Home | History | Annotate | Line # | Download | only in raidframe
rf_reconstruct.c revision 1.83
      1 /*	$NetBSD: rf_reconstruct.c,v 1.83 2005/02/05 23:39:12 oster Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /************************************************************
     30  *
     31  * rf_reconstruct.c -- code to perform on-line reconstruction
     32  *
     33  ************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.83 2005/02/05 23:39:12 oster Exp $");
     37 
     38 #include <sys/time.h>
     39 #include <sys/buf.h>
     40 #include <sys/errno.h>
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/ioctl.h>
     46 #include <sys/fcntl.h>
     47 #include <sys/vnode.h>
     48 #include <dev/raidframe/raidframevar.h>
     49 
     50 #include "rf_raid.h"
     51 #include "rf_reconutil.h"
     52 #include "rf_revent.h"
     53 #include "rf_reconbuffer.h"
     54 #include "rf_acctrace.h"
     55 #include "rf_etimer.h"
     56 #include "rf_dag.h"
     57 #include "rf_desc.h"
     58 #include "rf_debugprint.h"
     59 #include "rf_general.h"
     60 #include "rf_driver.h"
     61 #include "rf_utils.h"
     62 #include "rf_shutdown.h"
     63 
     64 #include "rf_kintf.h"
     65 
     66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
     67 
     68 #if RF_DEBUG_RECON
     69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
     74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
     75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
     76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
     77 
     78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     80 
     81 #else /* RF_DEBUG_RECON */
     82 
     83 #define Dprintf(s) {}
     84 #define Dprintf1(s,a) {}
     85 #define Dprintf2(s,a,b) {}
     86 #define Dprintf3(s,a,b,c) {}
     87 #define Dprintf4(s,a,b,c,d) {}
     88 #define Dprintf5(s,a,b,c,d,e) {}
     89 #define Dprintf6(s,a,b,c,d,e,f) {}
     90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
     91 
     92 #define DDprintf1(s,a) {}
     93 #define DDprintf2(s,a,b) {}
     94 
     95 #endif /* RF_DEBUG_RECON */
     96 
     97 #define RF_RECON_DONE_READS   1
     98 #define RF_RECON_READ_ERROR   2
     99 #define RF_RECON_WRITE_ERROR  3
    100 #define RF_RECON_READ_STOPPED 4
    101 
    102 #define RF_MAX_FREE_RECONBUFFER 32
    103 #define RF_MIN_FREE_RECONBUFFER 16
    104 
    105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
    106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
    107 static void FreeReconDesc(RF_RaidReconDesc_t *);
    108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
    109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
    110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
    111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
    112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
    113 				RF_SectorNum_t *);
    114 static int IssueNextWriteRequest(RF_Raid_t *);
    115 static int ReconReadDoneProc(void *, int);
    116 static int ReconWriteDoneProc(void *, int);
    117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
    118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
    119 			       RF_RowCol_t, RF_HeadSepLimit_t,
    120 			       RF_ReconUnitNum_t);
    121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
    122 					      RF_ReconParityStripeStatus_t *,
    123 					      RF_PerDiskReconCtrl_t *,
    124 					      RF_RowCol_t, RF_StripeNum_t,
    125 					      RF_ReconUnitNum_t);
    126 static void ForceReconReadDoneProc(void *, int);
    127 static void rf_ShutdownReconstruction(void *);
    128 
    129 struct RF_ReconDoneProc_s {
    130 	void    (*proc) (RF_Raid_t *, void *);
    131 	void   *arg;
    132 	RF_ReconDoneProc_t *next;
    133 };
    134 
    135 /**************************************************************************
    136  *
    137  * sets up the parameters that will be used by the reconstruction process
    138  * currently there are none, except for those that the layout-specific
    139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
    140  *
    141  * in the kernel, we fire off the recon thread.
    142  *
    143  **************************************************************************/
    144 static void
    145 rf_ShutdownReconstruction(void *ignored)
    146 {
    147 	pool_destroy(&rf_pools.reconbuffer);
    148 }
    149 
    150 int
    151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
    152 {
    153 
    154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
    155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
    156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
    157 
    158 	return (0);
    159 }
    160 
    161 static RF_RaidReconDesc_t *
    162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
    163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
    164 		   RF_RowCol_t scol)
    165 {
    166 
    167 	RF_RaidReconDesc_t *reconDesc;
    168 
    169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
    170 		  (RF_RaidReconDesc_t *));
    171 	reconDesc->raidPtr = raidPtr;
    172 	reconDesc->col = col;
    173 	reconDesc->spareDiskPtr = spareDiskPtr;
    174 	reconDesc->numDisksDone = numDisksDone;
    175 	reconDesc->scol = scol;
    176 	reconDesc->next = NULL;
    177 
    178 	return (reconDesc);
    179 }
    180 
    181 static void
    182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
    183 {
    184 #if RF_RECON_STATS > 0
    185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
    186 	       reconDesc->raidPtr->raidid,
    187 	       (long) reconDesc->numReconEventWaits,
    188 	       (long) reconDesc->numReconExecDelays);
    189 #endif				/* RF_RECON_STATS > 0 */
    190 	printf("raid%d: %lu max exec ticks\n",
    191 	       reconDesc->raidPtr->raidid,
    192 	       (long) reconDesc->maxReconExecTicks);
    193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
    194 	printf("\n");
    195 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
    196 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
    197 }
    198 
    199 
    200 /*****************************************************************************
    201  *
    202  * primary routine to reconstruct a failed disk.  This should be called from
    203  * within its own thread.  It won't return until reconstruction completes,
    204  * fails, or is aborted.
    205  *****************************************************************************/
    206 int
    207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
    208 {
    209 	const RF_LayoutSW_t *lp;
    210 	int     rc;
    211 
    212 	lp = raidPtr->Layout.map;
    213 	if (lp->SubmitReconBuffer) {
    214 		/*
    215 	         * The current infrastructure only supports reconstructing one
    216 	         * disk at a time for each array.
    217 	         */
    218 		RF_LOCK_MUTEX(raidPtr->mutex);
    219 		while (raidPtr->reconInProgress) {
    220 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    221 		}
    222 		raidPtr->reconInProgress++;
    223 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    224 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
    225 		RF_LOCK_MUTEX(raidPtr->mutex);
    226 		raidPtr->reconInProgress--;
    227 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    228 	} else {
    229 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    230 		    lp->parityConfig);
    231 		rc = EIO;
    232 	}
    233 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    234 	return (rc);
    235 }
    236 
    237 int
    238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
    239 {
    240 	RF_ComponentLabel_t c_label;
    241 	RF_RaidDisk_t *spareDiskPtr = NULL;
    242 	RF_RaidReconDesc_t *reconDesc;
    243 	RF_RowCol_t scol;
    244 	int     numDisksDone = 0, rc;
    245 
    246 	/* first look for a spare drive onto which to reconstruct the data */
    247 	/* spare disk descriptors are stored in row 0.  This may have to
    248 	 * change eventually */
    249 
    250 	RF_LOCK_MUTEX(raidPtr->mutex);
    251 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
    252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    253 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    254 		if (raidPtr->status != rf_rs_degraded) {
    255 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
    256 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    257 			return (EINVAL);
    258 		}
    259 		scol = (-1);
    260 	} else {
    261 #endif
    262 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
    263 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
    264 				spareDiskPtr = &raidPtr->Disks[scol];
    265 				spareDiskPtr->status = rf_ds_used_spare;
    266 				break;
    267 			}
    268 		}
    269 		if (!spareDiskPtr) {
    270 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
    271 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    272 			return (ENOSPC);
    273 		}
    274 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
    275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    276 	}
    277 #endif
    278 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    279 
    280 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
    281 	raidPtr->reconDesc = (void *) reconDesc;
    282 #if RF_RECON_STATS > 0
    283 	reconDesc->hsStallCount = 0;
    284 	reconDesc->numReconExecDelays = 0;
    285 	reconDesc->numReconEventWaits = 0;
    286 #endif				/* RF_RECON_STATS > 0 */
    287 	reconDesc->reconExecTimerRunning = 0;
    288 	reconDesc->reconExecTicks = 0;
    289 	reconDesc->maxReconExecTicks = 0;
    290 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    291 
    292 	if (!rc) {
    293 		/* fix up the component label */
    294 		/* Don't actually need the read here.. */
    295 		raidread_component_label(
    296                         raidPtr->raid_cinfo[scol].ci_dev,
    297 			raidPtr->raid_cinfo[scol].ci_vp,
    298 			&c_label);
    299 
    300 		raid_init_component_label( raidPtr, &c_label);
    301 		c_label.row = 0;
    302 		c_label.column = col;
    303 		c_label.clean = RF_RAID_DIRTY;
    304 		c_label.status = rf_ds_optimal;
    305 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
    306 
    307 		/* We've just done a rebuild based on all the other
    308 		   disks, so at this point the parity is known to be
    309 		   clean, even if it wasn't before. */
    310 
    311 		/* XXX doesn't hold for RAID 6!!*/
    312 
    313 		RF_LOCK_MUTEX(raidPtr->mutex);
    314 		raidPtr->parity_good = RF_RAID_CLEAN;
    315 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    316 
    317 		/* XXXX MORE NEEDED HERE */
    318 
    319 		raidwrite_component_label(
    320                         raidPtr->raid_cinfo[scol].ci_dev,
    321 			raidPtr->raid_cinfo[scol].ci_vp,
    322 			&c_label);
    323 
    324 
    325 		rf_update_component_labels(raidPtr,
    326 					   RF_NORMAL_COMPONENT_UPDATE);
    327 
    328 	} else {
    329 		/* Reconstruct failed. */
    330 
    331 		RF_LOCK_MUTEX(raidPtr->mutex);
    332 		/* Failed disk goes back to "failed" status */
    333 		raidPtr->Disks[col].status = rf_ds_failed;
    334 
    335 		/* Spare disk goes back to "spare" status. */
    336 		spareDiskPtr->status = rf_ds_spare;
    337 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    338 	}
    339 	return (rc);
    340 }
    341 
    342 /*
    343 
    344    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
    345    and you don't get a spare until the next Monday.  With this function
    346    (and hot-swappable drives) you can now put your new disk containing
    347    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
    348    rebuild the data "on the spot".
    349 
    350 */
    351 
    352 int
    353 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
    354 {
    355 	RF_RaidDisk_t *spareDiskPtr = NULL;
    356 	RF_RaidReconDesc_t *reconDesc;
    357 	const RF_LayoutSW_t *lp;
    358 	RF_ComponentLabel_t c_label;
    359 	int     numDisksDone = 0, rc;
    360 	struct partinfo dpart;
    361 	struct vnode *vp;
    362 	struct vattr va;
    363 	struct proc *proc;
    364 	int retcode;
    365 	int ac;
    366 
    367 	lp = raidPtr->Layout.map;
    368 	if (!lp->SubmitReconBuffer) {
    369 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    370 			     lp->parityConfig);
    371 		/* wakeup anyone who might be waiting to do a reconstruct */
    372 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    373 		return(EIO);
    374 	}
    375 
    376 	/*
    377 	 * The current infrastructure only supports reconstructing one
    378 	 * disk at a time for each array.
    379 	 */
    380 	RF_LOCK_MUTEX(raidPtr->mutex);
    381 
    382 	if (raidPtr->Disks[col].status != rf_ds_failed) {
    383 		/* "It's gone..." */
    384 		raidPtr->numFailures++;
    385 		raidPtr->Disks[col].status = rf_ds_failed;
    386 		raidPtr->status = rf_rs_degraded;
    387 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    388 		rf_update_component_labels(raidPtr,
    389 					   RF_NORMAL_COMPONENT_UPDATE);
    390 		RF_LOCK_MUTEX(raidPtr->mutex);
    391 	}
    392 
    393 	while (raidPtr->reconInProgress) {
    394 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    395 	}
    396 
    397 	raidPtr->reconInProgress++;
    398 
    399 	/* first look for a spare drive onto which to reconstruct the
    400 	   data.  spare disk descriptors are stored in row 0.  This
    401 	   may have to change eventually */
    402 
    403 	/* Actually, we don't care if it's failed or not...  On a RAID
    404 	   set with correct parity, this function should be callable
    405 	   on any component without ill affects. */
    406 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
    407 
    408 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    409 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    410 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
    411 
    412 		raidPtr->reconInProgress--;
    413 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    414 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    415 		return (EINVAL);
    416 	}
    417 #endif
    418 	proc = raidPtr->engine_thread;
    419 
    420 	/* This device may have been opened successfully the
    421 	   first time. Close it before trying to open it again.. */
    422 
    423 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
    424 #if 0
    425 		printf("Closed the open device: %s\n",
    426 		       raidPtr->Disks[col].devname);
    427 #endif
    428 		vp = raidPtr->raid_cinfo[col].ci_vp;
    429 		ac = raidPtr->Disks[col].auto_configured;
    430 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    431 		rf_close_component(raidPtr, vp, ac);
    432 		RF_LOCK_MUTEX(raidPtr->mutex);
    433 		raidPtr->raid_cinfo[col].ci_vp = NULL;
    434 	}
    435 	/* note that this disk was *not* auto_configured (any longer)*/
    436 	raidPtr->Disks[col].auto_configured = 0;
    437 
    438 #if 0
    439 	printf("About to (re-)open the device for rebuilding: %s\n",
    440 	       raidPtr->Disks[col].devname);
    441 #endif
    442 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    443 	retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
    444 
    445 	if (retcode) {
    446 		printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
    447 		       raidPtr->Disks[col].devname, retcode);
    448 
    449 		/* the component isn't responding properly...
    450 		   must be still dead :-( */
    451 		RF_LOCK_MUTEX(raidPtr->mutex);
    452 		raidPtr->reconInProgress--;
    453 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    454 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    455 		return(retcode);
    456 	}
    457 
    458 	/* Ok, so we can at least do a lookup...
    459 	   How about actually getting a vp for it? */
    460 
    461 	if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
    462 		RF_LOCK_MUTEX(raidPtr->mutex);
    463 		raidPtr->reconInProgress--;
    464 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    465 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    466 		return(retcode);
    467 	}
    468 
    469 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
    470 	if (retcode) {
    471 		RF_LOCK_MUTEX(raidPtr->mutex);
    472 		raidPtr->reconInProgress--;
    473 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    474 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    475 		return(retcode);
    476 	}
    477 	RF_LOCK_MUTEX(raidPtr->mutex);
    478 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
    479 
    480 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
    481 		rf_protectedSectors;
    482 
    483 	raidPtr->raid_cinfo[col].ci_vp = vp;
    484 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
    485 
    486 	raidPtr->Disks[col].dev = va.va_rdev;
    487 
    488 	/* we allow the user to specify that only a fraction
    489 	   of the disks should be used this is just for debug:
    490 	   it speeds up * the parity scan */
    491 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
    492 		rf_sizePercentage / 100;
    493 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    494 
    495 	spareDiskPtr = &raidPtr->Disks[col];
    496 	spareDiskPtr->status = rf_ds_used_spare;
    497 
    498 	printf("raid%d: initiating in-place reconstruction on column %d\n",
    499 	       raidPtr->raidid, col);
    500 
    501 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
    502 				       numDisksDone, col);
    503 	raidPtr->reconDesc = (void *) reconDesc;
    504 #if RF_RECON_STATS > 0
    505 	reconDesc->hsStallCount = 0;
    506 	reconDesc->numReconExecDelays = 0;
    507 	reconDesc->numReconEventWaits = 0;
    508 #endif				/* RF_RECON_STATS > 0 */
    509 	reconDesc->reconExecTimerRunning = 0;
    510 	reconDesc->reconExecTicks = 0;
    511 	reconDesc->maxReconExecTicks = 0;
    512 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    513 
    514 	if (!rc) {
    515 		RF_LOCK_MUTEX(raidPtr->mutex);
    516 		/* Need to set these here, as at this point it'll be claiming
    517 		   that the disk is in rf_ds_spared!  But we know better :-) */
    518 
    519 		raidPtr->Disks[col].status = rf_ds_optimal;
    520 		raidPtr->status = rf_rs_optimal;
    521 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    522 
    523 		/* fix up the component label */
    524 		/* Don't actually need the read here.. */
    525 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
    526 					 raidPtr->raid_cinfo[col].ci_vp,
    527 					 &c_label);
    528 
    529 		RF_LOCK_MUTEX(raidPtr->mutex);
    530 		raid_init_component_label(raidPtr, &c_label);
    531 
    532 		c_label.row = 0;
    533 		c_label.column = col;
    534 
    535 		/* We've just done a rebuild based on all the other
    536 		   disks, so at this point the parity is known to be
    537 		   clean, even if it wasn't before. */
    538 
    539 		/* XXX doesn't hold for RAID 6!!*/
    540 
    541 		raidPtr->parity_good = RF_RAID_CLEAN;
    542 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    543 
    544 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
    545 					  raidPtr->raid_cinfo[col].ci_vp,
    546 					  &c_label);
    547 
    548 		rf_update_component_labels(raidPtr,
    549 					   RF_NORMAL_COMPONENT_UPDATE);
    550 	} else {
    551 		/* Reconstruct-in-place failed.  Disk goes back to
    552 		   "failed" status, regardless of what it was before.  */
    553 		RF_LOCK_MUTEX(raidPtr->mutex);
    554 		raidPtr->Disks[col].status = rf_ds_failed;
    555 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    556 	}
    557 
    558 	RF_LOCK_MUTEX(raidPtr->mutex);
    559 	raidPtr->reconInProgress--;
    560 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    561 
    562 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    563 	return (rc);
    564 }
    565 
    566 
    567 int
    568 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
    569 {
    570 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
    571 	RF_RowCol_t col = reconDesc->col;
    572 	RF_RowCol_t scol = reconDesc->scol;
    573 	RF_ReconMap_t *mapPtr;
    574 	RF_ReconCtrl_t *tmp_reconctrl;
    575 	RF_ReconEvent_t *event;
    576 	RF_CallbackDesc_t *p;
    577 	struct timeval etime, elpsd;
    578 	unsigned long xor_s, xor_resid_us;
    579 	int     i, ds;
    580 	int status;
    581 	int recon_error, write_error;
    582 
    583 	raidPtr->accumXorTimeUs = 0;
    584 #if RF_ACC_TRACE > 0
    585 	/* create one trace record per physical disk */
    586 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    587 #endif
    588 
    589 	/* quiesce the array prior to starting recon.  this is needed
    590 	 * to assure no nasty interactions with pending user writes.
    591 	 * We need to do this before we change the disk or row status. */
    592 
    593 	Dprintf("RECON: begin request suspend\n");
    594 	rf_SuspendNewRequestsAndWait(raidPtr);
    595 	Dprintf("RECON: end request suspend\n");
    596 
    597 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
    598 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
    599 
    600 	RF_LOCK_MUTEX(raidPtr->mutex);
    601 
    602 	/* create the reconstruction control pointer and install it in
    603 	 * the right slot */
    604 	raidPtr->reconControl = tmp_reconctrl;
    605 	mapPtr = raidPtr->reconControl->reconMap;
    606 	raidPtr->status = rf_rs_reconstructing;
    607 	raidPtr->Disks[col].status = rf_ds_reconstructing;
    608 	raidPtr->Disks[col].spareCol = scol;
    609 
    610 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    611 
    612 	RF_GETTIME(raidPtr->reconControl->starttime);
    613 
    614 	/* now start up the actual reconstruction: issue a read for
    615 	 * each surviving disk */
    616 
    617 	reconDesc->numDisksDone = 0;
    618 	for (i = 0; i < raidPtr->numCol; i++) {
    619 		if (i != col) {
    620 			/* find and issue the next I/O on the
    621 			 * indicated disk */
    622 			if (IssueNextReadRequest(raidPtr, i)) {
    623 				Dprintf1("RECON: done issuing for c%d\n", i);
    624 				reconDesc->numDisksDone++;
    625 			}
    626 		}
    627 	}
    628 
    629 	Dprintf("RECON: resume requests\n");
    630 	rf_ResumeNewRequests(raidPtr);
    631 
    632 	/* process reconstruction events until all disks report that
    633 	 * they've completed all work */
    634 
    635 	mapPtr = raidPtr->reconControl->reconMap;
    636 	recon_error = 0;
    637 	write_error = 0;
    638 
    639 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
    640 
    641 		event = rf_GetNextReconEvent(reconDesc);
    642 		status = ProcessReconEvent(raidPtr, event);
    643 
    644 		/* the normal case is that a read completes, and all is well. */
    645 		if (status == RF_RECON_DONE_READS) {
    646 			reconDesc->numDisksDone++;
    647 		} else if ((status == RF_RECON_READ_ERROR) ||
    648 			   (status == RF_RECON_WRITE_ERROR)) {
    649 			/* an error was encountered while reconstructing...
    650 			   Pretend we've finished this disk.
    651 			*/
    652 			recon_error = 1;
    653 			raidPtr->reconControl->error = 1;
    654 
    655 			/* bump the numDisksDone count for reads,
    656 			   but not for writes */
    657 			if (status == RF_RECON_READ_ERROR)
    658 				reconDesc->numDisksDone++;
    659 
    660 			/* write errors are special -- when we are
    661 			   done dealing with the reads that are
    662 			   finished, we don't want to wait for any
    663 			   writes */
    664 			if (status == RF_RECON_WRITE_ERROR)
    665 				write_error = 1;
    666 
    667 		} else if (status == RF_RECON_READ_STOPPED) {
    668 			/* count this component as being "done" */
    669 			reconDesc->numDisksDone++;
    670 		}
    671 
    672 		if (recon_error) {
    673 
    674 			/* make sure any stragglers are woken up so that
    675 			   their theads will complete, and we can get out
    676 			   of here with all IO processed */
    677 
    678 			while (raidPtr->reconControl->headSepCBList) {
    679 				p = raidPtr->reconControl->headSepCBList;
    680 				raidPtr->reconControl->headSepCBList = p->next;
    681 				p->next = NULL;
    682 				rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
    683 				rf_FreeCallbackDesc(p);
    684 			}
    685 		}
    686 
    687 		raidPtr->reconControl->numRUsTotal =
    688 			mapPtr->totalRUs;
    689 		raidPtr->reconControl->numRUsComplete =
    690 			mapPtr->totalRUs -
    691 			rf_UnitsLeftToReconstruct(mapPtr);
    692 
    693 #if RF_DEBUG_RECON
    694 		raidPtr->reconControl->percentComplete =
    695 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
    696 		if (rf_prReconSched) {
    697 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    698 		}
    699 #endif
    700 	}
    701 
    702 	mapPtr = raidPtr->reconControl->reconMap;
    703 	if (rf_reconDebug) {
    704 		printf("RECON: all reads completed\n");
    705 	}
    706 	/* at this point all the reads have completed.  We now wait
    707 	 * for any pending writes to complete, and then we're done */
    708 
    709 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
    710 
    711 		event = rf_GetNextReconEvent(reconDesc);
    712 		status = ProcessReconEvent(raidPtr, event);
    713 
    714 		if (status == RF_RECON_WRITE_ERROR) {
    715 			recon_error = 1;
    716 			raidPtr->reconControl->error = 1;
    717 			/* an error was encountered at the very end... bail */
    718 		} else {
    719 #if RF_DEBUG_RECON
    720 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
    721 			if (rf_prReconSched) {
    722 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    723 			}
    724 #endif
    725 		}
    726 	}
    727 
    728 	if (recon_error) {
    729 		/* we've encountered an error in reconstructing. */
    730 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
    731 
    732 		/* we start by blocking IO to the RAID set. */
    733 		rf_SuspendNewRequestsAndWait(raidPtr);
    734 
    735 		RF_LOCK_MUTEX(raidPtr->mutex);
    736 		/* mark set as being degraded, rather than
    737 		   rf_rs_reconstructing as we were before the problem.
    738 		   After this is done we can update status of the
    739 		   component disks without worrying about someone
    740 		   trying to read from a failed component.
    741 		*/
    742 		raidPtr->status = rf_rs_degraded;
    743 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    744 
    745 		/* resume IO */
    746 		rf_ResumeNewRequests(raidPtr);
    747 
    748 		/* At this point there are two cases:
    749 		   1) If we've experienced a read error, then we've
    750 		   already waited for all the reads we're going to get,
    751 		   and we just need to wait for the writes.
    752 
    753 		   2) If we've experienced a write error, we've also
    754 		   already waited for all the reads to complete,
    755 		   but there is little point in waiting for the writes --
    756 		   when they do complete, they will just be ignored.
    757 
    758 		   So we just wait for writes to complete if we didn't have a
    759 		   write error.
    760 		*/
    761 
    762 		if (!write_error) {
    763 			/* wait for writes to complete */
    764 			while (raidPtr->reconControl->pending_writes > 0) {
    765 
    766 				event = rf_GetNextReconEvent(reconDesc);
    767 				status = ProcessReconEvent(raidPtr, event);
    768 
    769 				if (status == RF_RECON_WRITE_ERROR) {
    770 					raidPtr->reconControl->error = 1;
    771 					/* an error was encountered at the very end... bail.
    772 					   This will be very bad news for the user, since
    773 					   at this point there will have been a read error
    774 					   on one component, and a write error on another!
    775 					*/
    776 					break;
    777 				}
    778 			}
    779 		}
    780 
    781 
    782 		/* cleanup */
    783 
    784 		/* drain the event queue - after waiting for the writes above,
    785 		   there shouldn't be much (if anything!) left in the queue. */
    786 
    787 		rf_DrainReconEventQueue(reconDesc);
    788 
    789 		/* XXX  As much as we'd like to free the recon control structure
    790 		   and the reconDesc, we have no way of knowing if/when those will
    791 		   be touched by IO that has yet to occur.  It is rather poor to be
    792 		   basically causing a 'memory leak' here, but there doesn't seem to be
    793 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
    794 		   gets a makeover this problem will go away.
    795 		*/
    796 #if 0
    797 		rf_FreeReconControl(raidPtr);
    798 #endif
    799 
    800 #if RF_ACC_TRACE > 0
    801 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    802 #endif
    803 		/* XXX see comment above */
    804 #if 0
    805 		FreeReconDesc(reconDesc);
    806 #endif
    807 
    808 		return (1);
    809 	}
    810 
    811 	/* Success:  mark the dead disk as reconstructed.  We quiesce
    812 	 * the array here to assure no nasty interactions with pending
    813 	 * user accesses when we free up the psstatus structure as
    814 	 * part of FreeReconControl() */
    815 
    816 	rf_SuspendNewRequestsAndWait(raidPtr);
    817 
    818 	RF_LOCK_MUTEX(raidPtr->mutex);
    819 	raidPtr->numFailures--;
    820 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
    821 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
    822 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
    823 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    824 	RF_GETTIME(etime);
    825 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
    826 
    827 	rf_ResumeNewRequests(raidPtr);
    828 
    829 	printf("raid%d: Reconstruction of disk at col %d completed\n",
    830 	       raidPtr->raidid, col);
    831 	xor_s = raidPtr->accumXorTimeUs / 1000000;
    832 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
    833 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
    834 	       raidPtr->raidid,
    835 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
    836 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
    837 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
    838 	       raidPtr->raidid,
    839 	       (int) raidPtr->reconControl->starttime.tv_sec,
    840 	       (int) raidPtr->reconControl->starttime.tv_usec,
    841 	       (int) etime.tv_sec, (int) etime.tv_usec);
    842 #if RF_RECON_STATS > 0
    843 	printf("raid%d: Total head-sep stall count was %d\n",
    844 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
    845 #endif				/* RF_RECON_STATS > 0 */
    846 	rf_FreeReconControl(raidPtr);
    847 #if RF_ACC_TRACE > 0
    848 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    849 #endif
    850 	FreeReconDesc(reconDesc);
    851 
    852 	return (0);
    853 
    854 }
    855 /*****************************************************************************
    856  * do the right thing upon each reconstruction event.
    857  *****************************************************************************/
    858 static int
    859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
    860 {
    861 	int     retcode = 0, submitblocked;
    862 	RF_ReconBuffer_t *rbuf;
    863 	RF_SectorCount_t sectorsPerRU;
    864 
    865 	retcode = RF_RECON_READ_STOPPED;
    866 
    867 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
    868 	switch (event->type) {
    869 
    870 		/* a read I/O has completed */
    871 	case RF_REVENT_READDONE:
    872 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
    873 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
    874 		    event->col, rbuf->parityStripeID);
    875 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
    876 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
    877 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
    878 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    879 		if (!raidPtr->reconControl->error) {
    880 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
    881 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
    882 			if (!submitblocked)
    883 				retcode = IssueNextReadRequest(raidPtr, event->col);
    884 		}
    885 		break;
    886 
    887 		/* a write I/O has completed */
    888 	case RF_REVENT_WRITEDONE:
    889 #if RF_DEBUG_RECON
    890 		if (rf_floatingRbufDebug) {
    891 			rf_CheckFloatingRbufCount(raidPtr, 1);
    892 		}
    893 #endif
    894 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
    895 		rbuf = (RF_ReconBuffer_t *) event->arg;
    896 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    897 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
    898 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
    899 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
    900 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
    901 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
    902 
    903 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    904 		raidPtr->reconControl->pending_writes--;
    905 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    906 
    907 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
    908 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    909 			while(raidPtr->reconControl->rb_lock) {
    910 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
    911 					&raidPtr->reconControl->rb_mutex);
    912 			}
    913 			raidPtr->reconControl->rb_lock = 1;
    914 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    915 
    916 			raidPtr->numFullReconBuffers--;
    917 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
    918 
    919 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    920 			raidPtr->reconControl->rb_lock = 0;
    921 			wakeup(&raidPtr->reconControl->rb_lock);
    922 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    923 		} else
    924 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
    925 				rf_FreeReconBuffer(rbuf);
    926 			else
    927 				RF_ASSERT(0);
    928 		retcode = 0;
    929 		break;
    930 
    931 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
    932 					 * cleared */
    933 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
    934 		if (!raidPtr->reconControl->error) {
    935 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
    936 							     0, (int) (long) event->arg);
    937 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
    938 							 * BUFCLEAR event if we
    939 							 * couldn't submit */
    940 			retcode = IssueNextReadRequest(raidPtr, event->col);
    941 		}
    942 		break;
    943 
    944 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
    945 					 * blockage has been cleared */
    946 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
    947 		if (!raidPtr->reconControl->error) {
    948 			retcode = TryToRead(raidPtr, event->col);
    949 		}
    950 		break;
    951 
    952 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
    953 					 * reconstruction blockage has been
    954 					 * cleared */
    955 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
    956 		if (!raidPtr->reconControl->error) {
    957 			retcode = TryToRead(raidPtr, event->col);
    958 		}
    959 		break;
    960 
    961 		/* a buffer has become ready to write */
    962 	case RF_REVENT_BUFREADY:
    963 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
    964 		if (!raidPtr->reconControl->error) {
    965 			retcode = IssueNextWriteRequest(raidPtr);
    966 #if RF_DEBUG_RECON
    967 			if (rf_floatingRbufDebug) {
    968 				rf_CheckFloatingRbufCount(raidPtr, 1);
    969 			}
    970 #endif
    971 		}
    972 		break;
    973 
    974 		/* we need to skip the current RU entirely because it got
    975 		 * recon'd while we were waiting for something else to happen */
    976 	case RF_REVENT_SKIP:
    977 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
    978 		if (!raidPtr->reconControl->error) {
    979 			retcode = IssueNextReadRequest(raidPtr, event->col);
    980 		}
    981 		break;
    982 
    983 		/* a forced-reconstruction read access has completed.  Just
    984 		 * submit the buffer */
    985 	case RF_REVENT_FORCEDREADDONE:
    986 		rbuf = (RF_ReconBuffer_t *) event->arg;
    987 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    988 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
    989 		if (!raidPtr->reconControl->error) {
    990 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
    991 			RF_ASSERT(!submitblocked);
    992 		}
    993 		break;
    994 
    995 		/* A read I/O failed to complete */
    996 	case RF_REVENT_READ_FAILED:
    997 		retcode = RF_RECON_READ_ERROR;
    998 		break;
    999 
   1000 		/* A write I/O failed to complete */
   1001 	case RF_REVENT_WRITE_FAILED:
   1002 		retcode = RF_RECON_WRITE_ERROR;
   1003 
   1004 		rbuf = (RF_ReconBuffer_t *) event->arg;
   1005 
   1006 		/* cleanup the disk queue data */
   1007 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
   1008 
   1009 		/* At this point we're erroring out, badly, and floatingRbufs
   1010 		   may not even be valid.  Rather than putting this back onto
   1011 		   the floatingRbufs list, just arrange for its immediate
   1012 		   destruction.
   1013 		*/
   1014 		rf_FreeReconBuffer(rbuf);
   1015 		break;
   1016 
   1017 		/* a forced read I/O failed to complete */
   1018 	case RF_REVENT_FORCEDREAD_FAILED:
   1019 		retcode = RF_RECON_READ_ERROR;
   1020 		break;
   1021 
   1022 	default:
   1023 		RF_PANIC();
   1024 	}
   1025 	rf_FreeReconEventDesc(event);
   1026 	return (retcode);
   1027 }
   1028 /*****************************************************************************
   1029  *
   1030  * find the next thing that's needed on the indicated disk, and issue
   1031  * a read request for it.  We assume that the reconstruction buffer
   1032  * associated with this process is free to receive the data.  If
   1033  * reconstruction is blocked on the indicated RU, we issue a
   1034  * blockage-release request instead of a physical disk read request.
   1035  * If the current disk gets too far ahead of the others, we issue a
   1036  * head-separation wait request and return.
   1037  *
   1038  * ctrl->{ru_count, curPSID, diskOffset} and
   1039  * rbuf->failedDiskSectorOffset are maintained to point to the unit
   1040  * we're currently accessing.  Note that this deviates from the
   1041  * standard C idiom of having counters point to the next thing to be
   1042  * accessed.  This allows us to easily retry when we're blocked by
   1043  * head separation or reconstruction-blockage events.
   1044  *
   1045  *****************************************************************************/
   1046 static int
   1047 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1048 {
   1049 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1050 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1051 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
   1052 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
   1053 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1054 	int     do_new_check = 0, retcode = 0, status;
   1055 
   1056 	/* if we are currently the slowest disk, mark that we have to do a new
   1057 	 * check */
   1058 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
   1059 		do_new_check = 1;
   1060 
   1061 	while (1) {
   1062 
   1063 		ctrl->ru_count++;
   1064 		if (ctrl->ru_count < RUsPerPU) {
   1065 			ctrl->diskOffset += sectorsPerRU;
   1066 			rbuf->failedDiskSectorOffset += sectorsPerRU;
   1067 		} else {
   1068 			ctrl->curPSID++;
   1069 			ctrl->ru_count = 0;
   1070 			/* code left over from when head-sep was based on
   1071 			 * parity stripe id */
   1072 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
   1073 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
   1074 				return (RF_RECON_DONE_READS);	/* finito! */
   1075 			}
   1076 			/* find the disk offsets of the start of the parity
   1077 			 * stripe on both the current disk and the failed
   1078 			 * disk. skip this entire parity stripe if either disk
   1079 			 * does not appear in the indicated PS */
   1080 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
   1081 			    &rbuf->spCol, &rbuf->spOffset);
   1082 			if (status) {
   1083 				ctrl->ru_count = RUsPerPU - 1;
   1084 				continue;
   1085 			}
   1086 		}
   1087 		rbuf->which_ru = ctrl->ru_count;
   1088 
   1089 		/* skip this RU if it's already been reconstructed */
   1090 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
   1091 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
   1092 			continue;
   1093 		}
   1094 		break;
   1095 	}
   1096 	ctrl->headSepCounter++;
   1097 	if (do_new_check)
   1098 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
   1099 
   1100 
   1101 	/* at this point, we have definitely decided what to do, and we have
   1102 	 * only to see if we can actually do it now */
   1103 	rbuf->parityStripeID = ctrl->curPSID;
   1104 	rbuf->which_ru = ctrl->ru_count;
   1105 #if RF_ACC_TRACE > 0
   1106 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
   1107 	    sizeof(raidPtr->recon_tracerecs[col]));
   1108 	raidPtr->recon_tracerecs[col].reconacc = 1;
   1109 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1110 #endif
   1111 	retcode = TryToRead(raidPtr, col);
   1112 	return (retcode);
   1113 }
   1114 
   1115 /*
   1116  * tries to issue the next read on the indicated disk.  We may be
   1117  * blocked by (a) the heads being too far apart, or (b) recon on the
   1118  * indicated RU being blocked due to a write by a user thread.  In
   1119  * this case, we issue a head-sep or blockage wait request, which will
   1120  * cause this same routine to be invoked again later when the blockage
   1121  * has cleared.
   1122  */
   1123 
   1124 static int
   1125 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1126 {
   1127 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1128 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
   1129 	RF_StripeNum_t psid = ctrl->curPSID;
   1130 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
   1131 	RF_DiskQueueData_t *req;
   1132 	int     status;
   1133 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
   1134 
   1135 	/* if the current disk is too far ahead of the others, issue a
   1136 	 * head-separation wait and return */
   1137 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
   1138 		return (0);
   1139 
   1140 	/* allocate a new PSS in case we need it */
   1141 	newpssPtr = rf_AllocPSStatus(raidPtr);
   1142 
   1143 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1144 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
   1145 
   1146 	if (pssPtr != newpssPtr) {
   1147 		rf_FreePSStatus(raidPtr, newpssPtr);
   1148 	}
   1149 
   1150 	/* if recon is blocked on the indicated parity stripe, issue a
   1151 	 * block-wait request and return. this also must mark the indicated RU
   1152 	 * in the stripe as under reconstruction if not blocked. */
   1153 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
   1154 	if (status == RF_PSS_RECON_BLOCKED) {
   1155 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
   1156 		goto out;
   1157 	} else
   1158 		if (status == RF_PSS_FORCED_ON_WRITE) {
   1159 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1160 			goto out;
   1161 		}
   1162 	/* make one last check to be sure that the indicated RU didn't get
   1163 	 * reconstructed while we were waiting for something else to happen.
   1164 	 * This is unfortunate in that it causes us to make this check twice
   1165 	 * in the normal case.  Might want to make some attempt to re-work
   1166 	 * this so that we only do this check if we've definitely blocked on
   1167 	 * one of the above checks.  When this condition is detected, we may
   1168 	 * have just created a bogus status entry, which we need to delete. */
   1169 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
   1170 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
   1171 		if (pssPtr == newpssPtr)
   1172 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1173 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1174 		goto out;
   1175 	}
   1176 	/* found something to read.  issue the I/O */
   1177 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
   1178 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
   1179 #if RF_ACC_TRACE > 0
   1180 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
   1181 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
   1182 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
   1183 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
   1184 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1185 #endif
   1186 	/* should be ok to use a NULL proc pointer here, all the bufs we use
   1187 	 * should be in kernel space */
   1188 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
   1189 	    ReconReadDoneProc, (void *) ctrl, NULL,
   1190 #if RF_ACC_TRACE > 0
   1191 				     &raidPtr->recon_tracerecs[col],
   1192 #else
   1193 				     NULL,
   1194 #endif
   1195 				     (void *) raidPtr, 0, NULL);
   1196 
   1197 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
   1198 
   1199 	ctrl->rbuf->arg = (void *) req;
   1200 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
   1201 	pssPtr->issued[col] = 1;
   1202 
   1203 out:
   1204 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1205 	return (0);
   1206 }
   1207 
   1208 
   1209 /*
   1210  * given a parity stripe ID, we want to find out whether both the
   1211  * current disk and the failed disk exist in that parity stripe.  If
   1212  * not, we want to skip this whole PS.  If so, we want to find the
   1213  * disk offset of the start of the PS on both the current disk and the
   1214  * failed disk.
   1215  *
   1216  * this works by getting a list of disks comprising the indicated
   1217  * parity stripe, and searching the list for the current and failed
   1218  * disks.  Once we've decided they both exist in the parity stripe, we
   1219  * need to decide whether each is data or parity, so that we'll know
   1220  * which mapping function to call to get the corresponding disk
   1221  * offsets.
   1222  *
   1223  * this is kind of unpleasant, but doing it this way allows the
   1224  * reconstruction code to use parity stripe IDs rather than physical
   1225  * disks address to march through the failed disk, which greatly
   1226  * simplifies a lot of code, as well as eliminating the need for a
   1227  * reverse-mapping function.  I also think it will execute faster,
   1228  * since the calls to the mapping module are kept to a minimum.
   1229  *
   1230  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
   1231  * THE STRIPE IN THE CORRECT ORDER
   1232  *
   1233  * raidPtr          - raid descriptor
   1234  * psid             - parity stripe identifier
   1235  * col              - column of disk to find the offsets for
   1236  * spCol            - out: col of spare unit for failed unit
   1237  * spOffset         - out: offset into disk containing spare unit
   1238  *
   1239  */
   1240 
   1241 
   1242 static int
   1243 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
   1244 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
   1245 		     RF_SectorNum_t *outFailedDiskSectorOffset,
   1246 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
   1247 {
   1248 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1249 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1250 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
   1251 	RF_RowCol_t *diskids;
   1252 	u_int   i, j, k, i_offset, j_offset;
   1253 	RF_RowCol_t pcol;
   1254 	int     testcol;
   1255 	RF_SectorNum_t poffset;
   1256 	char    i_is_parity = 0, j_is_parity = 0;
   1257 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
   1258 
   1259 	/* get a listing of the disks comprising that stripe */
   1260 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
   1261 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
   1262 	RF_ASSERT(diskids);
   1263 
   1264 	/* reject this entire parity stripe if it does not contain the
   1265 	 * indicated disk or it does not contain the failed disk */
   1266 
   1267 	for (i = 0; i < stripeWidth; i++) {
   1268 		if (col == diskids[i])
   1269 			break;
   1270 	}
   1271 	if (i == stripeWidth)
   1272 		goto skipit;
   1273 	for (j = 0; j < stripeWidth; j++) {
   1274 		if (fcol == diskids[j])
   1275 			break;
   1276 	}
   1277 	if (j == stripeWidth) {
   1278 		goto skipit;
   1279 	}
   1280 	/* find out which disk the parity is on */
   1281 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
   1282 
   1283 	/* find out if either the current RU or the failed RU is parity */
   1284 	/* also, if the parity occurs in this stripe prior to the data and/or
   1285 	 * failed col, we need to decrement i and/or j */
   1286 	for (k = 0; k < stripeWidth; k++)
   1287 		if (diskids[k] == pcol)
   1288 			break;
   1289 	RF_ASSERT(k < stripeWidth);
   1290 	i_offset = i;
   1291 	j_offset = j;
   1292 	if (k < i)
   1293 		i_offset--;
   1294 	else
   1295 		if (k == i) {
   1296 			i_is_parity = 1;
   1297 			i_offset = 0;
   1298 		}		/* set offsets to zero to disable multiply
   1299 				 * below */
   1300 	if (k < j)
   1301 		j_offset--;
   1302 	else
   1303 		if (k == j) {
   1304 			j_is_parity = 1;
   1305 			j_offset = 0;
   1306 		}
   1307 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
   1308 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
   1309 	 * tells us how far into the stripe the [current,failed] disk is. */
   1310 
   1311 	/* call the mapping routine to get the offset into the current disk,
   1312 	 * repeat for failed disk. */
   1313 	if (i_is_parity)
   1314 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1315 	else
   1316 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1317 
   1318 	RF_ASSERT(col == testcol);
   1319 
   1320 	if (j_is_parity)
   1321 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1322 	else
   1323 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1324 	RF_ASSERT(fcol == testcol);
   1325 
   1326 	/* now locate the spare unit for the failed unit */
   1327 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1328 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
   1329 		if (j_is_parity)
   1330 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1331 		else
   1332 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1333 	} else {
   1334 #endif
   1335 		*spCol = raidPtr->reconControl->spareCol;
   1336 		*spOffset = *outFailedDiskSectorOffset;
   1337 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1338 	}
   1339 #endif
   1340 	return (0);
   1341 
   1342 skipit:
   1343 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
   1344 	    psid, col);
   1345 	return (1);
   1346 }
   1347 /* this is called when a buffer has become ready to write to the replacement disk */
   1348 static int
   1349 IssueNextWriteRequest(RF_Raid_t *raidPtr)
   1350 {
   1351 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1352 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1353 #if RF_ACC_TRACE > 0
   1354 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1355 #endif
   1356 	RF_ReconBuffer_t *rbuf;
   1357 	RF_DiskQueueData_t *req;
   1358 
   1359 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
   1360 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
   1361 				 * have gotten the event that sent us here */
   1362 	RF_ASSERT(rbuf->pssPtr);
   1363 
   1364 	rbuf->pssPtr->writeRbuf = rbuf;
   1365 	rbuf->pssPtr = NULL;
   1366 
   1367 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
   1368 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
   1369 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
   1370 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
   1371 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
   1372 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
   1373 
   1374 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
   1375 	 * kernel space */
   1376 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
   1377 	    sectorsPerRU, rbuf->buffer,
   1378 	    rbuf->parityStripeID, rbuf->which_ru,
   1379 	    ReconWriteDoneProc, (void *) rbuf, NULL,
   1380 #if RF_ACC_TRACE > 0
   1381 	    &raidPtr->recon_tracerecs[fcol],
   1382 #else
   1383 				     NULL,
   1384 #endif
   1385 	    (void *) raidPtr, 0, NULL);
   1386 
   1387 	RF_ASSERT(req);		/* XXX -- fix this -- XXX */
   1388 
   1389 	rbuf->arg = (void *) req;
   1390 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1391 	raidPtr->reconControl->pending_writes++;
   1392 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1393 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
   1394 
   1395 	return (0);
   1396 }
   1397 
   1398 /*
   1399  * this gets called upon the completion of a reconstruction read
   1400  * operation the arg is a pointer to the per-disk reconstruction
   1401  * control structure for the process that just finished a read.
   1402  *
   1403  * called at interrupt context in the kernel, so don't do anything
   1404  * illegal here.
   1405  */
   1406 static int
   1407 ReconReadDoneProc(void *arg, int status)
   1408 {
   1409 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
   1410 	RF_Raid_t *raidPtr;
   1411 
   1412 	/* Detect that reconCtrl is no longer valid, and if that
   1413 	   is the case, bail without calling rf_CauseReconEvent().
   1414 	   There won't be anyone listening for this event anyway */
   1415 
   1416 	if (ctrl->reconCtrl == NULL)
   1417 		return(0);
   1418 
   1419 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
   1420 
   1421 	if (status) {
   1422 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
   1423 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
   1424 		return(0);
   1425 	}
   1426 #if RF_ACC_TRACE > 0
   1427 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1428 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1429 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
   1430 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1431 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1432 #endif
   1433 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
   1434 	return (0);
   1435 }
   1436 /* this gets called upon the completion of a reconstruction write operation.
   1437  * the arg is a pointer to the rbuf that was just written
   1438  *
   1439  * called at interrupt context in the kernel, so don't do anything illegal here.
   1440  */
   1441 static int
   1442 ReconWriteDoneProc(void *arg, int status)
   1443 {
   1444 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
   1445 
   1446 	/* Detect that reconControl is no longer valid, and if that
   1447 	   is the case, bail without calling rf_CauseReconEvent().
   1448 	   There won't be anyone listening for this event anyway */
   1449 
   1450 	if (rbuf->raidPtr->reconControl == NULL)
   1451 		return(0);
   1452 
   1453 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
   1454 	if (status) {
   1455 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
   1456 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
   1457 		return(0);
   1458 	}
   1459 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
   1460 	return (0);
   1461 }
   1462 
   1463 
   1464 /*
   1465  * computes a new minimum head sep, and wakes up anyone who needs to
   1466  * be woken as a result
   1467  */
   1468 static void
   1469 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
   1470 {
   1471 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1472 	RF_HeadSepLimit_t new_min;
   1473 	RF_RowCol_t i;
   1474 	RF_CallbackDesc_t *p;
   1475 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
   1476 								 * of a minimum */
   1477 
   1478 
   1479 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1480 	while(reconCtrlPtr->rb_lock) {
   1481 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
   1482 	}
   1483 	reconCtrlPtr->rb_lock = 1;
   1484 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1485 
   1486 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
   1487 	for (i = 0; i < raidPtr->numCol; i++)
   1488 		if (i != reconCtrlPtr->fcol) {
   1489 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
   1490 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
   1491 		}
   1492 	/* set the new minimum and wake up anyone who can now run again */
   1493 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
   1494 		reconCtrlPtr->minHeadSepCounter = new_min;
   1495 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
   1496 		while (reconCtrlPtr->headSepCBList) {
   1497 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
   1498 				break;
   1499 			p = reconCtrlPtr->headSepCBList;
   1500 			reconCtrlPtr->headSepCBList = p->next;
   1501 			p->next = NULL;
   1502 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1503 			rf_FreeCallbackDesc(p);
   1504 		}
   1505 
   1506 	}
   1507 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1508 	reconCtrlPtr->rb_lock = 0;
   1509 	wakeup(&reconCtrlPtr->rb_lock);
   1510 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1511 }
   1512 
   1513 /*
   1514  * checks to see that the maximum head separation will not be violated
   1515  * if we initiate a reconstruction I/O on the indicated disk.
   1516  * Limiting the maximum head separation between two disks eliminates
   1517  * the nasty buffer-stall conditions that occur when one disk races
   1518  * ahead of the others and consumes all of the floating recon buffers.
   1519  * This code is complex and unpleasant but it's necessary to avoid
   1520  * some very nasty, albeit fairly rare, reconstruction behavior.
   1521  *
   1522  * returns non-zero if and only if we have to stop working on the
   1523  * indicated disk due to a head-separation delay.
   1524  */
   1525 static int
   1526 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
   1527 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
   1528 		    RF_ReconUnitNum_t which_ru)
   1529 {
   1530 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1531 	RF_CallbackDesc_t *cb, *p, *pt;
   1532 	int     retval = 0;
   1533 
   1534 	/* if we're too far ahead of the slowest disk, stop working on this
   1535 	 * disk until the slower ones catch up.  We do this by scheduling a
   1536 	 * wakeup callback for the time when the slowest disk has caught up.
   1537 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
   1538 	 * must have fallen to at most 80% of the max allowable head
   1539 	 * separation before we'll wake up.
   1540 	 *
   1541 	 */
   1542 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1543 	while(reconCtrlPtr->rb_lock) {
   1544 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
   1545 	}
   1546 	reconCtrlPtr->rb_lock = 1;
   1547 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1548 	if ((raidPtr->headSepLimit >= 0) &&
   1549 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
   1550 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
   1551 			 raidPtr->raidid, col, ctrl->headSepCounter,
   1552 			 reconCtrlPtr->minHeadSepCounter,
   1553 			 raidPtr->headSepLimit);
   1554 		cb = rf_AllocCallbackDesc();
   1555 		/* the minHeadSepCounter value we have to get to before we'll
   1556 		 * wake up.  build in 20% hysteresis. */
   1557 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
   1558 		cb->col = col;
   1559 		cb->next = NULL;
   1560 
   1561 		/* insert this callback descriptor into the sorted list of
   1562 		 * pending head-sep callbacks */
   1563 		p = reconCtrlPtr->headSepCBList;
   1564 		if (!p)
   1565 			reconCtrlPtr->headSepCBList = cb;
   1566 		else
   1567 			if (cb->callbackArg.v < p->callbackArg.v) {
   1568 				cb->next = reconCtrlPtr->headSepCBList;
   1569 				reconCtrlPtr->headSepCBList = cb;
   1570 			} else {
   1571 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
   1572 				cb->next = p;
   1573 				pt->next = cb;
   1574 			}
   1575 		retval = 1;
   1576 #if RF_RECON_STATS > 0
   1577 		ctrl->reconCtrl->reconDesc->hsStallCount++;
   1578 #endif				/* RF_RECON_STATS > 0 */
   1579 	}
   1580 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1581 	reconCtrlPtr->rb_lock = 0;
   1582 	wakeup(&reconCtrlPtr->rb_lock);
   1583 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1584 
   1585 	return (retval);
   1586 }
   1587 /*
   1588  * checks to see if reconstruction has been either forced or blocked
   1589  * by a user operation.  if forced, we skip this RU entirely.  else if
   1590  * blocked, put ourselves on the wait list.  else return 0.
   1591  *
   1592  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
   1593  */
   1594 static int
   1595 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
   1596 				   RF_ReconParityStripeStatus_t *pssPtr,
   1597 				   RF_PerDiskReconCtrl_t *ctrl,
   1598 				   RF_RowCol_t col, RF_StripeNum_t psid,
   1599 				   RF_ReconUnitNum_t which_ru)
   1600 {
   1601 	RF_CallbackDesc_t *cb;
   1602 	int     retcode = 0;
   1603 
   1604 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
   1605 		retcode = RF_PSS_FORCED_ON_WRITE;
   1606 	else
   1607 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
   1608 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
   1609 			cb = rf_AllocCallbackDesc();	/* append ourselves to
   1610 							 * the blockage-wait
   1611 							 * list */
   1612 			cb->col = col;
   1613 			cb->next = pssPtr->blockWaitList;
   1614 			pssPtr->blockWaitList = cb;
   1615 			retcode = RF_PSS_RECON_BLOCKED;
   1616 		}
   1617 	if (!retcode)
   1618 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
   1619 							 * reconstruction */
   1620 
   1621 	return (retcode);
   1622 }
   1623 /*
   1624  * if reconstruction is currently ongoing for the indicated stripeID,
   1625  * reconstruction is forced to completion and we return non-zero to
   1626  * indicate that the caller must wait.  If not, then reconstruction is
   1627  * blocked on the indicated stripe and the routine returns zero.  If
   1628  * and only if we return non-zero, we'll cause the cbFunc to get
   1629  * invoked with the cbArg when the reconstruction has completed.
   1630  */
   1631 int
   1632 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1633 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
   1634 {
   1635 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
   1636 							 * forcing recon on */
   1637 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
   1638 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
   1639 						 * stripe status structure */
   1640 	RF_StripeNum_t psid;	/* parity stripe id */
   1641 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
   1642 						 * offset */
   1643 	RF_RowCol_t *diskids;
   1644 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
   1645 	RF_RowCol_t fcol, diskno, i;
   1646 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
   1647 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
   1648 	RF_CallbackDesc_t *cb;
   1649 	int     nPromoted;
   1650 
   1651 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1652 
   1653 	/* allocate a new PSS in case we need it */
   1654         newpssPtr = rf_AllocPSStatus(raidPtr);
   1655 
   1656 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1657 
   1658 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
   1659 
   1660         if (pssPtr != newpssPtr) {
   1661                 rf_FreePSStatus(raidPtr, newpssPtr);
   1662         }
   1663 
   1664 	/* if recon is not ongoing on this PS, just return */
   1665 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1666 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1667 		return (0);
   1668 	}
   1669 	/* otherwise, we have to wait for reconstruction to complete on this
   1670 	 * RU. */
   1671 	/* In order to avoid waiting for a potentially large number of
   1672 	 * low-priority accesses to complete, we force a normal-priority (i.e.
   1673 	 * not low-priority) reconstruction on this RU. */
   1674 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
   1675 		DDprintf1("Forcing recon on psid %ld\n", psid);
   1676 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
   1677 								 * forced recon */
   1678 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
   1679 							 * that we just set */
   1680 		fcol = raidPtr->reconControl->fcol;
   1681 
   1682 		/* get a listing of the disks comprising the indicated stripe */
   1683 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
   1684 
   1685 		/* For previously issued reads, elevate them to normal
   1686 		 * priority.  If the I/O has already completed, it won't be
   1687 		 * found in the queue, and hence this will be a no-op. For
   1688 		 * unissued reads, allocate buffers and issue new reads.  The
   1689 		 * fact that we've set the FORCED bit means that the regular
   1690 		 * recon procs will not re-issue these reqs */
   1691 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
   1692 			if ((diskno = diskids[i]) != fcol) {
   1693 				if (pssPtr->issued[diskno]) {
   1694 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
   1695 					if (rf_reconDebug && nPromoted)
   1696 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
   1697 				} else {
   1698 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
   1699 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
   1700 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
   1701 													 * location */
   1702 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
   1703 					new_rbuf->which_ru = which_ru;
   1704 					new_rbuf->failedDiskSectorOffset = fd_offset;
   1705 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
   1706 
   1707 					/* use NULL b_proc b/c all addrs
   1708 					 * should be in kernel space */
   1709 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
   1710 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
   1711 					    NULL, (void *) raidPtr, 0, NULL);
   1712 
   1713 					RF_ASSERT(req);	/* XXX -- fix this --
   1714 							 * XXX */
   1715 
   1716 					new_rbuf->arg = req;
   1717 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
   1718 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
   1719 				}
   1720 			}
   1721 		/* if the write is sitting in the disk queue, elevate its
   1722 		 * priority */
   1723 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
   1724 			printf("raid%d: promoted write to col %d\n",
   1725 			       raidPtr->raidid, fcol);
   1726 	}
   1727 	/* install a callback descriptor to be invoked when recon completes on
   1728 	 * this parity stripe. */
   1729 	cb = rf_AllocCallbackDesc();
   1730 	/* XXX the following is bogus.. These functions don't really match!!
   1731 	 * GO */
   1732 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
   1733 	cb->callbackArg.p = (void *) cbArg;
   1734 	cb->next = pssPtr->procWaitList;
   1735 	pssPtr->procWaitList = cb;
   1736 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
   1737 		  raidPtr->raidid, psid);
   1738 
   1739 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1740 	return (1);
   1741 }
   1742 /* called upon the completion of a forced reconstruction read.
   1743  * all we do is schedule the FORCEDREADONE event.
   1744  * called at interrupt context in the kernel, so don't do anything illegal here.
   1745  */
   1746 static void
   1747 ForceReconReadDoneProc(void *arg, int status)
   1748 {
   1749 	RF_ReconBuffer_t *rbuf = arg;
   1750 
   1751 	/* Detect that reconControl is no longer valid, and if that
   1752 	   is the case, bail without calling rf_CauseReconEvent().
   1753 	   There won't be anyone listening for this event anyway */
   1754 
   1755 	if (rbuf->raidPtr->reconControl == NULL)
   1756 		return;
   1757 
   1758 	if (status) {
   1759 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
   1760 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
   1761 		return;
   1762 	}
   1763 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
   1764 }
   1765 /* releases a block on the reconstruction of the indicated stripe */
   1766 int
   1767 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
   1768 {
   1769 	RF_StripeNum_t stripeID = asmap->stripeID;
   1770 	RF_ReconParityStripeStatus_t *pssPtr;
   1771 	RF_ReconUnitNum_t which_ru;
   1772 	RF_StripeNum_t psid;
   1773 	RF_CallbackDesc_t *cb;
   1774 
   1775 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1776 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1777 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
   1778 
   1779 	/* When recon is forced, the pss desc can get deleted before we get
   1780 	 * back to unblock recon. But, this can _only_ happen when recon is
   1781 	 * forced. It would be good to put some kind of sanity check here, but
   1782 	 * how to decide if recon was just forced or not? */
   1783 	if (!pssPtr) {
   1784 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
   1785 		 * RU %d\n",psid,which_ru); */
   1786 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
   1787 		if (rf_reconDebug || rf_pssDebug)
   1788 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
   1789 #endif
   1790 		goto out;
   1791 	}
   1792 	pssPtr->blockCount--;
   1793 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
   1794 		 raidPtr->raidid, psid, pssPtr->blockCount);
   1795 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
   1796 
   1797 		/* unblock recon before calling CauseReconEvent in case
   1798 		 * CauseReconEvent causes us to try to issue a new read before
   1799 		 * returning here. */
   1800 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
   1801 
   1802 
   1803 		while (pssPtr->blockWaitList) {
   1804 			/* spin through the block-wait list and
   1805 			   release all the waiters */
   1806 			cb = pssPtr->blockWaitList;
   1807 			pssPtr->blockWaitList = cb->next;
   1808 			cb->next = NULL;
   1809 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
   1810 			rf_FreeCallbackDesc(cb);
   1811 		}
   1812 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1813 			/* if no recon was requested while recon was blocked */
   1814 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1815 		}
   1816 	}
   1817 out:
   1818 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1819 	return (0);
   1820 }
   1821