
992 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
993 RF_ASSERT(!submitblocked);
994 }
995 break;
996
997 /* A read I/O failed to complete */
998 case RF_REVENT_READ_FAILED:
999 retcode = RF_RECON_READ_ERROR;
1000 break;
1001
1002 /* A write I/O failed to complete */
1003 case RF_REVENT_WRITE_FAILED:
1004 retcode = RF_RECON_WRITE_ERROR;
1005
1006 rbuf = (RF_ReconBuffer_t *) event->arg;
1007
1008 /* cleanup the disk queue data */
1009 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1010
1011 /* At this point we're erroring out, badly, and floatingRbufs
1012 may not even be valid. Rather than putting this back onto
1013 the floatingRbufs list, just arrange for its immediate
1014 destruction.
1015 */
1016 rf_FreeReconBuffer(rbuf);
1017 break;
1018
1019 /* a forced read I/O failed to complete */
1020 case RF_REVENT_FORCEDREAD_FAILED:
1021 retcode = RF_RECON_READ_ERROR;
1022 break;
1023
1024 default:
1025 RF_PANIC();
1026 }
1027 rf_FreeReconEventDesc(event);
1028 return (retcode);
1029 }
1030 /*****************************************************************************
1031 *
1032 * find the next thing that's needed on the indicated disk, and issue
1033 * a read request for it. We assume that the reconstruction buffer
1034 * associated with this process is free to receive the data. If
1035 * reconstruction is blocked on the indicated RU, we issue a
1036 * blockage-release request instead of a physical disk read request.
1037 * If the current disk gets too far ahead of the others, we issue a
1038 * head-separation wait request and return.
1039 *
1040 * ctrl->{ru_count, curPSID, diskOffset} and
1041 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1042 * we're currently accessing. Note that this deviates from the
1043 * standard C idiom of having counters point to the next thing to be
1044 * accessed. This allows us to easily retry when we're blocked by
1045 * head separation or reconstruction-blockage events.
1046 *
1047 *****************************************************************************/
1048 static int
1049 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1050 {
1051 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1052 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1053 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1054 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1055 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1056 int do_new_check = 0, retcode = 0, status;
1057
1058 /* if we are currently the slowest disk, mark that we have to do a new
1059 * check */
1060 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1061 do_new_check = 1;
1062
1063 while (1) {
1064
1065 ctrl->ru_count++;
1066 if (ctrl->ru_count < RUsPerPU) {
1067 ctrl->diskOffset += sectorsPerRU;
1068 rbuf->failedDiskSectorOffset += sectorsPerRU;
1069 } else {
1070 ctrl->curPSID++;
1071 ctrl->ru_count = 0;
1072 /* code left over from when head-sep was based on
1073 * parity stripe id */
1074 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1075 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1076 return (RF_RECON_DONE_READS); /* finito! */
1077 }
1078 /* find the disk offsets of the start of the parity
1079 * stripe on both the current disk and the failed
1080 * disk. skip this entire parity stripe if either disk
1081 * does not appear in the indicated PS */
1082 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1083 &rbuf->spCol, &rbuf->spOffset);
1084 if (status) {
1085 ctrl->ru_count = RUsPerPU - 1;
1086 continue;
1087 }
1088 }
1089 rbuf->which_ru = ctrl->ru_count;
1090
1091 /* skip this RU if it's already been reconstructed */
1092 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1093 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1094 continue;
1095 }
1096 break;
1097 }
1098 ctrl->headSepCounter++;
1099 if (do_new_check)
1100 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1101
1102
1103 /* at this point, we have definitely decided what to do, and we have
1104 * only to see if we can actually do it now */
1105 rbuf->parityStripeID = ctrl->curPSID;
1106 rbuf->which_ru = ctrl->ru_count;
1107 #if RF_ACC_TRACE > 0
1108 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1109 sizeof(raidPtr->recon_tracerecs[col]));
1110 raidPtr->recon_tracerecs[col].reconacc = 1;
1111 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1112 #endif
1113 retcode = TryToRead(raidPtr, col);
1114 return (retcode);
1115 }
1116
1117 /*
1118 * tries to issue the next read on the indicated disk. We may be
1119 * blocked by (a) the heads being too far apart, or (b) recon on the
1120 * indicated RU being blocked due to a write by a user thread. In
1121 * this case, we issue a head-sep or blockage wait request, which will
1122 * cause this same routine to be invoked again later when the blockage
1123 * has cleared.
1124 */
1125
1126 static int
1127 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1128 {
1129 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1130 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1131 RF_StripeNum_t psid = ctrl->curPSID;
1132 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1133 RF_DiskQueueData_t *req;
1134 int status;
1135 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1136
1137 /* if the current disk is too far ahead of the others, issue a
1138 * head-separation wait and return */
1139 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1140 return (0);
1141
1142 /* allocate a new PSS in case we need it */
1143 newpssPtr = rf_AllocPSStatus(raidPtr);
1144
1145 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1146 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1147
1148 if (pssPtr != newpssPtr) {
1149 rf_FreePSStatus(raidPtr, newpssPtr);
1150 }
1151
1152 /* if recon is blocked on the indicated parity stripe, issue a
1153 * block-wait request and return. this also must mark the indicated RU
1154 * in the stripe as under reconstruction if not blocked. */
1155 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1156 if (status == RF_PSS_RECON_BLOCKED) {
1157 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1158 goto out;
1159 } else
1160 if (status == RF_PSS_FORCED_ON_WRITE) {
1161 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1162 goto out;
1163 }
1164 /* make one last check to be sure that the indicated RU didn't get
1165 * reconstructed while we were waiting for something else to happen.
1166 * This is unfortunate in that it causes us to make this check twice
1167 * in the normal case. Might want to make some attempt to re-work
1168 * this so that we only do this check if we've definitely blocked on
1169 * one of the above checks. When this condition is detected, we may
1170 * have just created a bogus status entry, which we need to delete. */
1171 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1172 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1173 if (pssPtr == newpssPtr)
1174 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1175 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1176 goto out;
1177 }
1178 /* found something to read. issue the I/O */
1179 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1180 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1181 #if RF_ACC_TRACE > 0
1182 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1183 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1184 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1185 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1186 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1187 #endif
1188 /* should be ok to use a NULL proc pointer here, all the bufs we use
1189 * should be in kernel space */
1190 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1191 ReconReadDoneProc, (void *) ctrl, NULL,
1192 #if RF_ACC_TRACE > 0
1193 &raidPtr->recon_tracerecs[col],
1194 #else
1195 NULL,
1196 #endif
1197 (void *) raidPtr, 0, NULL);
1198
1199 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1200
1201 ctrl->rbuf->arg = (void *) req;
1202 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1203 pssPtr->issued[col] = 1;
1204
1205 out:
1206 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1207 return (0);
1208 }
1209
1210
1211 /*
1212 * given a parity stripe ID, we want to find out whether both the
1213 * current disk and the failed disk exist in that parity stripe. If
1214 * not, we want to skip this whole PS. If so, we want to find the
1215 * disk offset of the start of the PS on both the current disk and the
1216 * failed disk.
1217 *
1218 * this works by getting a list of disks comprising the indicated
1219 * parity stripe, and searching the list for the current and failed
1220 * disks. Once we've decided they both exist in the parity stripe, we
1221 * need to decide whether each is data or parity, so that we'll know
1222 * which mapping function to call to get the corresponding disk
1223 * offsets.
1224 *
1225 * this is kind of unpleasant, but doing it this way allows the
1226 * reconstruction code to use parity stripe IDs rather than physical
1227 * disks address to march through the failed disk, which greatly
1228 * simplifies a lot of code, as well as eliminating the need for a
1229 * reverse-mapping function. I also think it will execute faster,
1230 * since the calls to the mapping module are kept to a minimum.
1231 *
1232 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1233 * THE STRIPE IN THE CORRECT ORDER
1234 *
1235 * raidPtr - raid descriptor
1236 * psid - parity stripe identifier
1237 * col - column of disk to find the offsets for
1238 * spCol - out: col of spare unit for failed unit
1239 * spOffset - out: offset into disk containing spare unit
1240 *
1241 */
1242
1243
1244 static int
1245 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1246 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1247 RF_SectorNum_t *outFailedDiskSectorOffset,
1248 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1249 {
1250 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1251 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1252 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1253 RF_RowCol_t *diskids;
1254 u_int i, j, k, i_offset, j_offset;
1255 RF_RowCol_t pcol;
1256 int testcol;
1257 RF_SectorNum_t poffset;
1258 char i_is_parity = 0, j_is_parity = 0;
1259 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1260
1261 /* get a listing of the disks comprising that stripe */
1262 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1263 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1264 RF_ASSERT(diskids);
1265
1266 /* reject this entire parity stripe if it does not contain the
1267 * indicated disk or it does not contain the failed disk */
1268
1269 for (i = 0; i < stripeWidth; i++) {
1270 if (col == diskids[i])
1271 break;
1272 }
1273 if (i == stripeWidth)
1274 goto skipit;
1275 for (j = 0; j < stripeWidth; j++) {
1276 if (fcol == diskids[j])
1277 break;
1278 }
1279 if (j == stripeWidth) {
1280 goto skipit;
1281 }
1282 /* find out which disk the parity is on */
1283 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1284
1285 /* find out if either the current RU or the failed RU is parity */
1286 /* also, if the parity occurs in this stripe prior to the data and/or
1287 * failed col, we need to decrement i and/or j */
1288 for (k = 0; k < stripeWidth; k++)
1289 if (diskids[k] == pcol)
1290 break;
1291 RF_ASSERT(k < stripeWidth);
1292 i_offset = i;
1293 j_offset = j;
1294 if (k < i)
1295 i_offset--;
1296 else
1297 if (k == i) {
1298 i_is_parity = 1;
1299 i_offset = 0;
1300 } /* set offsets to zero to disable multiply
1301 * below */
1302 if (k < j)
1303 j_offset--;
1304 else
1305 if (k == j) {
1306 j_is_parity = 1;
1307 j_offset = 0;
1308 }
1309 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1310 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1311 * tells us how far into the stripe the [current,failed] disk is. */
1312
1313 /* call the mapping routine to get the offset into the current disk,
1314 * repeat for failed disk. */
1315 if (i_is_parity)
1316 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1317 else
1318 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1319
1320 RF_ASSERT(col == testcol);
1321
1322 if (j_is_parity)
1323 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1324 else
1325 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1326 RF_ASSERT(fcol == testcol);
1327
1328 /* now locate the spare unit for the failed unit */
1329 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1330 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1331 if (j_is_parity)
1332 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1333 else
1334 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1335 } else {
1336 #endif
1337 *spCol = raidPtr->reconControl->spareCol;
1338 *spOffset = *outFailedDiskSectorOffset;
1339 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1340 }
1341 #endif
1342 return (0);
1343
1344 skipit:
1345 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1346 psid, col);
1347 return (1);
1348 }
1349 /* this is called when a buffer has become ready to write to the replacement disk */
1350 static int
1351 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1352 {
1353 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1354 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1355 #if RF_ACC_TRACE > 0
1356 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1357 #endif
1358 RF_ReconBuffer_t *rbuf;
1359 RF_DiskQueueData_t *req;
1360
1361 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1362 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1363 * have gotten the event that sent us here */
1364 RF_ASSERT(rbuf->pssPtr);
1365
1366 rbuf->pssPtr->writeRbuf = rbuf;
1367 rbuf->pssPtr = NULL;
1368
1369 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1370 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1371 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1372 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1373 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1374 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1375
1376 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1377 * kernel space */
1378 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1379 sectorsPerRU, rbuf->buffer,
1380 rbuf->parityStripeID, rbuf->which_ru,
1381 ReconWriteDoneProc, (void *) rbuf, NULL,
1382 #if RF_ACC_TRACE > 0
1383 &raidPtr->recon_tracerecs[fcol],
1384 #else
1385 NULL,
1386 #endif
1387 (void *) raidPtr, 0, NULL);
1388
1389 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1390
1391 rbuf->arg = (void *) req;
1392 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1393 raidPtr->reconControl->pending_writes++;
1394 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1395 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1396
1397 return (0);
1398 }
1399
1400 /*
1401 * this gets called upon the completion of a reconstruction read
1402 * operation the arg is a pointer to the per-disk reconstruction
1403 * control structure for the process that just finished a read.
1404 *
1405 * called at interrupt context in the kernel, so don't do anything
1406 * illegal here.
1407 */
1408 static int
1409 ReconReadDoneProc(void *arg, int status)
1410 {
1411 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1412 RF_Raid_t *raidPtr;
1413
1414 /* Detect that reconCtrl is no longer valid, and if that
1415 is the case, bail without calling rf_CauseReconEvent().
1416 There won't be anyone listening for this event anyway */
1417
1418 if (ctrl->reconCtrl == NULL)
1419 return(0);
1420
1421 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1422
1423 if (status) {
1424 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1425 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1426 return(0);
1427 }
1428 #if RF_ACC_TRACE > 0
1429 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1430 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1431 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1432 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1433 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1434 #endif
1435 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1436 return (0);
1437 }
1438 /* this gets called upon the completion of a reconstruction write operation.
1439 * the arg is a pointer to the rbuf that was just written
1440 *
1441 * called at interrupt context in the kernel, so don't do anything illegal here.
1442 */
1443 static int
1444 ReconWriteDoneProc(void *arg, int status)
1445 {
1446 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1447
1448 /* Detect that reconControl is no longer valid, and if that
1449 is the case, bail without calling rf_CauseReconEvent().
1450 There won't be anyone listening for this event anyway */
1451
1452 if (rbuf->raidPtr->reconControl == NULL)
1453 return(0);
1454
1455 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1456 if (status) {
1457 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1458 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1459 return(0);
1460 }
1461 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1462 return (0);
1463 }
1464
1465
1466 /*
1467 * computes a new minimum head sep, and wakes up anyone who needs to
1468 * be woken as a result
1469 */
1470 static void
1471 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1472 {
1473 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1474 RF_HeadSepLimit_t new_min;
1475 RF_RowCol_t i;
1476 RF_CallbackDesc_t *p;
1477 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1478 * of a minimum */
1479
1480
1481 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1482 while(reconCtrlPtr->rb_lock) {
1483 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1484 }
1485 reconCtrlPtr->rb_lock = 1;
1486 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1487
1488 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1489 for (i = 0; i < raidPtr->numCol; i++)
1490 if (i != reconCtrlPtr->fcol) {
1491 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1492 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1493 }
1494 /* set the new minimum and wake up anyone who can now run again */
1495 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1496 reconCtrlPtr->minHeadSepCounter = new_min;
1497 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1498 while (reconCtrlPtr->headSepCBList) {
1499 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1500 break;
1501 p = reconCtrlPtr->headSepCBList;
1502 reconCtrlPtr->headSepCBList = p->next;
1503 p->next = NULL;
1504 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1505 rf_FreeCallbackDesc(p);
1506 }
1507
1508 }
1509 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1510 reconCtrlPtr->rb_lock = 0;
1511 wakeup(&reconCtrlPtr->rb_lock);
1512 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1513 }
1514
1515 /*
1516 * checks to see that the maximum head separation will not be violated
1517 * if we initiate a reconstruction I/O on the indicated disk.
1518 * Limiting the maximum head separation between two disks eliminates
1519 * the nasty buffer-stall conditions that occur when one disk races
1520 * ahead of the others and consumes all of the floating recon buffers.
1521 * This code is complex and unpleasant but it's necessary to avoid
1522 * some very nasty, albeit fairly rare, reconstruction behavior.
1523 *
1524 * returns non-zero if and only if we have to stop working on the
1525 * indicated disk due to a head-separation delay.
1526 */
1527 static int
1528 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1529 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1530 RF_ReconUnitNum_t which_ru)
1531 {
1532 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1533 RF_CallbackDesc_t *cb, *p, *pt;
1534 int retval = 0;
1535
1536 /* if we're too far ahead of the slowest disk, stop working on this
1537 * disk until the slower ones catch up. We do this by scheduling a
1538 * wakeup callback for the time when the slowest disk has caught up.
1539 * We define "caught up" with 20% hysteresis, i.e. the head separation
1540 * must have fallen to at most 80% of the max allowable head
1541 * separation before we'll wake up.
1542 *
1543 */
1544 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1545 while(reconCtrlPtr->rb_lock) {
1546 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1547 }
1548 reconCtrlPtr->rb_lock = 1;
1549 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1550 if ((raidPtr->headSepLimit >= 0) &&
1551 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1552 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1553 raidPtr->raidid, col, ctrl->headSepCounter,
1554 reconCtrlPtr->minHeadSepCounter,
1555 raidPtr->headSepLimit);
1556 cb = rf_AllocCallbackDesc();
1557 /* the minHeadSepCounter value we have to get to before we'll
1558 * wake up. build in 20% hysteresis. */
1559 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1560 cb->col = col;
1561 cb->next = NULL;
1562
1563 /* insert this callback descriptor into the sorted list of
1564 * pending head-sep callbacks */
1565 p = reconCtrlPtr->headSepCBList;
1566 if (!p)
1567 reconCtrlPtr->headSepCBList = cb;
1568 else
1569 if (cb->callbackArg.v < p->callbackArg.v) {
1570 cb->next = reconCtrlPtr->headSepCBList;
1571 reconCtrlPtr->headSepCBList = cb;
1572 } else {
1573 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1574 cb->next = p;
1575 pt->next = cb;
1576 }
1577 retval = 1;
1578 #if RF_RECON_STATS > 0
1579 ctrl->reconCtrl->reconDesc->hsStallCount++;
1580 #endif /* RF_RECON_STATS > 0 */
1581 }
1582 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1583 reconCtrlPtr->rb_lock = 0;
1584 wakeup(&reconCtrlPtr->rb_lock);
1585 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1586
1587 return (retval);
1588 }
1589 /*
1590 * checks to see if reconstruction has been either forced or blocked
1591 * by a user operation. if forced, we skip this RU entirely. else if
1592 * blocked, put ourselves on the wait list. else return 0.
1593 *
1594 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1595 */
1596 static int
1597 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1598 RF_ReconParityStripeStatus_t *pssPtr,
1599 RF_PerDiskReconCtrl_t *ctrl,
1600 RF_RowCol_t col, RF_StripeNum_t psid,
1601 RF_ReconUnitNum_t which_ru)
1602 {
1603 RF_CallbackDesc_t *cb;
1604 int retcode = 0;
1605
1606 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1607 retcode = RF_PSS_FORCED_ON_WRITE;
1608 else
1609 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1610 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1611 cb = rf_AllocCallbackDesc(); /* append ourselves to
1612 * the blockage-wait
1613 * list */
1614 cb->col = col;
1615 cb->next = pssPtr->blockWaitList;
1616 pssPtr->blockWaitList = cb;
1617 retcode = RF_PSS_RECON_BLOCKED;
1618 }
1619 if (!retcode)
1620 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1621 * reconstruction */
1622
1623 return (retcode);
1624 }
1625 /*
1626 * if reconstruction is currently ongoing for the indicated stripeID,
1627 * reconstruction is forced to completion and we return non-zero to
1628 * indicate that the caller must wait. If not, then reconstruction is
1629 * blocked on the indicated stripe and the routine returns zero. If
1630 * and only if we return non-zero, we'll cause the cbFunc to get
1631 * invoked with the cbArg when the reconstruction has completed.
1632 */
1633 int
1634 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1635 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1636 {
1637 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1638 * forcing recon on */
1639 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1640 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1641 * stripe status structure */
1642 RF_StripeNum_t psid; /* parity stripe id */
1643 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1644 * offset */
1645 RF_RowCol_t *diskids;
1646 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1647 RF_RowCol_t fcol, diskno, i;
1648 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1649 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1650 RF_CallbackDesc_t *cb;
1651 int nPromoted;
1652
1653 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1654
1655 /* allocate a new PSS in case we need it */
1656 newpssPtr = rf_AllocPSStatus(raidPtr);
1657
1658 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1659
1660 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1661
1662 if (pssPtr != newpssPtr) {
1663 rf_FreePSStatus(raidPtr, newpssPtr);
1664 }
1665
1666 /* if recon is not ongoing on this PS, just return */
1667 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1668 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1669 return (0);
1670 }
1671 /* otherwise, we have to wait for reconstruction to complete on this
1672 * RU. */
1673 /* In order to avoid waiting for a potentially large number of
1674 * low-priority accesses to complete, we force a normal-priority (i.e.
1675 * not low-priority) reconstruction on this RU. */
1676 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1677 DDprintf1("Forcing recon on psid %ld\n", psid);
1678 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1679 * forced recon */
1680 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1681 * that we just set */
1682 fcol = raidPtr->reconControl->fcol;
1683
1684 /* get a listing of the disks comprising the indicated stripe */
1685 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1686
1687 /* For previously issued reads, elevate them to normal
1688 * priority. If the I/O has already completed, it won't be
1689 * found in the queue, and hence this will be a no-op. For
1690 * unissued reads, allocate buffers and issue new reads. The
1691 * fact that we've set the FORCED bit means that the regular
1692 * recon procs will not re-issue these reqs */
1693 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1694 if ((diskno = diskids[i]) != fcol) {
1695 if (pssPtr->issued[diskno]) {
1696 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1697 if (rf_reconDebug && nPromoted)
1698 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1699 } else {
1700 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1701 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1702 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1703 * location */
1704 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1705 new_rbuf->which_ru = which_ru;
1706 new_rbuf->failedDiskSectorOffset = fd_offset;
1707 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1708
1709 /* use NULL b_proc b/c all addrs
1710 * should be in kernel space */
1711 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1712 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1713 NULL, (void *) raidPtr, 0, NULL);
1714
1715 RF_ASSERT(req); /* XXX -- fix this --
1716 * XXX */
1717
1718 new_rbuf->arg = req;
1719 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1720 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1721 }
1722 }
1723 /* if the write is sitting in the disk queue, elevate its
1724 * priority */
1725 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1726 printf("raid%d: promoted write to col %d\n",
1727 raidPtr->raidid, fcol);
1728 }
1729 /* install a callback descriptor to be invoked when recon completes on
1730 * this parity stripe. */
1731 cb = rf_AllocCallbackDesc();
1732 /* XXX the following is bogus.. These functions don't really match!!
1733 * GO */
1734 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1735 cb->callbackArg.p = (void *) cbArg;
1736 cb->next = pssPtr->procWaitList;
1737 pssPtr->procWaitList = cb;
1738 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1739 raidPtr->raidid, psid);
1740
1741 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1742 return (1);
1743 }
1744 /* called upon the completion of a forced reconstruction read.
1745 * all we do is schedule the FORCEDREADONE event.
1746 * called at interrupt context in the kernel, so don't do anything illegal here.
1747 */
1748 static void
1749 ForceReconReadDoneProc(void *arg, int status)
1750 {
1751 RF_ReconBuffer_t *rbuf = arg;
1752
1753 /* Detect that reconControl is no longer valid, and if that
1754 is the case, bail without calling rf_CauseReconEvent().
1755 There won't be anyone listening for this event anyway */
1756
1757 if (rbuf->raidPtr->reconControl == NULL)
1758 return;
1759
1760 if (status) {
1761 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1762 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1763 return;
1764 }
1765 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1766 }
1767 /* releases a block on the reconstruction of the indicated stripe */
1768 int
1769 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1770 {
1771 RF_StripeNum_t stripeID = asmap->stripeID;
1772 RF_ReconParityStripeStatus_t *pssPtr;
1773 RF_ReconUnitNum_t which_ru;
1774 RF_StripeNum_t psid;
1775 RF_CallbackDesc_t *cb;
1776
1777 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1778 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1779 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1780
1781 /* When recon is forced, the pss desc can get deleted before we get
1782 * back to unblock recon. But, this can _only_ happen when recon is
1783 * forced. It would be good to put some kind of sanity check here, but
1784 * how to decide if recon was just forced or not? */
1785 if (!pssPtr) {
1786 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1787 * RU %d\n",psid,which_ru); */
1788 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1789 if (rf_reconDebug || rf_pssDebug)
1790 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1791 #endif
1792 goto out;
1793 }
1794 pssPtr->blockCount--;
1795 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1796 raidPtr->raidid, psid, pssPtr->blockCount);
1797 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1798
1799 /* unblock recon before calling CauseReconEvent in case
1800 * CauseReconEvent causes us to try to issue a new read before
1801 * returning here. */
1802 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1803
1804
1805 while (pssPtr->blockWaitList) {
1806 /* spin through the block-wait list and
1807 release all the waiters */
1808 cb = pssPtr->blockWaitList;
1809 pssPtr->blockWaitList = cb->next;
1810 cb->next = NULL;
1811 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1812 rf_FreeCallbackDesc(cb);
1813 }
1814 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1815 /* if no recon was requested while recon was blocked */
1816 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1817 }
1818 }
1819 out:
1820 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1821 return (0);
1822 }
1823