rf_reconstruct.c revision 1.83 1 /* $NetBSD: rf_reconstruct.c,v 1.83 2005/02/05 23:39:12 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.83 2005/02/05 23:39:12 oster Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 RF_RowCol_t, RF_HeadSepLimit_t,
120 RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 RF_ReconParityStripeStatus_t *,
123 RF_PerDiskReconCtrl_t *,
124 RF_RowCol_t, RF_StripeNum_t,
125 RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128
129 struct RF_ReconDoneProc_s {
130 void (*proc) (RF_Raid_t *, void *);
131 void *arg;
132 RF_ReconDoneProc_t *next;
133 };
134
135 /**************************************************************************
136 *
137 * sets up the parameters that will be used by the reconstruction process
138 * currently there are none, except for those that the layout-specific
139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140 *
141 * in the kernel, we fire off the recon thread.
142 *
143 **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157
158 return (0);
159 }
160
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 RF_RowCol_t scol)
165 {
166
167 RF_RaidReconDesc_t *reconDesc;
168
169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 (RF_RaidReconDesc_t *));
171 reconDesc->raidPtr = raidPtr;
172 reconDesc->col = col;
173 reconDesc->spareDiskPtr = spareDiskPtr;
174 reconDesc->numDisksDone = numDisksDone;
175 reconDesc->scol = scol;
176 reconDesc->next = NULL;
177
178 return (reconDesc);
179 }
180
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 reconDesc->raidPtr->raidid,
187 (long) reconDesc->numReconEventWaits,
188 (long) reconDesc->numReconExecDelays);
189 #endif /* RF_RECON_STATS > 0 */
190 printf("raid%d: %lu max exec ticks\n",
191 reconDesc->raidPtr->raidid,
192 (long) reconDesc->maxReconExecTicks);
193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
194 printf("\n");
195 #endif /* (RF_RECON_STATS > 0) || KERNEL */
196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
197 }
198
199
200 /*****************************************************************************
201 *
202 * primary routine to reconstruct a failed disk. This should be called from
203 * within its own thread. It won't return until reconstruction completes,
204 * fails, or is aborted.
205 *****************************************************************************/
206 int
207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
208 {
209 const RF_LayoutSW_t *lp;
210 int rc;
211
212 lp = raidPtr->Layout.map;
213 if (lp->SubmitReconBuffer) {
214 /*
215 * The current infrastructure only supports reconstructing one
216 * disk at a time for each array.
217 */
218 RF_LOCK_MUTEX(raidPtr->mutex);
219 while (raidPtr->reconInProgress) {
220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
221 }
222 raidPtr->reconInProgress++;
223 RF_UNLOCK_MUTEX(raidPtr->mutex);
224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
225 RF_LOCK_MUTEX(raidPtr->mutex);
226 raidPtr->reconInProgress--;
227 RF_UNLOCK_MUTEX(raidPtr->mutex);
228 } else {
229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 lp->parityConfig);
231 rc = EIO;
232 }
233 RF_SIGNAL_COND(raidPtr->waitForReconCond);
234 return (rc);
235 }
236
237 int
238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
239 {
240 RF_ComponentLabel_t c_label;
241 RF_RaidDisk_t *spareDiskPtr = NULL;
242 RF_RaidReconDesc_t *reconDesc;
243 RF_RowCol_t scol;
244 int numDisksDone = 0, rc;
245
246 /* first look for a spare drive onto which to reconstruct the data */
247 /* spare disk descriptors are stored in row 0. This may have to
248 * change eventually */
249
250 RF_LOCK_MUTEX(raidPtr->mutex);
251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
254 if (raidPtr->status != rf_rs_degraded) {
255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
256 RF_UNLOCK_MUTEX(raidPtr->mutex);
257 return (EINVAL);
258 }
259 scol = (-1);
260 } else {
261 #endif
262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
263 if (raidPtr->Disks[scol].status == rf_ds_spare) {
264 spareDiskPtr = &raidPtr->Disks[scol];
265 spareDiskPtr->status = rf_ds_used_spare;
266 break;
267 }
268 }
269 if (!spareDiskPtr) {
270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
271 RF_UNLOCK_MUTEX(raidPtr->mutex);
272 return (ENOSPC);
273 }
274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
276 }
277 #endif
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279
280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
281 raidPtr->reconDesc = (void *) reconDesc;
282 #if RF_RECON_STATS > 0
283 reconDesc->hsStallCount = 0;
284 reconDesc->numReconExecDelays = 0;
285 reconDesc->numReconEventWaits = 0;
286 #endif /* RF_RECON_STATS > 0 */
287 reconDesc->reconExecTimerRunning = 0;
288 reconDesc->reconExecTicks = 0;
289 reconDesc->maxReconExecTicks = 0;
290 rc = rf_ContinueReconstructFailedDisk(reconDesc);
291
292 if (!rc) {
293 /* fix up the component label */
294 /* Don't actually need the read here.. */
295 raidread_component_label(
296 raidPtr->raid_cinfo[scol].ci_dev,
297 raidPtr->raid_cinfo[scol].ci_vp,
298 &c_label);
299
300 raid_init_component_label( raidPtr, &c_label);
301 c_label.row = 0;
302 c_label.column = col;
303 c_label.clean = RF_RAID_DIRTY;
304 c_label.status = rf_ds_optimal;
305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
306
307 /* We've just done a rebuild based on all the other
308 disks, so at this point the parity is known to be
309 clean, even if it wasn't before. */
310
311 /* XXX doesn't hold for RAID 6!!*/
312
313 RF_LOCK_MUTEX(raidPtr->mutex);
314 raidPtr->parity_good = RF_RAID_CLEAN;
315 RF_UNLOCK_MUTEX(raidPtr->mutex);
316
317 /* XXXX MORE NEEDED HERE */
318
319 raidwrite_component_label(
320 raidPtr->raid_cinfo[scol].ci_dev,
321 raidPtr->raid_cinfo[scol].ci_vp,
322 &c_label);
323
324
325 rf_update_component_labels(raidPtr,
326 RF_NORMAL_COMPONENT_UPDATE);
327
328 } else {
329 /* Reconstruct failed. */
330
331 RF_LOCK_MUTEX(raidPtr->mutex);
332 /* Failed disk goes back to "failed" status */
333 raidPtr->Disks[col].status = rf_ds_failed;
334
335 /* Spare disk goes back to "spare" status. */
336 spareDiskPtr->status = rf_ds_spare;
337 RF_UNLOCK_MUTEX(raidPtr->mutex);
338 }
339 return (rc);
340 }
341
342 /*
343
344 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
345 and you don't get a spare until the next Monday. With this function
346 (and hot-swappable drives) you can now put your new disk containing
347 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
348 rebuild the data "on the spot".
349
350 */
351
352 int
353 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
354 {
355 RF_RaidDisk_t *spareDiskPtr = NULL;
356 RF_RaidReconDesc_t *reconDesc;
357 const RF_LayoutSW_t *lp;
358 RF_ComponentLabel_t c_label;
359 int numDisksDone = 0, rc;
360 struct partinfo dpart;
361 struct vnode *vp;
362 struct vattr va;
363 struct proc *proc;
364 int retcode;
365 int ac;
366
367 lp = raidPtr->Layout.map;
368 if (!lp->SubmitReconBuffer) {
369 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
370 lp->parityConfig);
371 /* wakeup anyone who might be waiting to do a reconstruct */
372 RF_SIGNAL_COND(raidPtr->waitForReconCond);
373 return(EIO);
374 }
375
376 /*
377 * The current infrastructure only supports reconstructing one
378 * disk at a time for each array.
379 */
380 RF_LOCK_MUTEX(raidPtr->mutex);
381
382 if (raidPtr->Disks[col].status != rf_ds_failed) {
383 /* "It's gone..." */
384 raidPtr->numFailures++;
385 raidPtr->Disks[col].status = rf_ds_failed;
386 raidPtr->status = rf_rs_degraded;
387 RF_UNLOCK_MUTEX(raidPtr->mutex);
388 rf_update_component_labels(raidPtr,
389 RF_NORMAL_COMPONENT_UPDATE);
390 RF_LOCK_MUTEX(raidPtr->mutex);
391 }
392
393 while (raidPtr->reconInProgress) {
394 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
395 }
396
397 raidPtr->reconInProgress++;
398
399 /* first look for a spare drive onto which to reconstruct the
400 data. spare disk descriptors are stored in row 0. This
401 may have to change eventually */
402
403 /* Actually, we don't care if it's failed or not... On a RAID
404 set with correct parity, this function should be callable
405 on any component without ill affects. */
406 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
407
408 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
409 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
410 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
411
412 raidPtr->reconInProgress--;
413 RF_UNLOCK_MUTEX(raidPtr->mutex);
414 RF_SIGNAL_COND(raidPtr->waitForReconCond);
415 return (EINVAL);
416 }
417 #endif
418 proc = raidPtr->engine_thread;
419
420 /* This device may have been opened successfully the
421 first time. Close it before trying to open it again.. */
422
423 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
424 #if 0
425 printf("Closed the open device: %s\n",
426 raidPtr->Disks[col].devname);
427 #endif
428 vp = raidPtr->raid_cinfo[col].ci_vp;
429 ac = raidPtr->Disks[col].auto_configured;
430 RF_UNLOCK_MUTEX(raidPtr->mutex);
431 rf_close_component(raidPtr, vp, ac);
432 RF_LOCK_MUTEX(raidPtr->mutex);
433 raidPtr->raid_cinfo[col].ci_vp = NULL;
434 }
435 /* note that this disk was *not* auto_configured (any longer)*/
436 raidPtr->Disks[col].auto_configured = 0;
437
438 #if 0
439 printf("About to (re-)open the device for rebuilding: %s\n",
440 raidPtr->Disks[col].devname);
441 #endif
442 RF_UNLOCK_MUTEX(raidPtr->mutex);
443 retcode = raidlookup(raidPtr->Disks[col].devname, proc, &vp);
444
445 if (retcode) {
446 printf("raid%d: rebuilding: raidlookup on device: %s failed: %d!\n",raidPtr->raidid,
447 raidPtr->Disks[col].devname, retcode);
448
449 /* the component isn't responding properly...
450 must be still dead :-( */
451 RF_LOCK_MUTEX(raidPtr->mutex);
452 raidPtr->reconInProgress--;
453 RF_UNLOCK_MUTEX(raidPtr->mutex);
454 RF_SIGNAL_COND(raidPtr->waitForReconCond);
455 return(retcode);
456 }
457
458 /* Ok, so we can at least do a lookup...
459 How about actually getting a vp for it? */
460
461 if ((retcode = VOP_GETATTR(vp, &va, proc->p_ucred, proc)) != 0) {
462 RF_LOCK_MUTEX(raidPtr->mutex);
463 raidPtr->reconInProgress--;
464 RF_UNLOCK_MUTEX(raidPtr->mutex);
465 RF_SIGNAL_COND(raidPtr->waitForReconCond);
466 return(retcode);
467 }
468
469 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, proc->p_ucred, proc);
470 if (retcode) {
471 RF_LOCK_MUTEX(raidPtr->mutex);
472 raidPtr->reconInProgress--;
473 RF_UNLOCK_MUTEX(raidPtr->mutex);
474 RF_SIGNAL_COND(raidPtr->waitForReconCond);
475 return(retcode);
476 }
477 RF_LOCK_MUTEX(raidPtr->mutex);
478 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
479
480 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
481 rf_protectedSectors;
482
483 raidPtr->raid_cinfo[col].ci_vp = vp;
484 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
485
486 raidPtr->Disks[col].dev = va.va_rdev;
487
488 /* we allow the user to specify that only a fraction
489 of the disks should be used this is just for debug:
490 it speeds up * the parity scan */
491 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
492 rf_sizePercentage / 100;
493 RF_UNLOCK_MUTEX(raidPtr->mutex);
494
495 spareDiskPtr = &raidPtr->Disks[col];
496 spareDiskPtr->status = rf_ds_used_spare;
497
498 printf("raid%d: initiating in-place reconstruction on column %d\n",
499 raidPtr->raidid, col);
500
501 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
502 numDisksDone, col);
503 raidPtr->reconDesc = (void *) reconDesc;
504 #if RF_RECON_STATS > 0
505 reconDesc->hsStallCount = 0;
506 reconDesc->numReconExecDelays = 0;
507 reconDesc->numReconEventWaits = 0;
508 #endif /* RF_RECON_STATS > 0 */
509 reconDesc->reconExecTimerRunning = 0;
510 reconDesc->reconExecTicks = 0;
511 reconDesc->maxReconExecTicks = 0;
512 rc = rf_ContinueReconstructFailedDisk(reconDesc);
513
514 if (!rc) {
515 RF_LOCK_MUTEX(raidPtr->mutex);
516 /* Need to set these here, as at this point it'll be claiming
517 that the disk is in rf_ds_spared! But we know better :-) */
518
519 raidPtr->Disks[col].status = rf_ds_optimal;
520 raidPtr->status = rf_rs_optimal;
521 RF_UNLOCK_MUTEX(raidPtr->mutex);
522
523 /* fix up the component label */
524 /* Don't actually need the read here.. */
525 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
526 raidPtr->raid_cinfo[col].ci_vp,
527 &c_label);
528
529 RF_LOCK_MUTEX(raidPtr->mutex);
530 raid_init_component_label(raidPtr, &c_label);
531
532 c_label.row = 0;
533 c_label.column = col;
534
535 /* We've just done a rebuild based on all the other
536 disks, so at this point the parity is known to be
537 clean, even if it wasn't before. */
538
539 /* XXX doesn't hold for RAID 6!!*/
540
541 raidPtr->parity_good = RF_RAID_CLEAN;
542 RF_UNLOCK_MUTEX(raidPtr->mutex);
543
544 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
545 raidPtr->raid_cinfo[col].ci_vp,
546 &c_label);
547
548 rf_update_component_labels(raidPtr,
549 RF_NORMAL_COMPONENT_UPDATE);
550 } else {
551 /* Reconstruct-in-place failed. Disk goes back to
552 "failed" status, regardless of what it was before. */
553 RF_LOCK_MUTEX(raidPtr->mutex);
554 raidPtr->Disks[col].status = rf_ds_failed;
555 RF_UNLOCK_MUTEX(raidPtr->mutex);
556 }
557
558 RF_LOCK_MUTEX(raidPtr->mutex);
559 raidPtr->reconInProgress--;
560 RF_UNLOCK_MUTEX(raidPtr->mutex);
561
562 RF_SIGNAL_COND(raidPtr->waitForReconCond);
563 return (rc);
564 }
565
566
567 int
568 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
569 {
570 RF_Raid_t *raidPtr = reconDesc->raidPtr;
571 RF_RowCol_t col = reconDesc->col;
572 RF_RowCol_t scol = reconDesc->scol;
573 RF_ReconMap_t *mapPtr;
574 RF_ReconCtrl_t *tmp_reconctrl;
575 RF_ReconEvent_t *event;
576 RF_CallbackDesc_t *p;
577 struct timeval etime, elpsd;
578 unsigned long xor_s, xor_resid_us;
579 int i, ds;
580 int status;
581 int recon_error, write_error;
582
583 raidPtr->accumXorTimeUs = 0;
584 #if RF_ACC_TRACE > 0
585 /* create one trace record per physical disk */
586 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
587 #endif
588
589 /* quiesce the array prior to starting recon. this is needed
590 * to assure no nasty interactions with pending user writes.
591 * We need to do this before we change the disk or row status. */
592
593 Dprintf("RECON: begin request suspend\n");
594 rf_SuspendNewRequestsAndWait(raidPtr);
595 Dprintf("RECON: end request suspend\n");
596
597 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
598 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
599
600 RF_LOCK_MUTEX(raidPtr->mutex);
601
602 /* create the reconstruction control pointer and install it in
603 * the right slot */
604 raidPtr->reconControl = tmp_reconctrl;
605 mapPtr = raidPtr->reconControl->reconMap;
606 raidPtr->status = rf_rs_reconstructing;
607 raidPtr->Disks[col].status = rf_ds_reconstructing;
608 raidPtr->Disks[col].spareCol = scol;
609
610 RF_UNLOCK_MUTEX(raidPtr->mutex);
611
612 RF_GETTIME(raidPtr->reconControl->starttime);
613
614 /* now start up the actual reconstruction: issue a read for
615 * each surviving disk */
616
617 reconDesc->numDisksDone = 0;
618 for (i = 0; i < raidPtr->numCol; i++) {
619 if (i != col) {
620 /* find and issue the next I/O on the
621 * indicated disk */
622 if (IssueNextReadRequest(raidPtr, i)) {
623 Dprintf1("RECON: done issuing for c%d\n", i);
624 reconDesc->numDisksDone++;
625 }
626 }
627 }
628
629 Dprintf("RECON: resume requests\n");
630 rf_ResumeNewRequests(raidPtr);
631
632 /* process reconstruction events until all disks report that
633 * they've completed all work */
634
635 mapPtr = raidPtr->reconControl->reconMap;
636 recon_error = 0;
637 write_error = 0;
638
639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
640
641 event = rf_GetNextReconEvent(reconDesc);
642 status = ProcessReconEvent(raidPtr, event);
643
644 /* the normal case is that a read completes, and all is well. */
645 if (status == RF_RECON_DONE_READS) {
646 reconDesc->numDisksDone++;
647 } else if ((status == RF_RECON_READ_ERROR) ||
648 (status == RF_RECON_WRITE_ERROR)) {
649 /* an error was encountered while reconstructing...
650 Pretend we've finished this disk.
651 */
652 recon_error = 1;
653 raidPtr->reconControl->error = 1;
654
655 /* bump the numDisksDone count for reads,
656 but not for writes */
657 if (status == RF_RECON_READ_ERROR)
658 reconDesc->numDisksDone++;
659
660 /* write errors are special -- when we are
661 done dealing with the reads that are
662 finished, we don't want to wait for any
663 writes */
664 if (status == RF_RECON_WRITE_ERROR)
665 write_error = 1;
666
667 } else if (status == RF_RECON_READ_STOPPED) {
668 /* count this component as being "done" */
669 reconDesc->numDisksDone++;
670 }
671
672 if (recon_error) {
673
674 /* make sure any stragglers are woken up so that
675 their theads will complete, and we can get out
676 of here with all IO processed */
677
678 while (raidPtr->reconControl->headSepCBList) {
679 p = raidPtr->reconControl->headSepCBList;
680 raidPtr->reconControl->headSepCBList = p->next;
681 p->next = NULL;
682 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
683 rf_FreeCallbackDesc(p);
684 }
685 }
686
687 raidPtr->reconControl->numRUsTotal =
688 mapPtr->totalRUs;
689 raidPtr->reconControl->numRUsComplete =
690 mapPtr->totalRUs -
691 rf_UnitsLeftToReconstruct(mapPtr);
692
693 #if RF_DEBUG_RECON
694 raidPtr->reconControl->percentComplete =
695 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
696 if (rf_prReconSched) {
697 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
698 }
699 #endif
700 }
701
702 mapPtr = raidPtr->reconControl->reconMap;
703 if (rf_reconDebug) {
704 printf("RECON: all reads completed\n");
705 }
706 /* at this point all the reads have completed. We now wait
707 * for any pending writes to complete, and then we're done */
708
709 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
710
711 event = rf_GetNextReconEvent(reconDesc);
712 status = ProcessReconEvent(raidPtr, event);
713
714 if (status == RF_RECON_WRITE_ERROR) {
715 recon_error = 1;
716 raidPtr->reconControl->error = 1;
717 /* an error was encountered at the very end... bail */
718 } else {
719 #if RF_DEBUG_RECON
720 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
721 if (rf_prReconSched) {
722 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
723 }
724 #endif
725 }
726 }
727
728 if (recon_error) {
729 /* we've encountered an error in reconstructing. */
730 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
731
732 /* we start by blocking IO to the RAID set. */
733 rf_SuspendNewRequestsAndWait(raidPtr);
734
735 RF_LOCK_MUTEX(raidPtr->mutex);
736 /* mark set as being degraded, rather than
737 rf_rs_reconstructing as we were before the problem.
738 After this is done we can update status of the
739 component disks without worrying about someone
740 trying to read from a failed component.
741 */
742 raidPtr->status = rf_rs_degraded;
743 RF_UNLOCK_MUTEX(raidPtr->mutex);
744
745 /* resume IO */
746 rf_ResumeNewRequests(raidPtr);
747
748 /* At this point there are two cases:
749 1) If we've experienced a read error, then we've
750 already waited for all the reads we're going to get,
751 and we just need to wait for the writes.
752
753 2) If we've experienced a write error, we've also
754 already waited for all the reads to complete,
755 but there is little point in waiting for the writes --
756 when they do complete, they will just be ignored.
757
758 So we just wait for writes to complete if we didn't have a
759 write error.
760 */
761
762 if (!write_error) {
763 /* wait for writes to complete */
764 while (raidPtr->reconControl->pending_writes > 0) {
765
766 event = rf_GetNextReconEvent(reconDesc);
767 status = ProcessReconEvent(raidPtr, event);
768
769 if (status == RF_RECON_WRITE_ERROR) {
770 raidPtr->reconControl->error = 1;
771 /* an error was encountered at the very end... bail.
772 This will be very bad news for the user, since
773 at this point there will have been a read error
774 on one component, and a write error on another!
775 */
776 break;
777 }
778 }
779 }
780
781
782 /* cleanup */
783
784 /* drain the event queue - after waiting for the writes above,
785 there shouldn't be much (if anything!) left in the queue. */
786
787 rf_DrainReconEventQueue(reconDesc);
788
789 /* XXX As much as we'd like to free the recon control structure
790 and the reconDesc, we have no way of knowing if/when those will
791 be touched by IO that has yet to occur. It is rather poor to be
792 basically causing a 'memory leak' here, but there doesn't seem to be
793 a cleaner alternative at this time. Perhaps when the reconstruct code
794 gets a makeover this problem will go away.
795 */
796 #if 0
797 rf_FreeReconControl(raidPtr);
798 #endif
799
800 #if RF_ACC_TRACE > 0
801 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
802 #endif
803 /* XXX see comment above */
804 #if 0
805 FreeReconDesc(reconDesc);
806 #endif
807
808 return (1);
809 }
810
811 /* Success: mark the dead disk as reconstructed. We quiesce
812 * the array here to assure no nasty interactions with pending
813 * user accesses when we free up the psstatus structure as
814 * part of FreeReconControl() */
815
816 rf_SuspendNewRequestsAndWait(raidPtr);
817
818 RF_LOCK_MUTEX(raidPtr->mutex);
819 raidPtr->numFailures--;
820 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
821 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
822 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
823 RF_UNLOCK_MUTEX(raidPtr->mutex);
824 RF_GETTIME(etime);
825 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
826
827 rf_ResumeNewRequests(raidPtr);
828
829 printf("raid%d: Reconstruction of disk at col %d completed\n",
830 raidPtr->raidid, col);
831 xor_s = raidPtr->accumXorTimeUs / 1000000;
832 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
833 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
834 raidPtr->raidid,
835 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
836 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
837 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
838 raidPtr->raidid,
839 (int) raidPtr->reconControl->starttime.tv_sec,
840 (int) raidPtr->reconControl->starttime.tv_usec,
841 (int) etime.tv_sec, (int) etime.tv_usec);
842 #if RF_RECON_STATS > 0
843 printf("raid%d: Total head-sep stall count was %d\n",
844 raidPtr->raidid, (int) reconDesc->hsStallCount);
845 #endif /* RF_RECON_STATS > 0 */
846 rf_FreeReconControl(raidPtr);
847 #if RF_ACC_TRACE > 0
848 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
849 #endif
850 FreeReconDesc(reconDesc);
851
852 return (0);
853
854 }
855 /*****************************************************************************
856 * do the right thing upon each reconstruction event.
857 *****************************************************************************/
858 static int
859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
860 {
861 int retcode = 0, submitblocked;
862 RF_ReconBuffer_t *rbuf;
863 RF_SectorCount_t sectorsPerRU;
864
865 retcode = RF_RECON_READ_STOPPED;
866
867 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
868 switch (event->type) {
869
870 /* a read I/O has completed */
871 case RF_REVENT_READDONE:
872 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
873 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
874 event->col, rbuf->parityStripeID);
875 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
876 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
877 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
878 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
879 if (!raidPtr->reconControl->error) {
880 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
881 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
882 if (!submitblocked)
883 retcode = IssueNextReadRequest(raidPtr, event->col);
884 }
885 break;
886
887 /* a write I/O has completed */
888 case RF_REVENT_WRITEDONE:
889 #if RF_DEBUG_RECON
890 if (rf_floatingRbufDebug) {
891 rf_CheckFloatingRbufCount(raidPtr, 1);
892 }
893 #endif
894 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
895 rbuf = (RF_ReconBuffer_t *) event->arg;
896 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
897 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
898 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
899 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
900 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
901 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
902
903 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
904 raidPtr->reconControl->pending_writes--;
905 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
906
907 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
908 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
909 while(raidPtr->reconControl->rb_lock) {
910 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
911 &raidPtr->reconControl->rb_mutex);
912 }
913 raidPtr->reconControl->rb_lock = 1;
914 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
915
916 raidPtr->numFullReconBuffers--;
917 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
918
919 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
920 raidPtr->reconControl->rb_lock = 0;
921 wakeup(&raidPtr->reconControl->rb_lock);
922 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
923 } else
924 if (rbuf->type == RF_RBUF_TYPE_FORCED)
925 rf_FreeReconBuffer(rbuf);
926 else
927 RF_ASSERT(0);
928 retcode = 0;
929 break;
930
931 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
932 * cleared */
933 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
934 if (!raidPtr->reconControl->error) {
935 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
936 0, (int) (long) event->arg);
937 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
938 * BUFCLEAR event if we
939 * couldn't submit */
940 retcode = IssueNextReadRequest(raidPtr, event->col);
941 }
942 break;
943
944 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
945 * blockage has been cleared */
946 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
947 if (!raidPtr->reconControl->error) {
948 retcode = TryToRead(raidPtr, event->col);
949 }
950 break;
951
952 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
953 * reconstruction blockage has been
954 * cleared */
955 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
956 if (!raidPtr->reconControl->error) {
957 retcode = TryToRead(raidPtr, event->col);
958 }
959 break;
960
961 /* a buffer has become ready to write */
962 case RF_REVENT_BUFREADY:
963 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
964 if (!raidPtr->reconControl->error) {
965 retcode = IssueNextWriteRequest(raidPtr);
966 #if RF_DEBUG_RECON
967 if (rf_floatingRbufDebug) {
968 rf_CheckFloatingRbufCount(raidPtr, 1);
969 }
970 #endif
971 }
972 break;
973
974 /* we need to skip the current RU entirely because it got
975 * recon'd while we were waiting for something else to happen */
976 case RF_REVENT_SKIP:
977 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
978 if (!raidPtr->reconControl->error) {
979 retcode = IssueNextReadRequest(raidPtr, event->col);
980 }
981 break;
982
983 /* a forced-reconstruction read access has completed. Just
984 * submit the buffer */
985 case RF_REVENT_FORCEDREADDONE:
986 rbuf = (RF_ReconBuffer_t *) event->arg;
987 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
988 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
989 if (!raidPtr->reconControl->error) {
990 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
991 RF_ASSERT(!submitblocked);
992 }
993 break;
994
995 /* A read I/O failed to complete */
996 case RF_REVENT_READ_FAILED:
997 retcode = RF_RECON_READ_ERROR;
998 break;
999
1000 /* A write I/O failed to complete */
1001 case RF_REVENT_WRITE_FAILED:
1002 retcode = RF_RECON_WRITE_ERROR;
1003
1004 rbuf = (RF_ReconBuffer_t *) event->arg;
1005
1006 /* cleanup the disk queue data */
1007 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1008
1009 /* At this point we're erroring out, badly, and floatingRbufs
1010 may not even be valid. Rather than putting this back onto
1011 the floatingRbufs list, just arrange for its immediate
1012 destruction.
1013 */
1014 rf_FreeReconBuffer(rbuf);
1015 break;
1016
1017 /* a forced read I/O failed to complete */
1018 case RF_REVENT_FORCEDREAD_FAILED:
1019 retcode = RF_RECON_READ_ERROR;
1020 break;
1021
1022 default:
1023 RF_PANIC();
1024 }
1025 rf_FreeReconEventDesc(event);
1026 return (retcode);
1027 }
1028 /*****************************************************************************
1029 *
1030 * find the next thing that's needed on the indicated disk, and issue
1031 * a read request for it. We assume that the reconstruction buffer
1032 * associated with this process is free to receive the data. If
1033 * reconstruction is blocked on the indicated RU, we issue a
1034 * blockage-release request instead of a physical disk read request.
1035 * If the current disk gets too far ahead of the others, we issue a
1036 * head-separation wait request and return.
1037 *
1038 * ctrl->{ru_count, curPSID, diskOffset} and
1039 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1040 * we're currently accessing. Note that this deviates from the
1041 * standard C idiom of having counters point to the next thing to be
1042 * accessed. This allows us to easily retry when we're blocked by
1043 * head separation or reconstruction-blockage events.
1044 *
1045 *****************************************************************************/
1046 static int
1047 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1048 {
1049 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1050 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1051 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1052 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1053 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1054 int do_new_check = 0, retcode = 0, status;
1055
1056 /* if we are currently the slowest disk, mark that we have to do a new
1057 * check */
1058 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1059 do_new_check = 1;
1060
1061 while (1) {
1062
1063 ctrl->ru_count++;
1064 if (ctrl->ru_count < RUsPerPU) {
1065 ctrl->diskOffset += sectorsPerRU;
1066 rbuf->failedDiskSectorOffset += sectorsPerRU;
1067 } else {
1068 ctrl->curPSID++;
1069 ctrl->ru_count = 0;
1070 /* code left over from when head-sep was based on
1071 * parity stripe id */
1072 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1073 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1074 return (RF_RECON_DONE_READS); /* finito! */
1075 }
1076 /* find the disk offsets of the start of the parity
1077 * stripe on both the current disk and the failed
1078 * disk. skip this entire parity stripe if either disk
1079 * does not appear in the indicated PS */
1080 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1081 &rbuf->spCol, &rbuf->spOffset);
1082 if (status) {
1083 ctrl->ru_count = RUsPerPU - 1;
1084 continue;
1085 }
1086 }
1087 rbuf->which_ru = ctrl->ru_count;
1088
1089 /* skip this RU if it's already been reconstructed */
1090 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1091 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1092 continue;
1093 }
1094 break;
1095 }
1096 ctrl->headSepCounter++;
1097 if (do_new_check)
1098 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1099
1100
1101 /* at this point, we have definitely decided what to do, and we have
1102 * only to see if we can actually do it now */
1103 rbuf->parityStripeID = ctrl->curPSID;
1104 rbuf->which_ru = ctrl->ru_count;
1105 #if RF_ACC_TRACE > 0
1106 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1107 sizeof(raidPtr->recon_tracerecs[col]));
1108 raidPtr->recon_tracerecs[col].reconacc = 1;
1109 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1110 #endif
1111 retcode = TryToRead(raidPtr, col);
1112 return (retcode);
1113 }
1114
1115 /*
1116 * tries to issue the next read on the indicated disk. We may be
1117 * blocked by (a) the heads being too far apart, or (b) recon on the
1118 * indicated RU being blocked due to a write by a user thread. In
1119 * this case, we issue a head-sep or blockage wait request, which will
1120 * cause this same routine to be invoked again later when the blockage
1121 * has cleared.
1122 */
1123
1124 static int
1125 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1126 {
1127 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1128 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1129 RF_StripeNum_t psid = ctrl->curPSID;
1130 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1131 RF_DiskQueueData_t *req;
1132 int status;
1133 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1134
1135 /* if the current disk is too far ahead of the others, issue a
1136 * head-separation wait and return */
1137 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1138 return (0);
1139
1140 /* allocate a new PSS in case we need it */
1141 newpssPtr = rf_AllocPSStatus(raidPtr);
1142
1143 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1144 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1145
1146 if (pssPtr != newpssPtr) {
1147 rf_FreePSStatus(raidPtr, newpssPtr);
1148 }
1149
1150 /* if recon is blocked on the indicated parity stripe, issue a
1151 * block-wait request and return. this also must mark the indicated RU
1152 * in the stripe as under reconstruction if not blocked. */
1153 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1154 if (status == RF_PSS_RECON_BLOCKED) {
1155 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1156 goto out;
1157 } else
1158 if (status == RF_PSS_FORCED_ON_WRITE) {
1159 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1160 goto out;
1161 }
1162 /* make one last check to be sure that the indicated RU didn't get
1163 * reconstructed while we were waiting for something else to happen.
1164 * This is unfortunate in that it causes us to make this check twice
1165 * in the normal case. Might want to make some attempt to re-work
1166 * this so that we only do this check if we've definitely blocked on
1167 * one of the above checks. When this condition is detected, we may
1168 * have just created a bogus status entry, which we need to delete. */
1169 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1170 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1171 if (pssPtr == newpssPtr)
1172 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1173 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1174 goto out;
1175 }
1176 /* found something to read. issue the I/O */
1177 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1178 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1179 #if RF_ACC_TRACE > 0
1180 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1181 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1182 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1183 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1184 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1185 #endif
1186 /* should be ok to use a NULL proc pointer here, all the bufs we use
1187 * should be in kernel space */
1188 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1189 ReconReadDoneProc, (void *) ctrl, NULL,
1190 #if RF_ACC_TRACE > 0
1191 &raidPtr->recon_tracerecs[col],
1192 #else
1193 NULL,
1194 #endif
1195 (void *) raidPtr, 0, NULL);
1196
1197 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1198
1199 ctrl->rbuf->arg = (void *) req;
1200 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1201 pssPtr->issued[col] = 1;
1202
1203 out:
1204 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1205 return (0);
1206 }
1207
1208
1209 /*
1210 * given a parity stripe ID, we want to find out whether both the
1211 * current disk and the failed disk exist in that parity stripe. If
1212 * not, we want to skip this whole PS. If so, we want to find the
1213 * disk offset of the start of the PS on both the current disk and the
1214 * failed disk.
1215 *
1216 * this works by getting a list of disks comprising the indicated
1217 * parity stripe, and searching the list for the current and failed
1218 * disks. Once we've decided they both exist in the parity stripe, we
1219 * need to decide whether each is data or parity, so that we'll know
1220 * which mapping function to call to get the corresponding disk
1221 * offsets.
1222 *
1223 * this is kind of unpleasant, but doing it this way allows the
1224 * reconstruction code to use parity stripe IDs rather than physical
1225 * disks address to march through the failed disk, which greatly
1226 * simplifies a lot of code, as well as eliminating the need for a
1227 * reverse-mapping function. I also think it will execute faster,
1228 * since the calls to the mapping module are kept to a minimum.
1229 *
1230 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1231 * THE STRIPE IN THE CORRECT ORDER
1232 *
1233 * raidPtr - raid descriptor
1234 * psid - parity stripe identifier
1235 * col - column of disk to find the offsets for
1236 * spCol - out: col of spare unit for failed unit
1237 * spOffset - out: offset into disk containing spare unit
1238 *
1239 */
1240
1241
1242 static int
1243 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1244 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1245 RF_SectorNum_t *outFailedDiskSectorOffset,
1246 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1247 {
1248 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1249 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1250 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1251 RF_RowCol_t *diskids;
1252 u_int i, j, k, i_offset, j_offset;
1253 RF_RowCol_t pcol;
1254 int testcol;
1255 RF_SectorNum_t poffset;
1256 char i_is_parity = 0, j_is_parity = 0;
1257 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1258
1259 /* get a listing of the disks comprising that stripe */
1260 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1261 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1262 RF_ASSERT(diskids);
1263
1264 /* reject this entire parity stripe if it does not contain the
1265 * indicated disk or it does not contain the failed disk */
1266
1267 for (i = 0; i < stripeWidth; i++) {
1268 if (col == diskids[i])
1269 break;
1270 }
1271 if (i == stripeWidth)
1272 goto skipit;
1273 for (j = 0; j < stripeWidth; j++) {
1274 if (fcol == diskids[j])
1275 break;
1276 }
1277 if (j == stripeWidth) {
1278 goto skipit;
1279 }
1280 /* find out which disk the parity is on */
1281 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1282
1283 /* find out if either the current RU or the failed RU is parity */
1284 /* also, if the parity occurs in this stripe prior to the data and/or
1285 * failed col, we need to decrement i and/or j */
1286 for (k = 0; k < stripeWidth; k++)
1287 if (diskids[k] == pcol)
1288 break;
1289 RF_ASSERT(k < stripeWidth);
1290 i_offset = i;
1291 j_offset = j;
1292 if (k < i)
1293 i_offset--;
1294 else
1295 if (k == i) {
1296 i_is_parity = 1;
1297 i_offset = 0;
1298 } /* set offsets to zero to disable multiply
1299 * below */
1300 if (k < j)
1301 j_offset--;
1302 else
1303 if (k == j) {
1304 j_is_parity = 1;
1305 j_offset = 0;
1306 }
1307 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1308 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1309 * tells us how far into the stripe the [current,failed] disk is. */
1310
1311 /* call the mapping routine to get the offset into the current disk,
1312 * repeat for failed disk. */
1313 if (i_is_parity)
1314 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1315 else
1316 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1317
1318 RF_ASSERT(col == testcol);
1319
1320 if (j_is_parity)
1321 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1322 else
1323 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1324 RF_ASSERT(fcol == testcol);
1325
1326 /* now locate the spare unit for the failed unit */
1327 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1328 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1329 if (j_is_parity)
1330 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1331 else
1332 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1333 } else {
1334 #endif
1335 *spCol = raidPtr->reconControl->spareCol;
1336 *spOffset = *outFailedDiskSectorOffset;
1337 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1338 }
1339 #endif
1340 return (0);
1341
1342 skipit:
1343 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1344 psid, col);
1345 return (1);
1346 }
1347 /* this is called when a buffer has become ready to write to the replacement disk */
1348 static int
1349 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1350 {
1351 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1352 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1353 #if RF_ACC_TRACE > 0
1354 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1355 #endif
1356 RF_ReconBuffer_t *rbuf;
1357 RF_DiskQueueData_t *req;
1358
1359 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1360 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1361 * have gotten the event that sent us here */
1362 RF_ASSERT(rbuf->pssPtr);
1363
1364 rbuf->pssPtr->writeRbuf = rbuf;
1365 rbuf->pssPtr = NULL;
1366
1367 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1368 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1369 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1370 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1371 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1372 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1373
1374 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1375 * kernel space */
1376 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1377 sectorsPerRU, rbuf->buffer,
1378 rbuf->parityStripeID, rbuf->which_ru,
1379 ReconWriteDoneProc, (void *) rbuf, NULL,
1380 #if RF_ACC_TRACE > 0
1381 &raidPtr->recon_tracerecs[fcol],
1382 #else
1383 NULL,
1384 #endif
1385 (void *) raidPtr, 0, NULL);
1386
1387 RF_ASSERT(req); /* XXX -- fix this -- XXX */
1388
1389 rbuf->arg = (void *) req;
1390 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1391 raidPtr->reconControl->pending_writes++;
1392 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1393 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1394
1395 return (0);
1396 }
1397
1398 /*
1399 * this gets called upon the completion of a reconstruction read
1400 * operation the arg is a pointer to the per-disk reconstruction
1401 * control structure for the process that just finished a read.
1402 *
1403 * called at interrupt context in the kernel, so don't do anything
1404 * illegal here.
1405 */
1406 static int
1407 ReconReadDoneProc(void *arg, int status)
1408 {
1409 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1410 RF_Raid_t *raidPtr;
1411
1412 /* Detect that reconCtrl is no longer valid, and if that
1413 is the case, bail without calling rf_CauseReconEvent().
1414 There won't be anyone listening for this event anyway */
1415
1416 if (ctrl->reconCtrl == NULL)
1417 return(0);
1418
1419 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1420
1421 if (status) {
1422 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1423 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1424 return(0);
1425 }
1426 #if RF_ACC_TRACE > 0
1427 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1428 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1429 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1430 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1431 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1432 #endif
1433 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1434 return (0);
1435 }
1436 /* this gets called upon the completion of a reconstruction write operation.
1437 * the arg is a pointer to the rbuf that was just written
1438 *
1439 * called at interrupt context in the kernel, so don't do anything illegal here.
1440 */
1441 static int
1442 ReconWriteDoneProc(void *arg, int status)
1443 {
1444 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1445
1446 /* Detect that reconControl is no longer valid, and if that
1447 is the case, bail without calling rf_CauseReconEvent().
1448 There won't be anyone listening for this event anyway */
1449
1450 if (rbuf->raidPtr->reconControl == NULL)
1451 return(0);
1452
1453 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1454 if (status) {
1455 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1456 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1457 return(0);
1458 }
1459 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1460 return (0);
1461 }
1462
1463
1464 /*
1465 * computes a new minimum head sep, and wakes up anyone who needs to
1466 * be woken as a result
1467 */
1468 static void
1469 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1470 {
1471 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1472 RF_HeadSepLimit_t new_min;
1473 RF_RowCol_t i;
1474 RF_CallbackDesc_t *p;
1475 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1476 * of a minimum */
1477
1478
1479 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1480 while(reconCtrlPtr->rb_lock) {
1481 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1482 }
1483 reconCtrlPtr->rb_lock = 1;
1484 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1485
1486 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1487 for (i = 0; i < raidPtr->numCol; i++)
1488 if (i != reconCtrlPtr->fcol) {
1489 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1490 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1491 }
1492 /* set the new minimum and wake up anyone who can now run again */
1493 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1494 reconCtrlPtr->minHeadSepCounter = new_min;
1495 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1496 while (reconCtrlPtr->headSepCBList) {
1497 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1498 break;
1499 p = reconCtrlPtr->headSepCBList;
1500 reconCtrlPtr->headSepCBList = p->next;
1501 p->next = NULL;
1502 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1503 rf_FreeCallbackDesc(p);
1504 }
1505
1506 }
1507 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1508 reconCtrlPtr->rb_lock = 0;
1509 wakeup(&reconCtrlPtr->rb_lock);
1510 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1511 }
1512
1513 /*
1514 * checks to see that the maximum head separation will not be violated
1515 * if we initiate a reconstruction I/O on the indicated disk.
1516 * Limiting the maximum head separation between two disks eliminates
1517 * the nasty buffer-stall conditions that occur when one disk races
1518 * ahead of the others and consumes all of the floating recon buffers.
1519 * This code is complex and unpleasant but it's necessary to avoid
1520 * some very nasty, albeit fairly rare, reconstruction behavior.
1521 *
1522 * returns non-zero if and only if we have to stop working on the
1523 * indicated disk due to a head-separation delay.
1524 */
1525 static int
1526 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1527 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1528 RF_ReconUnitNum_t which_ru)
1529 {
1530 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1531 RF_CallbackDesc_t *cb, *p, *pt;
1532 int retval = 0;
1533
1534 /* if we're too far ahead of the slowest disk, stop working on this
1535 * disk until the slower ones catch up. We do this by scheduling a
1536 * wakeup callback for the time when the slowest disk has caught up.
1537 * We define "caught up" with 20% hysteresis, i.e. the head separation
1538 * must have fallen to at most 80% of the max allowable head
1539 * separation before we'll wake up.
1540 *
1541 */
1542 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1543 while(reconCtrlPtr->rb_lock) {
1544 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1545 }
1546 reconCtrlPtr->rb_lock = 1;
1547 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1548 if ((raidPtr->headSepLimit >= 0) &&
1549 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1550 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1551 raidPtr->raidid, col, ctrl->headSepCounter,
1552 reconCtrlPtr->minHeadSepCounter,
1553 raidPtr->headSepLimit);
1554 cb = rf_AllocCallbackDesc();
1555 /* the minHeadSepCounter value we have to get to before we'll
1556 * wake up. build in 20% hysteresis. */
1557 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1558 cb->col = col;
1559 cb->next = NULL;
1560
1561 /* insert this callback descriptor into the sorted list of
1562 * pending head-sep callbacks */
1563 p = reconCtrlPtr->headSepCBList;
1564 if (!p)
1565 reconCtrlPtr->headSepCBList = cb;
1566 else
1567 if (cb->callbackArg.v < p->callbackArg.v) {
1568 cb->next = reconCtrlPtr->headSepCBList;
1569 reconCtrlPtr->headSepCBList = cb;
1570 } else {
1571 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1572 cb->next = p;
1573 pt->next = cb;
1574 }
1575 retval = 1;
1576 #if RF_RECON_STATS > 0
1577 ctrl->reconCtrl->reconDesc->hsStallCount++;
1578 #endif /* RF_RECON_STATS > 0 */
1579 }
1580 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1581 reconCtrlPtr->rb_lock = 0;
1582 wakeup(&reconCtrlPtr->rb_lock);
1583 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1584
1585 return (retval);
1586 }
1587 /*
1588 * checks to see if reconstruction has been either forced or blocked
1589 * by a user operation. if forced, we skip this RU entirely. else if
1590 * blocked, put ourselves on the wait list. else return 0.
1591 *
1592 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1593 */
1594 static int
1595 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1596 RF_ReconParityStripeStatus_t *pssPtr,
1597 RF_PerDiskReconCtrl_t *ctrl,
1598 RF_RowCol_t col, RF_StripeNum_t psid,
1599 RF_ReconUnitNum_t which_ru)
1600 {
1601 RF_CallbackDesc_t *cb;
1602 int retcode = 0;
1603
1604 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1605 retcode = RF_PSS_FORCED_ON_WRITE;
1606 else
1607 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1608 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1609 cb = rf_AllocCallbackDesc(); /* append ourselves to
1610 * the blockage-wait
1611 * list */
1612 cb->col = col;
1613 cb->next = pssPtr->blockWaitList;
1614 pssPtr->blockWaitList = cb;
1615 retcode = RF_PSS_RECON_BLOCKED;
1616 }
1617 if (!retcode)
1618 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1619 * reconstruction */
1620
1621 return (retcode);
1622 }
1623 /*
1624 * if reconstruction is currently ongoing for the indicated stripeID,
1625 * reconstruction is forced to completion and we return non-zero to
1626 * indicate that the caller must wait. If not, then reconstruction is
1627 * blocked on the indicated stripe and the routine returns zero. If
1628 * and only if we return non-zero, we'll cause the cbFunc to get
1629 * invoked with the cbArg when the reconstruction has completed.
1630 */
1631 int
1632 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1633 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1634 {
1635 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1636 * forcing recon on */
1637 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1638 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1639 * stripe status structure */
1640 RF_StripeNum_t psid; /* parity stripe id */
1641 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1642 * offset */
1643 RF_RowCol_t *diskids;
1644 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1645 RF_RowCol_t fcol, diskno, i;
1646 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1647 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1648 RF_CallbackDesc_t *cb;
1649 int nPromoted;
1650
1651 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1652
1653 /* allocate a new PSS in case we need it */
1654 newpssPtr = rf_AllocPSStatus(raidPtr);
1655
1656 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1657
1658 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1659
1660 if (pssPtr != newpssPtr) {
1661 rf_FreePSStatus(raidPtr, newpssPtr);
1662 }
1663
1664 /* if recon is not ongoing on this PS, just return */
1665 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1666 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1667 return (0);
1668 }
1669 /* otherwise, we have to wait for reconstruction to complete on this
1670 * RU. */
1671 /* In order to avoid waiting for a potentially large number of
1672 * low-priority accesses to complete, we force a normal-priority (i.e.
1673 * not low-priority) reconstruction on this RU. */
1674 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1675 DDprintf1("Forcing recon on psid %ld\n", psid);
1676 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1677 * forced recon */
1678 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1679 * that we just set */
1680 fcol = raidPtr->reconControl->fcol;
1681
1682 /* get a listing of the disks comprising the indicated stripe */
1683 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1684
1685 /* For previously issued reads, elevate them to normal
1686 * priority. If the I/O has already completed, it won't be
1687 * found in the queue, and hence this will be a no-op. For
1688 * unissued reads, allocate buffers and issue new reads. The
1689 * fact that we've set the FORCED bit means that the regular
1690 * recon procs will not re-issue these reqs */
1691 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1692 if ((diskno = diskids[i]) != fcol) {
1693 if (pssPtr->issued[diskno]) {
1694 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1695 if (rf_reconDebug && nPromoted)
1696 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1697 } else {
1698 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1699 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1700 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1701 * location */
1702 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1703 new_rbuf->which_ru = which_ru;
1704 new_rbuf->failedDiskSectorOffset = fd_offset;
1705 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1706
1707 /* use NULL b_proc b/c all addrs
1708 * should be in kernel space */
1709 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1710 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf, NULL,
1711 NULL, (void *) raidPtr, 0, NULL);
1712
1713 RF_ASSERT(req); /* XXX -- fix this --
1714 * XXX */
1715
1716 new_rbuf->arg = req;
1717 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1718 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1719 }
1720 }
1721 /* if the write is sitting in the disk queue, elevate its
1722 * priority */
1723 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1724 printf("raid%d: promoted write to col %d\n",
1725 raidPtr->raidid, fcol);
1726 }
1727 /* install a callback descriptor to be invoked when recon completes on
1728 * this parity stripe. */
1729 cb = rf_AllocCallbackDesc();
1730 /* XXX the following is bogus.. These functions don't really match!!
1731 * GO */
1732 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1733 cb->callbackArg.p = (void *) cbArg;
1734 cb->next = pssPtr->procWaitList;
1735 pssPtr->procWaitList = cb;
1736 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1737 raidPtr->raidid, psid);
1738
1739 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1740 return (1);
1741 }
1742 /* called upon the completion of a forced reconstruction read.
1743 * all we do is schedule the FORCEDREADONE event.
1744 * called at interrupt context in the kernel, so don't do anything illegal here.
1745 */
1746 static void
1747 ForceReconReadDoneProc(void *arg, int status)
1748 {
1749 RF_ReconBuffer_t *rbuf = arg;
1750
1751 /* Detect that reconControl is no longer valid, and if that
1752 is the case, bail without calling rf_CauseReconEvent().
1753 There won't be anyone listening for this event anyway */
1754
1755 if (rbuf->raidPtr->reconControl == NULL)
1756 return;
1757
1758 if (status) {
1759 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1760 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1761 return;
1762 }
1763 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1764 }
1765 /* releases a block on the reconstruction of the indicated stripe */
1766 int
1767 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1768 {
1769 RF_StripeNum_t stripeID = asmap->stripeID;
1770 RF_ReconParityStripeStatus_t *pssPtr;
1771 RF_ReconUnitNum_t which_ru;
1772 RF_StripeNum_t psid;
1773 RF_CallbackDesc_t *cb;
1774
1775 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1776 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1777 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1778
1779 /* When recon is forced, the pss desc can get deleted before we get
1780 * back to unblock recon. But, this can _only_ happen when recon is
1781 * forced. It would be good to put some kind of sanity check here, but
1782 * how to decide if recon was just forced or not? */
1783 if (!pssPtr) {
1784 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1785 * RU %d\n",psid,which_ru); */
1786 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1787 if (rf_reconDebug || rf_pssDebug)
1788 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1789 #endif
1790 goto out;
1791 }
1792 pssPtr->blockCount--;
1793 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1794 raidPtr->raidid, psid, pssPtr->blockCount);
1795 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1796
1797 /* unblock recon before calling CauseReconEvent in case
1798 * CauseReconEvent causes us to try to issue a new read before
1799 * returning here. */
1800 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1801
1802
1803 while (pssPtr->blockWaitList) {
1804 /* spin through the block-wait list and
1805 release all the waiters */
1806 cb = pssPtr->blockWaitList;
1807 pssPtr->blockWaitList = cb->next;
1808 cb->next = NULL;
1809 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1810 rf_FreeCallbackDesc(cb);
1811 }
1812 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1813 /* if no recon was requested while recon was blocked */
1814 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1815 }
1816 }
1817 out:
1818 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1819 return (0);
1820 }
1821