rf_reconstruct.c revision 1.95.2.2 1 /* $NetBSD: rf_reconstruct.c,v 1.95.2.2 2008/04/19 15:52:11 bouyer Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 /************************************************************
30 *
31 * rf_reconstruct.c -- code to perform on-line reconstruction
32 *
33 ************************************************************/
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.95.2.2 2008/04/19 15:52:11 bouyer Exp $");
37
38 #include <sys/time.h>
39 #include <sys/buf.h>
40 #include <sys/errno.h>
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/proc.h>
45 #include <sys/ioctl.h>
46 #include <sys/fcntl.h>
47 #include <sys/vnode.h>
48 #include <dev/raidframe/raidframevar.h>
49
50 #include "rf_raid.h"
51 #include "rf_reconutil.h"
52 #include "rf_revent.h"
53 #include "rf_reconbuffer.h"
54 #include "rf_acctrace.h"
55 #include "rf_etimer.h"
56 #include "rf_dag.h"
57 #include "rf_desc.h"
58 #include "rf_debugprint.h"
59 #include "rf_general.h"
60 #include "rf_driver.h"
61 #include "rf_utils.h"
62 #include "rf_shutdown.h"
63
64 #include "rf_kintf.h"
65
66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
67
68 #if RF_DEBUG_RECON
69 #define Dprintf(s) if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
70 #define Dprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
71 #define Dprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
72 #define Dprintf3(s,a,b,c) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
73 #define Dprintf4(s,a,b,c,d) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
77
78 #define DDprintf1(s,a) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
79 #define DDprintf2(s,a,b) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
80
81 #else /* RF_DEBUG_RECON */
82
83 #define Dprintf(s) {}
84 #define Dprintf1(s,a) {}
85 #define Dprintf2(s,a,b) {}
86 #define Dprintf3(s,a,b,c) {}
87 #define Dprintf4(s,a,b,c,d) {}
88 #define Dprintf5(s,a,b,c,d,e) {}
89 #define Dprintf6(s,a,b,c,d,e,f) {}
90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
91
92 #define DDprintf1(s,a) {}
93 #define DDprintf2(s,a,b) {}
94
95 #endif /* RF_DEBUG_RECON */
96
97 #define RF_RECON_DONE_READS 1
98 #define RF_RECON_READ_ERROR 2
99 #define RF_RECON_WRITE_ERROR 3
100 #define RF_RECON_READ_STOPPED 4
101
102 #define RF_MAX_FREE_RECONBUFFER 32
103 #define RF_MIN_FREE_RECONBUFFER 16
104
105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
106 RF_RaidDisk_t *, int, RF_RowCol_t);
107 static void FreeReconDesc(RF_RaidReconDesc_t *);
108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
112 RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
113 RF_SectorNum_t *);
114 static int IssueNextWriteRequest(RF_Raid_t *);
115 static int ReconReadDoneProc(void *, int);
116 static int ReconWriteDoneProc(void *, int);
117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
119 RF_RowCol_t, RF_HeadSepLimit_t,
120 RF_ReconUnitNum_t);
121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
122 RF_ReconParityStripeStatus_t *,
123 RF_PerDiskReconCtrl_t *,
124 RF_RowCol_t, RF_StripeNum_t,
125 RF_ReconUnitNum_t);
126 static void ForceReconReadDoneProc(void *, int);
127 static void rf_ShutdownReconstruction(void *);
128
129 struct RF_ReconDoneProc_s {
130 void (*proc) (RF_Raid_t *, void *);
131 void *arg;
132 RF_ReconDoneProc_t *next;
133 };
134
135 /**************************************************************************
136 *
137 * sets up the parameters that will be used by the reconstruction process
138 * currently there are none, except for those that the layout-specific
139 * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
140 *
141 * in the kernel, we fire off the recon thread.
142 *
143 **************************************************************************/
144 static void
145 rf_ShutdownReconstruction(void *ignored)
146 {
147 pool_destroy(&rf_pools.reconbuffer);
148 }
149
150 int
151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
152 {
153
154 rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
155 "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
156 rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
157
158 return (0);
159 }
160
161 static RF_RaidReconDesc_t *
162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
163 RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
164 RF_RowCol_t scol)
165 {
166
167 RF_RaidReconDesc_t *reconDesc;
168
169 RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
170 (RF_RaidReconDesc_t *));
171 reconDesc->raidPtr = raidPtr;
172 reconDesc->col = col;
173 reconDesc->spareDiskPtr = spareDiskPtr;
174 reconDesc->numDisksDone = numDisksDone;
175 reconDesc->scol = scol;
176 reconDesc->next = NULL;
177
178 return (reconDesc);
179 }
180
181 static void
182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
183 {
184 #if RF_RECON_STATS > 0
185 printf("raid%d: %lu recon event waits, %lu recon delays\n",
186 reconDesc->raidPtr->raidid,
187 (long) reconDesc->numReconEventWaits,
188 (long) reconDesc->numReconExecDelays);
189 #endif /* RF_RECON_STATS > 0 */
190 printf("raid%d: %lu max exec ticks\n",
191 reconDesc->raidPtr->raidid,
192 (long) reconDesc->maxReconExecTicks);
193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
194 printf("\n");
195 #endif /* (RF_RECON_STATS > 0) || KERNEL */
196 RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
197 }
198
199
200 /*****************************************************************************
201 *
202 * primary routine to reconstruct a failed disk. This should be called from
203 * within its own thread. It won't return until reconstruction completes,
204 * fails, or is aborted.
205 *****************************************************************************/
206 int
207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
208 {
209 const RF_LayoutSW_t *lp;
210 int rc;
211
212 lp = raidPtr->Layout.map;
213 if (lp->SubmitReconBuffer) {
214 /*
215 * The current infrastructure only supports reconstructing one
216 * disk at a time for each array.
217 */
218 RF_LOCK_MUTEX(raidPtr->mutex);
219 while (raidPtr->reconInProgress) {
220 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
221 }
222 raidPtr->reconInProgress++;
223 RF_UNLOCK_MUTEX(raidPtr->mutex);
224 rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
225 RF_LOCK_MUTEX(raidPtr->mutex);
226 raidPtr->reconInProgress--;
227 RF_UNLOCK_MUTEX(raidPtr->mutex);
228 } else {
229 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
230 lp->parityConfig);
231 rc = EIO;
232 }
233 RF_SIGNAL_COND(raidPtr->waitForReconCond);
234 return (rc);
235 }
236
237 int
238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
239 {
240 RF_ComponentLabel_t c_label;
241 RF_RaidDisk_t *spareDiskPtr = NULL;
242 RF_RaidReconDesc_t *reconDesc;
243 RF_RowCol_t scol;
244 int numDisksDone = 0, rc;
245
246 /* first look for a spare drive onto which to reconstruct the data */
247 /* spare disk descriptors are stored in row 0. This may have to
248 * change eventually */
249
250 RF_LOCK_MUTEX(raidPtr->mutex);
251 RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
253 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
254 if (raidPtr->status != rf_rs_degraded) {
255 RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
256 RF_UNLOCK_MUTEX(raidPtr->mutex);
257 return (EINVAL);
258 }
259 scol = (-1);
260 } else {
261 #endif
262 for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
263 if (raidPtr->Disks[scol].status == rf_ds_spare) {
264 spareDiskPtr = &raidPtr->Disks[scol];
265 spareDiskPtr->status = rf_ds_used_spare;
266 break;
267 }
268 }
269 if (!spareDiskPtr) {
270 RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
271 RF_UNLOCK_MUTEX(raidPtr->mutex);
272 return (ENOSPC);
273 }
274 printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
276 }
277 #endif
278 RF_UNLOCK_MUTEX(raidPtr->mutex);
279
280 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
281 raidPtr->reconDesc = (void *) reconDesc;
282 #if RF_RECON_STATS > 0
283 reconDesc->hsStallCount = 0;
284 reconDesc->numReconExecDelays = 0;
285 reconDesc->numReconEventWaits = 0;
286 #endif /* RF_RECON_STATS > 0 */
287 reconDesc->reconExecTimerRunning = 0;
288 reconDesc->reconExecTicks = 0;
289 reconDesc->maxReconExecTicks = 0;
290 rc = rf_ContinueReconstructFailedDisk(reconDesc);
291
292 if (!rc) {
293 /* fix up the component label */
294 /* Don't actually need the read here.. */
295 raidread_component_label(
296 raidPtr->raid_cinfo[scol].ci_dev,
297 raidPtr->raid_cinfo[scol].ci_vp,
298 &c_label);
299
300 raid_init_component_label( raidPtr, &c_label);
301 c_label.row = 0;
302 c_label.column = col;
303 c_label.clean = RF_RAID_DIRTY;
304 c_label.status = rf_ds_optimal;
305 c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
306
307 /* We've just done a rebuild based on all the other
308 disks, so at this point the parity is known to be
309 clean, even if it wasn't before. */
310
311 /* XXX doesn't hold for RAID 6!!*/
312
313 RF_LOCK_MUTEX(raidPtr->mutex);
314 raidPtr->parity_good = RF_RAID_CLEAN;
315 RF_UNLOCK_MUTEX(raidPtr->mutex);
316
317 /* XXXX MORE NEEDED HERE */
318
319 raidwrite_component_label(
320 raidPtr->raid_cinfo[scol].ci_dev,
321 raidPtr->raid_cinfo[scol].ci_vp,
322 &c_label);
323
324 } else {
325 /* Reconstruct failed. */
326
327 RF_LOCK_MUTEX(raidPtr->mutex);
328 /* Failed disk goes back to "failed" status */
329 raidPtr->Disks[col].status = rf_ds_failed;
330
331 /* Spare disk goes back to "spare" status. */
332 spareDiskPtr->status = rf_ds_spare;
333 RF_UNLOCK_MUTEX(raidPtr->mutex);
334
335 }
336 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
337 return (rc);
338 }
339
340 /*
341
342 Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
343 and you don't get a spare until the next Monday. With this function
344 (and hot-swappable drives) you can now put your new disk containing
345 /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
346 rebuild the data "on the spot".
347
348 */
349
350 int
351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
352 {
353 RF_RaidDisk_t *spareDiskPtr = NULL;
354 RF_RaidReconDesc_t *reconDesc;
355 const RF_LayoutSW_t *lp;
356 RF_ComponentLabel_t c_label;
357 int numDisksDone = 0, rc;
358 struct partinfo dpart;
359 struct vnode *vp;
360 struct vattr va;
361 struct lwp *lwp;
362 int retcode;
363 int ac;
364
365 lp = raidPtr->Layout.map;
366 if (!lp->SubmitReconBuffer) {
367 RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
368 lp->parityConfig);
369 /* wakeup anyone who might be waiting to do a reconstruct */
370 RF_SIGNAL_COND(raidPtr->waitForReconCond);
371 return(EIO);
372 }
373
374 /*
375 * The current infrastructure only supports reconstructing one
376 * disk at a time for each array.
377 */
378 RF_LOCK_MUTEX(raidPtr->mutex);
379
380 if (raidPtr->Disks[col].status != rf_ds_failed) {
381 /* "It's gone..." */
382 raidPtr->numFailures++;
383 raidPtr->Disks[col].status = rf_ds_failed;
384 raidPtr->status = rf_rs_degraded;
385 RF_UNLOCK_MUTEX(raidPtr->mutex);
386 rf_update_component_labels(raidPtr,
387 RF_NORMAL_COMPONENT_UPDATE);
388 RF_LOCK_MUTEX(raidPtr->mutex);
389 }
390
391 while (raidPtr->reconInProgress) {
392 RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
393 }
394
395 raidPtr->reconInProgress++;
396
397 /* first look for a spare drive onto which to reconstruct the
398 data. spare disk descriptors are stored in row 0. This
399 may have to change eventually */
400
401 /* Actually, we don't care if it's failed or not... On a RAID
402 set with correct parity, this function should be callable
403 on any component without ill affects. */
404 /* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
405
406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
407 if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
408 RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
409
410 raidPtr->reconInProgress--;
411 RF_UNLOCK_MUTEX(raidPtr->mutex);
412 RF_SIGNAL_COND(raidPtr->waitForReconCond);
413 return (EINVAL);
414 }
415 #endif
416 lwp = LIST_FIRST(&raidPtr->engine_thread->p_lwps);
417
418 /* This device may have been opened successfully the
419 first time. Close it before trying to open it again.. */
420
421 if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
422 #if 0
423 printf("Closed the open device: %s\n",
424 raidPtr->Disks[col].devname);
425 #endif
426 vp = raidPtr->raid_cinfo[col].ci_vp;
427 ac = raidPtr->Disks[col].auto_configured;
428 RF_UNLOCK_MUTEX(raidPtr->mutex);
429 rf_close_component(raidPtr, vp, ac);
430 RF_LOCK_MUTEX(raidPtr->mutex);
431 raidPtr->raid_cinfo[col].ci_vp = NULL;
432 }
433 /* note that this disk was *not* auto_configured (any longer)*/
434 raidPtr->Disks[col].auto_configured = 0;
435
436 #if 0
437 printf("About to (re-)open the device for rebuilding: %s\n",
438 raidPtr->Disks[col].devname);
439 #endif
440 RF_UNLOCK_MUTEX(raidPtr->mutex);
441 retcode = dk_lookup(raidPtr->Disks[col].devname, lwp, &vp, UIO_SYSSPACE);
442
443 if (retcode) {
444 printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
445 raidPtr->Disks[col].devname, retcode);
446
447 /* the component isn't responding properly...
448 must be still dead :-( */
449 RF_LOCK_MUTEX(raidPtr->mutex);
450 raidPtr->reconInProgress--;
451 RF_UNLOCK_MUTEX(raidPtr->mutex);
452 RF_SIGNAL_COND(raidPtr->waitForReconCond);
453 return(retcode);
454 }
455
456 /* Ok, so we can at least do a lookup...
457 How about actually getting a vp for it? */
458
459 if ((retcode = VOP_GETATTR(vp, &va, lwp->l_cred, lwp)) != 0) {
460 RF_LOCK_MUTEX(raidPtr->mutex);
461 raidPtr->reconInProgress--;
462 RF_UNLOCK_MUTEX(raidPtr->mutex);
463 RF_SIGNAL_COND(raidPtr->waitForReconCond);
464 return(retcode);
465 }
466
467 retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, lwp->l_cred, lwp);
468 if (retcode) {
469 RF_LOCK_MUTEX(raidPtr->mutex);
470 raidPtr->reconInProgress--;
471 RF_UNLOCK_MUTEX(raidPtr->mutex);
472 RF_SIGNAL_COND(raidPtr->waitForReconCond);
473 return(retcode);
474 }
475 RF_LOCK_MUTEX(raidPtr->mutex);
476 raidPtr->Disks[col].blockSize = dpart.disklab->d_secsize;
477
478 raidPtr->Disks[col].numBlocks = dpart.part->p_size -
479 rf_protectedSectors;
480
481 raidPtr->raid_cinfo[col].ci_vp = vp;
482 raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
483
484 raidPtr->Disks[col].dev = va.va_rdev;
485
486 /* we allow the user to specify that only a fraction
487 of the disks should be used this is just for debug:
488 it speeds up * the parity scan */
489 raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
490 rf_sizePercentage / 100;
491 RF_UNLOCK_MUTEX(raidPtr->mutex);
492
493 spareDiskPtr = &raidPtr->Disks[col];
494 spareDiskPtr->status = rf_ds_used_spare;
495
496 printf("raid%d: initiating in-place reconstruction on column %d\n",
497 raidPtr->raidid, col);
498
499 reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
500 numDisksDone, col);
501 raidPtr->reconDesc = (void *) reconDesc;
502 #if RF_RECON_STATS > 0
503 reconDesc->hsStallCount = 0;
504 reconDesc->numReconExecDelays = 0;
505 reconDesc->numReconEventWaits = 0;
506 #endif /* RF_RECON_STATS > 0 */
507 reconDesc->reconExecTimerRunning = 0;
508 reconDesc->reconExecTicks = 0;
509 reconDesc->maxReconExecTicks = 0;
510 rc = rf_ContinueReconstructFailedDisk(reconDesc);
511
512 if (!rc) {
513 RF_LOCK_MUTEX(raidPtr->mutex);
514 /* Need to set these here, as at this point it'll be claiming
515 that the disk is in rf_ds_spared! But we know better :-) */
516
517 raidPtr->Disks[col].status = rf_ds_optimal;
518 raidPtr->status = rf_rs_optimal;
519 RF_UNLOCK_MUTEX(raidPtr->mutex);
520
521 /* fix up the component label */
522 /* Don't actually need the read here.. */
523 raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
524 raidPtr->raid_cinfo[col].ci_vp,
525 &c_label);
526
527 RF_LOCK_MUTEX(raidPtr->mutex);
528 raid_init_component_label(raidPtr, &c_label);
529
530 c_label.row = 0;
531 c_label.column = col;
532
533 /* We've just done a rebuild based on all the other
534 disks, so at this point the parity is known to be
535 clean, even if it wasn't before. */
536
537 /* XXX doesn't hold for RAID 6!!*/
538
539 raidPtr->parity_good = RF_RAID_CLEAN;
540 RF_UNLOCK_MUTEX(raidPtr->mutex);
541
542 raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
543 raidPtr->raid_cinfo[col].ci_vp,
544 &c_label);
545
546 } else {
547 /* Reconstruct-in-place failed. Disk goes back to
548 "failed" status, regardless of what it was before. */
549 RF_LOCK_MUTEX(raidPtr->mutex);
550 raidPtr->Disks[col].status = rf_ds_failed;
551 RF_UNLOCK_MUTEX(raidPtr->mutex);
552 }
553
554 rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
555
556 RF_LOCK_MUTEX(raidPtr->mutex);
557 raidPtr->reconInProgress--;
558 RF_UNLOCK_MUTEX(raidPtr->mutex);
559
560 RF_SIGNAL_COND(raidPtr->waitForReconCond);
561 return (rc);
562 }
563
564
565 int
566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
567 {
568 RF_Raid_t *raidPtr = reconDesc->raidPtr;
569 RF_RowCol_t col = reconDesc->col;
570 RF_RowCol_t scol = reconDesc->scol;
571 RF_ReconMap_t *mapPtr;
572 RF_ReconCtrl_t *tmp_reconctrl;
573 RF_ReconEvent_t *event;
574 RF_CallbackDesc_t *p;
575 struct timeval etime, elpsd;
576 unsigned long xor_s, xor_resid_us;
577 int i, ds;
578 int status;
579 int recon_error, write_error;
580
581 raidPtr->accumXorTimeUs = 0;
582 #if RF_ACC_TRACE > 0
583 /* create one trace record per physical disk */
584 RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
585 #endif
586
587 /* quiesce the array prior to starting recon. this is needed
588 * to assure no nasty interactions with pending user writes.
589 * We need to do this before we change the disk or row status. */
590
591 Dprintf("RECON: begin request suspend\n");
592 rf_SuspendNewRequestsAndWait(raidPtr);
593 Dprintf("RECON: end request suspend\n");
594
595 /* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
596 tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
597
598 RF_LOCK_MUTEX(raidPtr->mutex);
599
600 /* create the reconstruction control pointer and install it in
601 * the right slot */
602 raidPtr->reconControl = tmp_reconctrl;
603 mapPtr = raidPtr->reconControl->reconMap;
604 raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
605 raidPtr->reconControl->numRUsComplete = 0;
606 raidPtr->status = rf_rs_reconstructing;
607 raidPtr->Disks[col].status = rf_ds_reconstructing;
608 raidPtr->Disks[col].spareCol = scol;
609
610 RF_UNLOCK_MUTEX(raidPtr->mutex);
611
612 RF_GETTIME(raidPtr->reconControl->starttime);
613
614 /* now start up the actual reconstruction: issue a read for
615 * each surviving disk */
616
617 reconDesc->numDisksDone = 0;
618 for (i = 0; i < raidPtr->numCol; i++) {
619 if (i != col) {
620 /* find and issue the next I/O on the
621 * indicated disk */
622 if (IssueNextReadRequest(raidPtr, i)) {
623 Dprintf1("RECON: done issuing for c%d\n", i);
624 reconDesc->numDisksDone++;
625 }
626 }
627 }
628
629 Dprintf("RECON: resume requests\n");
630 rf_ResumeNewRequests(raidPtr);
631
632 /* process reconstruction events until all disks report that
633 * they've completed all work */
634
635 mapPtr = raidPtr->reconControl->reconMap;
636 recon_error = 0;
637 write_error = 0;
638
639 while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
640
641 event = rf_GetNextReconEvent(reconDesc);
642 status = ProcessReconEvent(raidPtr, event);
643
644 /* the normal case is that a read completes, and all is well. */
645 if (status == RF_RECON_DONE_READS) {
646 reconDesc->numDisksDone++;
647 } else if ((status == RF_RECON_READ_ERROR) ||
648 (status == RF_RECON_WRITE_ERROR)) {
649 /* an error was encountered while reconstructing...
650 Pretend we've finished this disk.
651 */
652 recon_error = 1;
653 raidPtr->reconControl->error = 1;
654
655 /* bump the numDisksDone count for reads,
656 but not for writes */
657 if (status == RF_RECON_READ_ERROR)
658 reconDesc->numDisksDone++;
659
660 /* write errors are special -- when we are
661 done dealing with the reads that are
662 finished, we don't want to wait for any
663 writes */
664 if (status == RF_RECON_WRITE_ERROR)
665 write_error = 1;
666
667 } else if (status == RF_RECON_READ_STOPPED) {
668 /* count this component as being "done" */
669 reconDesc->numDisksDone++;
670 }
671
672 if (recon_error) {
673
674 /* make sure any stragglers are woken up so that
675 their theads will complete, and we can get out
676 of here with all IO processed */
677
678 while (raidPtr->reconControl->headSepCBList) {
679 p = raidPtr->reconControl->headSepCBList;
680 raidPtr->reconControl->headSepCBList = p->next;
681 p->next = NULL;
682 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
683 rf_FreeCallbackDesc(p);
684 }
685 }
686
687 raidPtr->reconControl->numRUsTotal =
688 mapPtr->totalRUs;
689 raidPtr->reconControl->numRUsComplete =
690 mapPtr->totalRUs -
691 rf_UnitsLeftToReconstruct(mapPtr);
692
693 #if RF_DEBUG_RECON
694 raidPtr->reconControl->percentComplete =
695 (raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
696 if (rf_prReconSched) {
697 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
698 }
699 #endif
700 }
701
702 mapPtr = raidPtr->reconControl->reconMap;
703 if (rf_reconDebug) {
704 printf("RECON: all reads completed\n");
705 }
706 /* at this point all the reads have completed. We now wait
707 * for any pending writes to complete, and then we're done */
708
709 while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
710
711 event = rf_GetNextReconEvent(reconDesc);
712 status = ProcessReconEvent(raidPtr, event);
713
714 if (status == RF_RECON_WRITE_ERROR) {
715 recon_error = 1;
716 raidPtr->reconControl->error = 1;
717 /* an error was encountered at the very end... bail */
718 } else {
719 #if RF_DEBUG_RECON
720 raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
721 if (rf_prReconSched) {
722 rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
723 }
724 #endif
725 }
726 }
727
728 if (recon_error) {
729 /* we've encountered an error in reconstructing. */
730 printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
731
732 /* we start by blocking IO to the RAID set. */
733 rf_SuspendNewRequestsAndWait(raidPtr);
734
735 RF_LOCK_MUTEX(raidPtr->mutex);
736 /* mark set as being degraded, rather than
737 rf_rs_reconstructing as we were before the problem.
738 After this is done we can update status of the
739 component disks without worrying about someone
740 trying to read from a failed component.
741 */
742 raidPtr->status = rf_rs_degraded;
743 RF_UNLOCK_MUTEX(raidPtr->mutex);
744
745 /* resume IO */
746 rf_ResumeNewRequests(raidPtr);
747
748 /* At this point there are two cases:
749 1) If we've experienced a read error, then we've
750 already waited for all the reads we're going to get,
751 and we just need to wait for the writes.
752
753 2) If we've experienced a write error, we've also
754 already waited for all the reads to complete,
755 but there is little point in waiting for the writes --
756 when they do complete, they will just be ignored.
757
758 So we just wait for writes to complete if we didn't have a
759 write error.
760 */
761
762 if (!write_error) {
763 /* wait for writes to complete */
764 while (raidPtr->reconControl->pending_writes > 0) {
765
766 event = rf_GetNextReconEvent(reconDesc);
767 status = ProcessReconEvent(raidPtr, event);
768
769 if (status == RF_RECON_WRITE_ERROR) {
770 raidPtr->reconControl->error = 1;
771 /* an error was encountered at the very end... bail.
772 This will be very bad news for the user, since
773 at this point there will have been a read error
774 on one component, and a write error on another!
775 */
776 break;
777 }
778 }
779 }
780
781
782 /* cleanup */
783
784 /* drain the event queue - after waiting for the writes above,
785 there shouldn't be much (if anything!) left in the queue. */
786
787 rf_DrainReconEventQueue(reconDesc);
788
789 /* XXX As much as we'd like to free the recon control structure
790 and the reconDesc, we have no way of knowing if/when those will
791 be touched by IO that has yet to occur. It is rather poor to be
792 basically causing a 'memory leak' here, but there doesn't seem to be
793 a cleaner alternative at this time. Perhaps when the reconstruct code
794 gets a makeover this problem will go away.
795 */
796 #if 0
797 rf_FreeReconControl(raidPtr);
798 #endif
799
800 #if RF_ACC_TRACE > 0
801 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
802 #endif
803 /* XXX see comment above */
804 #if 0
805 FreeReconDesc(reconDesc);
806 #endif
807
808 return (1);
809 }
810
811 /* Success: mark the dead disk as reconstructed. We quiesce
812 * the array here to assure no nasty interactions with pending
813 * user accesses when we free up the psstatus structure as
814 * part of FreeReconControl() */
815
816 rf_SuspendNewRequestsAndWait(raidPtr);
817
818 RF_LOCK_MUTEX(raidPtr->mutex);
819 raidPtr->numFailures--;
820 ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
821 raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
822 raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
823 RF_UNLOCK_MUTEX(raidPtr->mutex);
824 RF_GETTIME(etime);
825 RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
826
827 rf_ResumeNewRequests(raidPtr);
828
829 printf("raid%d: Reconstruction of disk at col %d completed\n",
830 raidPtr->raidid, col);
831 xor_s = raidPtr->accumXorTimeUs / 1000000;
832 xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
833 printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
834 raidPtr->raidid,
835 (int) elpsd.tv_sec, (int) elpsd.tv_usec,
836 raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
837 printf("raid%d: (start time %d sec %d usec, end time %d sec %d usec)\n",
838 raidPtr->raidid,
839 (int) raidPtr->reconControl->starttime.tv_sec,
840 (int) raidPtr->reconControl->starttime.tv_usec,
841 (int) etime.tv_sec, (int) etime.tv_usec);
842 #if RF_RECON_STATS > 0
843 printf("raid%d: Total head-sep stall count was %d\n",
844 raidPtr->raidid, (int) reconDesc->hsStallCount);
845 #endif /* RF_RECON_STATS > 0 */
846 rf_FreeReconControl(raidPtr);
847 #if RF_ACC_TRACE > 0
848 RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
849 #endif
850 FreeReconDesc(reconDesc);
851
852 return (0);
853
854 }
855 /*****************************************************************************
856 * do the right thing upon each reconstruction event.
857 *****************************************************************************/
858 static int
859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
860 {
861 int retcode = 0, submitblocked;
862 RF_ReconBuffer_t *rbuf;
863 RF_SectorCount_t sectorsPerRU;
864
865 retcode = RF_RECON_READ_STOPPED;
866
867 Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
868 switch (event->type) {
869
870 /* a read I/O has completed */
871 case RF_REVENT_READDONE:
872 rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
873 Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
874 event->col, rbuf->parityStripeID);
875 Dprintf7("RECON: done read psid %ld buf %lx %02x %02x %02x %02x %02x\n",
876 rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
877 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
878 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
879 if (!raidPtr->reconControl->error) {
880 submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
881 Dprintf1("RECON: submitblocked=%d\n", submitblocked);
882 if (!submitblocked)
883 retcode = IssueNextReadRequest(raidPtr, event->col);
884 else
885 retcode = 0;
886 }
887 break;
888
889 /* a write I/O has completed */
890 case RF_REVENT_WRITEDONE:
891 #if RF_DEBUG_RECON
892 if (rf_floatingRbufDebug) {
893 rf_CheckFloatingRbufCount(raidPtr, 1);
894 }
895 #endif
896 sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
897 rbuf = (RF_ReconBuffer_t *) event->arg;
898 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
899 Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
900 rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
901 rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
902 rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
903 rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
904
905 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
906 raidPtr->reconControl->pending_writes--;
907 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
908
909 if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
910 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
911 while(raidPtr->reconControl->rb_lock) {
912 ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
913 &raidPtr->reconControl->rb_mutex);
914 }
915 raidPtr->reconControl->rb_lock = 1;
916 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
917
918 raidPtr->numFullReconBuffers--;
919 rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
920
921 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
922 raidPtr->reconControl->rb_lock = 0;
923 wakeup(&raidPtr->reconControl->rb_lock);
924 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
925 } else
926 if (rbuf->type == RF_RBUF_TYPE_FORCED)
927 rf_FreeReconBuffer(rbuf);
928 else
929 RF_ASSERT(0);
930 retcode = 0;
931 break;
932
933 case RF_REVENT_BUFCLEAR: /* A buffer-stall condition has been
934 * cleared */
935 Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
936 if (!raidPtr->reconControl->error) {
937 submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
938 0, (int) (long) event->arg);
939 RF_ASSERT(!submitblocked); /* we wouldn't have gotten the
940 * BUFCLEAR event if we
941 * couldn't submit */
942 retcode = IssueNextReadRequest(raidPtr, event->col);
943 }
944 break;
945
946 case RF_REVENT_BLOCKCLEAR: /* A user-write reconstruction
947 * blockage has been cleared */
948 DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
949 if (!raidPtr->reconControl->error) {
950 retcode = TryToRead(raidPtr, event->col);
951 }
952 break;
953
954 case RF_REVENT_HEADSEPCLEAR: /* A max-head-separation
955 * reconstruction blockage has been
956 * cleared */
957 Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
958 if (!raidPtr->reconControl->error) {
959 retcode = TryToRead(raidPtr, event->col);
960 }
961 break;
962
963 /* a buffer has become ready to write */
964 case RF_REVENT_BUFREADY:
965 Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
966 if (!raidPtr->reconControl->error) {
967 retcode = IssueNextWriteRequest(raidPtr);
968 #if RF_DEBUG_RECON
969 if (rf_floatingRbufDebug) {
970 rf_CheckFloatingRbufCount(raidPtr, 1);
971 }
972 #endif
973 }
974 break;
975
976 /* we need to skip the current RU entirely because it got
977 * recon'd while we were waiting for something else to happen */
978 case RF_REVENT_SKIP:
979 DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
980 if (!raidPtr->reconControl->error) {
981 retcode = IssueNextReadRequest(raidPtr, event->col);
982 }
983 break;
984
985 /* a forced-reconstruction read access has completed. Just
986 * submit the buffer */
987 case RF_REVENT_FORCEDREADDONE:
988 rbuf = (RF_ReconBuffer_t *) event->arg;
989 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
990 DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
991 if (!raidPtr->reconControl->error) {
992 submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
993 RF_ASSERT(!submitblocked);
994 retcode = 0;
995 }
996 break;
997
998 /* A read I/O failed to complete */
999 case RF_REVENT_READ_FAILED:
1000 retcode = RF_RECON_READ_ERROR;
1001 break;
1002
1003 /* A write I/O failed to complete */
1004 case RF_REVENT_WRITE_FAILED:
1005 retcode = RF_RECON_WRITE_ERROR;
1006
1007 rbuf = (RF_ReconBuffer_t *) event->arg;
1008
1009 /* cleanup the disk queue data */
1010 rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
1011
1012 /* At this point we're erroring out, badly, and floatingRbufs
1013 may not even be valid. Rather than putting this back onto
1014 the floatingRbufs list, just arrange for its immediate
1015 destruction.
1016 */
1017 rf_FreeReconBuffer(rbuf);
1018 break;
1019
1020 /* a forced read I/O failed to complete */
1021 case RF_REVENT_FORCEDREAD_FAILED:
1022 retcode = RF_RECON_READ_ERROR;
1023 break;
1024
1025 default:
1026 RF_PANIC();
1027 }
1028 rf_FreeReconEventDesc(event);
1029 return (retcode);
1030 }
1031 /*****************************************************************************
1032 *
1033 * find the next thing that's needed on the indicated disk, and issue
1034 * a read request for it. We assume that the reconstruction buffer
1035 * associated with this process is free to receive the data. If
1036 * reconstruction is blocked on the indicated RU, we issue a
1037 * blockage-release request instead of a physical disk read request.
1038 * If the current disk gets too far ahead of the others, we issue a
1039 * head-separation wait request and return.
1040 *
1041 * ctrl->{ru_count, curPSID, diskOffset} and
1042 * rbuf->failedDiskSectorOffset are maintained to point to the unit
1043 * we're currently accessing. Note that this deviates from the
1044 * standard C idiom of having counters point to the next thing to be
1045 * accessed. This allows us to easily retry when we're blocked by
1046 * head separation or reconstruction-blockage events.
1047 *
1048 *****************************************************************************/
1049 static int
1050 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
1051 {
1052 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1053 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1054 RF_ReconBuffer_t *rbuf = ctrl->rbuf;
1055 RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
1056 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1057 int do_new_check = 0, retcode = 0, status;
1058
1059 /* if we are currently the slowest disk, mark that we have to do a new
1060 * check */
1061 if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
1062 do_new_check = 1;
1063
1064 while (1) {
1065
1066 ctrl->ru_count++;
1067 if (ctrl->ru_count < RUsPerPU) {
1068 ctrl->diskOffset += sectorsPerRU;
1069 rbuf->failedDiskSectorOffset += sectorsPerRU;
1070 } else {
1071 ctrl->curPSID++;
1072 ctrl->ru_count = 0;
1073 /* code left over from when head-sep was based on
1074 * parity stripe id */
1075 if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
1076 CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
1077 return (RF_RECON_DONE_READS); /* finito! */
1078 }
1079 /* find the disk offsets of the start of the parity
1080 * stripe on both the current disk and the failed
1081 * disk. skip this entire parity stripe if either disk
1082 * does not appear in the indicated PS */
1083 status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
1084 &rbuf->spCol, &rbuf->spOffset);
1085 if (status) {
1086 ctrl->ru_count = RUsPerPU - 1;
1087 continue;
1088 }
1089 }
1090 rbuf->which_ru = ctrl->ru_count;
1091
1092 /* skip this RU if it's already been reconstructed */
1093 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
1094 Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
1095 continue;
1096 }
1097 break;
1098 }
1099 ctrl->headSepCounter++;
1100 if (do_new_check)
1101 CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter); /* update min if needed */
1102
1103
1104 /* at this point, we have definitely decided what to do, and we have
1105 * only to see if we can actually do it now */
1106 rbuf->parityStripeID = ctrl->curPSID;
1107 rbuf->which_ru = ctrl->ru_count;
1108 #if RF_ACC_TRACE > 0
1109 memset((char *) &raidPtr->recon_tracerecs[col], 0,
1110 sizeof(raidPtr->recon_tracerecs[col]));
1111 raidPtr->recon_tracerecs[col].reconacc = 1;
1112 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1113 #endif
1114 retcode = TryToRead(raidPtr, col);
1115 return (retcode);
1116 }
1117
1118 /*
1119 * tries to issue the next read on the indicated disk. We may be
1120 * blocked by (a) the heads being too far apart, or (b) recon on the
1121 * indicated RU being blocked due to a write by a user thread. In
1122 * this case, we issue a head-sep or blockage wait request, which will
1123 * cause this same routine to be invoked again later when the blockage
1124 * has cleared.
1125 */
1126
1127 static int
1128 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
1129 {
1130 RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
1131 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
1132 RF_StripeNum_t psid = ctrl->curPSID;
1133 RF_ReconUnitNum_t which_ru = ctrl->ru_count;
1134 RF_DiskQueueData_t *req;
1135 int status;
1136 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
1137
1138 /* if the current disk is too far ahead of the others, issue a
1139 * head-separation wait and return */
1140 if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
1141 return (0);
1142
1143 /* allocate a new PSS in case we need it */
1144 newpssPtr = rf_AllocPSStatus(raidPtr);
1145
1146 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1147 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
1148
1149 if (pssPtr != newpssPtr) {
1150 rf_FreePSStatus(raidPtr, newpssPtr);
1151 }
1152
1153 /* if recon is blocked on the indicated parity stripe, issue a
1154 * block-wait request and return. this also must mark the indicated RU
1155 * in the stripe as under reconstruction if not blocked. */
1156 status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
1157 if (status == RF_PSS_RECON_BLOCKED) {
1158 Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
1159 goto out;
1160 } else
1161 if (status == RF_PSS_FORCED_ON_WRITE) {
1162 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1163 goto out;
1164 }
1165 /* make one last check to be sure that the indicated RU didn't get
1166 * reconstructed while we were waiting for something else to happen.
1167 * This is unfortunate in that it causes us to make this check twice
1168 * in the normal case. Might want to make some attempt to re-work
1169 * this so that we only do this check if we've definitely blocked on
1170 * one of the above checks. When this condition is detected, we may
1171 * have just created a bogus status entry, which we need to delete. */
1172 if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
1173 Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
1174 if (pssPtr == newpssPtr)
1175 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1176 rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
1177 goto out;
1178 }
1179 /* found something to read. issue the I/O */
1180 Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
1181 psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
1182 #if RF_ACC_TRACE > 0
1183 RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
1184 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
1185 raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
1186 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
1187 RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
1188 #endif
1189 /* should be ok to use a NULL proc pointer here, all the bufs we use
1190 * should be in kernel space */
1191 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
1192 ReconReadDoneProc, (void *) ctrl,
1193 #if RF_ACC_TRACE > 0
1194 &raidPtr->recon_tracerecs[col],
1195 #else
1196 NULL,
1197 #endif
1198 (void *) raidPtr, 0, NULL, PR_WAITOK);
1199
1200 ctrl->rbuf->arg = (void *) req;
1201 rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
1202 pssPtr->issued[col] = 1;
1203
1204 out:
1205 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1206 return (0);
1207 }
1208
1209
1210 /*
1211 * given a parity stripe ID, we want to find out whether both the
1212 * current disk and the failed disk exist in that parity stripe. If
1213 * not, we want to skip this whole PS. If so, we want to find the
1214 * disk offset of the start of the PS on both the current disk and the
1215 * failed disk.
1216 *
1217 * this works by getting a list of disks comprising the indicated
1218 * parity stripe, and searching the list for the current and failed
1219 * disks. Once we've decided they both exist in the parity stripe, we
1220 * need to decide whether each is data or parity, so that we'll know
1221 * which mapping function to call to get the corresponding disk
1222 * offsets.
1223 *
1224 * this is kind of unpleasant, but doing it this way allows the
1225 * reconstruction code to use parity stripe IDs rather than physical
1226 * disks address to march through the failed disk, which greatly
1227 * simplifies a lot of code, as well as eliminating the need for a
1228 * reverse-mapping function. I also think it will execute faster,
1229 * since the calls to the mapping module are kept to a minimum.
1230 *
1231 * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
1232 * THE STRIPE IN THE CORRECT ORDER
1233 *
1234 * raidPtr - raid descriptor
1235 * psid - parity stripe identifier
1236 * col - column of disk to find the offsets for
1237 * spCol - out: col of spare unit for failed unit
1238 * spOffset - out: offset into disk containing spare unit
1239 *
1240 */
1241
1242
1243 static int
1244 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
1245 RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
1246 RF_SectorNum_t *outFailedDiskSectorOffset,
1247 RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
1248 {
1249 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1250 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1251 RF_RaidAddr_t sosRaidAddress; /* start-of-stripe */
1252 RF_RowCol_t *diskids;
1253 u_int i, j, k, i_offset, j_offset;
1254 RF_RowCol_t pcol;
1255 int testcol;
1256 RF_SectorNum_t poffset;
1257 char i_is_parity = 0, j_is_parity = 0;
1258 RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
1259
1260 /* get a listing of the disks comprising that stripe */
1261 sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
1262 (layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
1263 RF_ASSERT(diskids);
1264
1265 /* reject this entire parity stripe if it does not contain the
1266 * indicated disk or it does not contain the failed disk */
1267
1268 for (i = 0; i < stripeWidth; i++) {
1269 if (col == diskids[i])
1270 break;
1271 }
1272 if (i == stripeWidth)
1273 goto skipit;
1274 for (j = 0; j < stripeWidth; j++) {
1275 if (fcol == diskids[j])
1276 break;
1277 }
1278 if (j == stripeWidth) {
1279 goto skipit;
1280 }
1281 /* find out which disk the parity is on */
1282 (layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
1283
1284 /* find out if either the current RU or the failed RU is parity */
1285 /* also, if the parity occurs in this stripe prior to the data and/or
1286 * failed col, we need to decrement i and/or j */
1287 for (k = 0; k < stripeWidth; k++)
1288 if (diskids[k] == pcol)
1289 break;
1290 RF_ASSERT(k < stripeWidth);
1291 i_offset = i;
1292 j_offset = j;
1293 if (k < i)
1294 i_offset--;
1295 else
1296 if (k == i) {
1297 i_is_parity = 1;
1298 i_offset = 0;
1299 } /* set offsets to zero to disable multiply
1300 * below */
1301 if (k < j)
1302 j_offset--;
1303 else
1304 if (k == j) {
1305 j_is_parity = 1;
1306 j_offset = 0;
1307 }
1308 /* at this point, [ij]_is_parity tells us whether the [current,failed]
1309 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
1310 * tells us how far into the stripe the [current,failed] disk is. */
1311
1312 /* call the mapping routine to get the offset into the current disk,
1313 * repeat for failed disk. */
1314 if (i_is_parity)
1315 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1316 else
1317 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
1318
1319 RF_ASSERT(col == testcol);
1320
1321 if (j_is_parity)
1322 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1323 else
1324 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
1325 RF_ASSERT(fcol == testcol);
1326
1327 /* now locate the spare unit for the failed unit */
1328 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1329 if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
1330 if (j_is_parity)
1331 layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1332 else
1333 layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
1334 } else {
1335 #endif
1336 *spCol = raidPtr->reconControl->spareCol;
1337 *spOffset = *outFailedDiskSectorOffset;
1338 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
1339 }
1340 #endif
1341 return (0);
1342
1343 skipit:
1344 Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
1345 psid, col);
1346 return (1);
1347 }
1348 /* this is called when a buffer has become ready to write to the replacement disk */
1349 static int
1350 IssueNextWriteRequest(RF_Raid_t *raidPtr)
1351 {
1352 RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
1353 RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
1354 #if RF_ACC_TRACE > 0
1355 RF_RowCol_t fcol = raidPtr->reconControl->fcol;
1356 #endif
1357 RF_ReconBuffer_t *rbuf;
1358 RF_DiskQueueData_t *req;
1359
1360 rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
1361 RF_ASSERT(rbuf); /* there must be one available, or we wouldn't
1362 * have gotten the event that sent us here */
1363 RF_ASSERT(rbuf->pssPtr);
1364
1365 rbuf->pssPtr->writeRbuf = rbuf;
1366 rbuf->pssPtr = NULL;
1367
1368 Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
1369 rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
1370 rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
1371 Dprintf6("RECON: new write psid %ld %02x %02x %02x %02x %02x\n",
1372 rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
1373 rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
1374
1375 /* should be ok to use a NULL b_proc here b/c all addrs should be in
1376 * kernel space */
1377 req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
1378 sectorsPerRU, rbuf->buffer,
1379 rbuf->parityStripeID, rbuf->which_ru,
1380 ReconWriteDoneProc, (void *) rbuf,
1381 #if RF_ACC_TRACE > 0
1382 &raidPtr->recon_tracerecs[fcol],
1383 #else
1384 NULL,
1385 #endif
1386 (void *) raidPtr, 0, NULL, PR_WAITOK);
1387
1388 rbuf->arg = (void *) req;
1389 RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1390 raidPtr->reconControl->pending_writes++;
1391 RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
1392 rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
1393
1394 return (0);
1395 }
1396
1397 /*
1398 * this gets called upon the completion of a reconstruction read
1399 * operation the arg is a pointer to the per-disk reconstruction
1400 * control structure for the process that just finished a read.
1401 *
1402 * called at interrupt context in the kernel, so don't do anything
1403 * illegal here.
1404 */
1405 static int
1406 ReconReadDoneProc(void *arg, int status)
1407 {
1408 RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
1409 RF_Raid_t *raidPtr;
1410
1411 /* Detect that reconCtrl is no longer valid, and if that
1412 is the case, bail without calling rf_CauseReconEvent().
1413 There won't be anyone listening for this event anyway */
1414
1415 if (ctrl->reconCtrl == NULL)
1416 return(0);
1417
1418 raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
1419
1420 if (status) {
1421 printf("raid%d: Recon read failed!\n", raidPtr->raidid);
1422 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
1423 return(0);
1424 }
1425 #if RF_ACC_TRACE > 0
1426 RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1427 RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1428 raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
1429 RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1430 RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
1431 #endif
1432 rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
1433 return (0);
1434 }
1435 /* this gets called upon the completion of a reconstruction write operation.
1436 * the arg is a pointer to the rbuf that was just written
1437 *
1438 * called at interrupt context in the kernel, so don't do anything illegal here.
1439 */
1440 static int
1441 ReconWriteDoneProc(void *arg, int status)
1442 {
1443 RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
1444
1445 /* Detect that reconControl is no longer valid, and if that
1446 is the case, bail without calling rf_CauseReconEvent().
1447 There won't be anyone listening for this event anyway */
1448
1449 if (rbuf->raidPtr->reconControl == NULL)
1450 return(0);
1451
1452 Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
1453 if (status) {
1454 printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
1455 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
1456 return(0);
1457 }
1458 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
1459 return (0);
1460 }
1461
1462
1463 /*
1464 * computes a new minimum head sep, and wakes up anyone who needs to
1465 * be woken as a result
1466 */
1467 static void
1468 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
1469 {
1470 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1471 RF_HeadSepLimit_t new_min;
1472 RF_RowCol_t i;
1473 RF_CallbackDesc_t *p;
1474 RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter); /* from the definition
1475 * of a minimum */
1476
1477
1478 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1479 while(reconCtrlPtr->rb_lock) {
1480 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
1481 }
1482 reconCtrlPtr->rb_lock = 1;
1483 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1484
1485 new_min = ~(1L << (8 * sizeof(long) - 1)); /* 0x7FFF....FFF */
1486 for (i = 0; i < raidPtr->numCol; i++)
1487 if (i != reconCtrlPtr->fcol) {
1488 if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
1489 new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
1490 }
1491 /* set the new minimum and wake up anyone who can now run again */
1492 if (new_min != reconCtrlPtr->minHeadSepCounter) {
1493 reconCtrlPtr->minHeadSepCounter = new_min;
1494 Dprintf1("RECON: new min head pos counter val is %ld\n", new_min);
1495 while (reconCtrlPtr->headSepCBList) {
1496 if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
1497 break;
1498 p = reconCtrlPtr->headSepCBList;
1499 reconCtrlPtr->headSepCBList = p->next;
1500 p->next = NULL;
1501 rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
1502 rf_FreeCallbackDesc(p);
1503 }
1504
1505 }
1506 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1507 reconCtrlPtr->rb_lock = 0;
1508 wakeup(&reconCtrlPtr->rb_lock);
1509 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1510 }
1511
1512 /*
1513 * checks to see that the maximum head separation will not be violated
1514 * if we initiate a reconstruction I/O on the indicated disk.
1515 * Limiting the maximum head separation between two disks eliminates
1516 * the nasty buffer-stall conditions that occur when one disk races
1517 * ahead of the others and consumes all of the floating recon buffers.
1518 * This code is complex and unpleasant but it's necessary to avoid
1519 * some very nasty, albeit fairly rare, reconstruction behavior.
1520 *
1521 * returns non-zero if and only if we have to stop working on the
1522 * indicated disk due to a head-separation delay.
1523 */
1524 static int
1525 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
1526 RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
1527 RF_ReconUnitNum_t which_ru)
1528 {
1529 RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
1530 RF_CallbackDesc_t *cb, *p, *pt;
1531 int retval = 0;
1532
1533 /* if we're too far ahead of the slowest disk, stop working on this
1534 * disk until the slower ones catch up. We do this by scheduling a
1535 * wakeup callback for the time when the slowest disk has caught up.
1536 * We define "caught up" with 20% hysteresis, i.e. the head separation
1537 * must have fallen to at most 80% of the max allowable head
1538 * separation before we'll wake up.
1539 *
1540 */
1541 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1542 while(reconCtrlPtr->rb_lock) {
1543 ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
1544 }
1545 reconCtrlPtr->rb_lock = 1;
1546 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1547 if ((raidPtr->headSepLimit >= 0) &&
1548 ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
1549 Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
1550 raidPtr->raidid, col, ctrl->headSepCounter,
1551 reconCtrlPtr->minHeadSepCounter,
1552 raidPtr->headSepLimit);
1553 cb = rf_AllocCallbackDesc();
1554 /* the minHeadSepCounter value we have to get to before we'll
1555 * wake up. build in 20% hysteresis. */
1556 cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
1557 cb->col = col;
1558 cb->next = NULL;
1559
1560 /* insert this callback descriptor into the sorted list of
1561 * pending head-sep callbacks */
1562 p = reconCtrlPtr->headSepCBList;
1563 if (!p)
1564 reconCtrlPtr->headSepCBList = cb;
1565 else
1566 if (cb->callbackArg.v < p->callbackArg.v) {
1567 cb->next = reconCtrlPtr->headSepCBList;
1568 reconCtrlPtr->headSepCBList = cb;
1569 } else {
1570 for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
1571 cb->next = p;
1572 pt->next = cb;
1573 }
1574 retval = 1;
1575 #if RF_RECON_STATS > 0
1576 ctrl->reconCtrl->reconDesc->hsStallCount++;
1577 #endif /* RF_RECON_STATS > 0 */
1578 }
1579 RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
1580 reconCtrlPtr->rb_lock = 0;
1581 wakeup(&reconCtrlPtr->rb_lock);
1582 RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
1583
1584 return (retval);
1585 }
1586 /*
1587 * checks to see if reconstruction has been either forced or blocked
1588 * by a user operation. if forced, we skip this RU entirely. else if
1589 * blocked, put ourselves on the wait list. else return 0.
1590 *
1591 * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
1592 */
1593 static int
1594 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
1595 RF_ReconParityStripeStatus_t *pssPtr,
1596 RF_PerDiskReconCtrl_t *ctrl,
1597 RF_RowCol_t col,
1598 RF_StripeNum_t psid,
1599 RF_ReconUnitNum_t which_ru)
1600 {
1601 RF_CallbackDesc_t *cb;
1602 int retcode = 0;
1603
1604 if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
1605 retcode = RF_PSS_FORCED_ON_WRITE;
1606 else
1607 if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
1608 Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
1609 cb = rf_AllocCallbackDesc(); /* append ourselves to
1610 * the blockage-wait
1611 * list */
1612 cb->col = col;
1613 cb->next = pssPtr->blockWaitList;
1614 pssPtr->blockWaitList = cb;
1615 retcode = RF_PSS_RECON_BLOCKED;
1616 }
1617 if (!retcode)
1618 pssPtr->flags |= RF_PSS_UNDER_RECON; /* mark this RU as under
1619 * reconstruction */
1620
1621 return (retcode);
1622 }
1623 /*
1624 * if reconstruction is currently ongoing for the indicated stripeID,
1625 * reconstruction is forced to completion and we return non-zero to
1626 * indicate that the caller must wait. If not, then reconstruction is
1627 * blocked on the indicated stripe and the routine returns zero. If
1628 * and only if we return non-zero, we'll cause the cbFunc to get
1629 * invoked with the cbArg when the reconstruction has completed.
1630 */
1631 int
1632 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
1633 void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
1634 {
1635 RF_StripeNum_t stripeID = asmap->stripeID; /* the stripe ID we're
1636 * forcing recon on */
1637 RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU; /* num sects in one RU */
1638 RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr; /* a pointer to the parity
1639 * stripe status structure */
1640 RF_StripeNum_t psid; /* parity stripe id */
1641 RF_SectorNum_t offset, fd_offset; /* disk offset, failed-disk
1642 * offset */
1643 RF_RowCol_t *diskids;
1644 RF_ReconUnitNum_t which_ru; /* RU within parity stripe */
1645 RF_RowCol_t fcol, diskno, i;
1646 RF_ReconBuffer_t *new_rbuf; /* ptr to newly allocated rbufs */
1647 RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
1648 RF_CallbackDesc_t *cb;
1649 int nPromoted;
1650
1651 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1652
1653 /* allocate a new PSS in case we need it */
1654 newpssPtr = rf_AllocPSStatus(raidPtr);
1655
1656 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1657
1658 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
1659
1660 if (pssPtr != newpssPtr) {
1661 rf_FreePSStatus(raidPtr, newpssPtr);
1662 }
1663
1664 /* if recon is not ongoing on this PS, just return */
1665 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1666 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1667 return (0);
1668 }
1669 /* otherwise, we have to wait for reconstruction to complete on this
1670 * RU. */
1671 /* In order to avoid waiting for a potentially large number of
1672 * low-priority accesses to complete, we force a normal-priority (i.e.
1673 * not low-priority) reconstruction on this RU. */
1674 if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
1675 DDprintf1("Forcing recon on psid %ld\n", psid);
1676 pssPtr->flags |= RF_PSS_FORCED_ON_WRITE; /* mark this RU as under
1677 * forced recon */
1678 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED; /* clear the blockage
1679 * that we just set */
1680 fcol = raidPtr->reconControl->fcol;
1681
1682 /* get a listing of the disks comprising the indicated stripe */
1683 (raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
1684
1685 /* For previously issued reads, elevate them to normal
1686 * priority. If the I/O has already completed, it won't be
1687 * found in the queue, and hence this will be a no-op. For
1688 * unissued reads, allocate buffers and issue new reads. The
1689 * fact that we've set the FORCED bit means that the regular
1690 * recon procs will not re-issue these reqs */
1691 for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
1692 if ((diskno = diskids[i]) != fcol) {
1693 if (pssPtr->issued[diskno]) {
1694 nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
1695 if (rf_reconDebug && nPromoted)
1696 printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
1697 } else {
1698 new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED); /* create new buf */
1699 ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
1700 &new_rbuf->spCol, &new_rbuf->spOffset); /* find offsets & spare
1701 * location */
1702 new_rbuf->parityStripeID = psid; /* fill in the buffer */
1703 new_rbuf->which_ru = which_ru;
1704 new_rbuf->failedDiskSectorOffset = fd_offset;
1705 new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
1706
1707 /* use NULL b_proc b/c all addrs
1708 * should be in kernel space */
1709 req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
1710 psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
1711 NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
1712
1713 new_rbuf->arg = req;
1714 rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY); /* enqueue the I/O */
1715 Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
1716 }
1717 }
1718 /* if the write is sitting in the disk queue, elevate its
1719 * priority */
1720 if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
1721 printf("raid%d: promoted write to col %d\n",
1722 raidPtr->raidid, fcol);
1723 }
1724 /* install a callback descriptor to be invoked when recon completes on
1725 * this parity stripe. */
1726 cb = rf_AllocCallbackDesc();
1727 /* XXX the following is bogus.. These functions don't really match!!
1728 * GO */
1729 cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
1730 cb->callbackArg.p = (void *) cbArg;
1731 cb->next = pssPtr->procWaitList;
1732 pssPtr->procWaitList = cb;
1733 DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
1734 raidPtr->raidid, psid);
1735
1736 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1737 return (1);
1738 }
1739 /* called upon the completion of a forced reconstruction read.
1740 * all we do is schedule the FORCEDREADONE event.
1741 * called at interrupt context in the kernel, so don't do anything illegal here.
1742 */
1743 static void
1744 ForceReconReadDoneProc(void *arg, int status)
1745 {
1746 RF_ReconBuffer_t *rbuf = arg;
1747
1748 /* Detect that reconControl is no longer valid, and if that
1749 is the case, bail without calling rf_CauseReconEvent().
1750 There won't be anyone listening for this event anyway */
1751
1752 if (rbuf->raidPtr->reconControl == NULL)
1753 return;
1754
1755 if (status) {
1756 printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
1757 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
1758 return;
1759 }
1760 rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
1761 }
1762 /* releases a block on the reconstruction of the indicated stripe */
1763 int
1764 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
1765 {
1766 RF_StripeNum_t stripeID = asmap->stripeID;
1767 RF_ReconParityStripeStatus_t *pssPtr;
1768 RF_ReconUnitNum_t which_ru;
1769 RF_StripeNum_t psid;
1770 RF_CallbackDesc_t *cb;
1771
1772 psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
1773 RF_LOCK_PSS_MUTEX(raidPtr, psid);
1774 pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
1775
1776 /* When recon is forced, the pss desc can get deleted before we get
1777 * back to unblock recon. But, this can _only_ happen when recon is
1778 * forced. It would be good to put some kind of sanity check here, but
1779 * how to decide if recon was just forced or not? */
1780 if (!pssPtr) {
1781 /* printf("Warning: no pss descriptor upon unblock on psid %ld
1782 * RU %d\n",psid,which_ru); */
1783 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
1784 if (rf_reconDebug || rf_pssDebug)
1785 printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
1786 #endif
1787 goto out;
1788 }
1789 pssPtr->blockCount--;
1790 Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
1791 raidPtr->raidid, psid, pssPtr->blockCount);
1792 if (pssPtr->blockCount == 0) { /* if recon blockage has been released */
1793
1794 /* unblock recon before calling CauseReconEvent in case
1795 * CauseReconEvent causes us to try to issue a new read before
1796 * returning here. */
1797 pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
1798
1799
1800 while (pssPtr->blockWaitList) {
1801 /* spin through the block-wait list and
1802 release all the waiters */
1803 cb = pssPtr->blockWaitList;
1804 pssPtr->blockWaitList = cb->next;
1805 cb->next = NULL;
1806 rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
1807 rf_FreeCallbackDesc(cb);
1808 }
1809 if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
1810 /* if no recon was requested while recon was blocked */
1811 rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
1812 }
1813 }
1814 out:
1815 RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
1816 return (0);
1817 }
1818