Home | History | Annotate | Line # | Download | only in raidframe
rf_reconstruct.c revision 1.95.2.2
      1 /*	$NetBSD: rf_reconstruct.c,v 1.95.2.2 2008/04/19 15:52:11 bouyer Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /************************************************************
     30  *
     31  * rf_reconstruct.c -- code to perform on-line reconstruction
     32  *
     33  ************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.95.2.2 2008/04/19 15:52:11 bouyer Exp $");
     37 
     38 #include <sys/time.h>
     39 #include <sys/buf.h>
     40 #include <sys/errno.h>
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/ioctl.h>
     46 #include <sys/fcntl.h>
     47 #include <sys/vnode.h>
     48 #include <dev/raidframe/raidframevar.h>
     49 
     50 #include "rf_raid.h"
     51 #include "rf_reconutil.h"
     52 #include "rf_revent.h"
     53 #include "rf_reconbuffer.h"
     54 #include "rf_acctrace.h"
     55 #include "rf_etimer.h"
     56 #include "rf_dag.h"
     57 #include "rf_desc.h"
     58 #include "rf_debugprint.h"
     59 #include "rf_general.h"
     60 #include "rf_driver.h"
     61 #include "rf_utils.h"
     62 #include "rf_shutdown.h"
     63 
     64 #include "rf_kintf.h"
     65 
     66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
     67 
     68 #if RF_DEBUG_RECON
     69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
     74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
     75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
     76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
     77 
     78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     80 
     81 #else /* RF_DEBUG_RECON */
     82 
     83 #define Dprintf(s) {}
     84 #define Dprintf1(s,a) {}
     85 #define Dprintf2(s,a,b) {}
     86 #define Dprintf3(s,a,b,c) {}
     87 #define Dprintf4(s,a,b,c,d) {}
     88 #define Dprintf5(s,a,b,c,d,e) {}
     89 #define Dprintf6(s,a,b,c,d,e,f) {}
     90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
     91 
     92 #define DDprintf1(s,a) {}
     93 #define DDprintf2(s,a,b) {}
     94 
     95 #endif /* RF_DEBUG_RECON */
     96 
     97 #define RF_RECON_DONE_READS   1
     98 #define RF_RECON_READ_ERROR   2
     99 #define RF_RECON_WRITE_ERROR  3
    100 #define RF_RECON_READ_STOPPED 4
    101 
    102 #define RF_MAX_FREE_RECONBUFFER 32
    103 #define RF_MIN_FREE_RECONBUFFER 16
    104 
    105 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
    106 					      RF_RaidDisk_t *, int, RF_RowCol_t);
    107 static void FreeReconDesc(RF_RaidReconDesc_t *);
    108 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
    109 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
    110 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
    111 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
    112 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
    113 				RF_SectorNum_t *);
    114 static int IssueNextWriteRequest(RF_Raid_t *);
    115 static int ReconReadDoneProc(void *, int);
    116 static int ReconWriteDoneProc(void *, int);
    117 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
    118 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
    119 			       RF_RowCol_t, RF_HeadSepLimit_t,
    120 			       RF_ReconUnitNum_t);
    121 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
    122 					      RF_ReconParityStripeStatus_t *,
    123 					      RF_PerDiskReconCtrl_t *,
    124 					      RF_RowCol_t, RF_StripeNum_t,
    125 					      RF_ReconUnitNum_t);
    126 static void ForceReconReadDoneProc(void *, int);
    127 static void rf_ShutdownReconstruction(void *);
    128 
    129 struct RF_ReconDoneProc_s {
    130 	void    (*proc) (RF_Raid_t *, void *);
    131 	void   *arg;
    132 	RF_ReconDoneProc_t *next;
    133 };
    134 
    135 /**************************************************************************
    136  *
    137  * sets up the parameters that will be used by the reconstruction process
    138  * currently there are none, except for those that the layout-specific
    139  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
    140  *
    141  * in the kernel, we fire off the recon thread.
    142  *
    143  **************************************************************************/
    144 static void
    145 rf_ShutdownReconstruction(void *ignored)
    146 {
    147 	pool_destroy(&rf_pools.reconbuffer);
    148 }
    149 
    150 int
    151 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
    152 {
    153 
    154 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
    155 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
    156 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
    157 
    158 	return (0);
    159 }
    160 
    161 static RF_RaidReconDesc_t *
    162 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
    163 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
    164 		   RF_RowCol_t scol)
    165 {
    166 
    167 	RF_RaidReconDesc_t *reconDesc;
    168 
    169 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
    170 		  (RF_RaidReconDesc_t *));
    171 	reconDesc->raidPtr = raidPtr;
    172 	reconDesc->col = col;
    173 	reconDesc->spareDiskPtr = spareDiskPtr;
    174 	reconDesc->numDisksDone = numDisksDone;
    175 	reconDesc->scol = scol;
    176 	reconDesc->next = NULL;
    177 
    178 	return (reconDesc);
    179 }
    180 
    181 static void
    182 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
    183 {
    184 #if RF_RECON_STATS > 0
    185 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
    186 	       reconDesc->raidPtr->raidid,
    187 	       (long) reconDesc->numReconEventWaits,
    188 	       (long) reconDesc->numReconExecDelays);
    189 #endif				/* RF_RECON_STATS > 0 */
    190 	printf("raid%d: %lu max exec ticks\n",
    191 	       reconDesc->raidPtr->raidid,
    192 	       (long) reconDesc->maxReconExecTicks);
    193 #if (RF_RECON_STATS > 0) || defined(KERNEL)
    194 	printf("\n");
    195 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
    196 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
    197 }
    198 
    199 
    200 /*****************************************************************************
    201  *
    202  * primary routine to reconstruct a failed disk.  This should be called from
    203  * within its own thread.  It won't return until reconstruction completes,
    204  * fails, or is aborted.
    205  *****************************************************************************/
    206 int
    207 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
    208 {
    209 	const RF_LayoutSW_t *lp;
    210 	int     rc;
    211 
    212 	lp = raidPtr->Layout.map;
    213 	if (lp->SubmitReconBuffer) {
    214 		/*
    215 	         * The current infrastructure only supports reconstructing one
    216 	         * disk at a time for each array.
    217 	         */
    218 		RF_LOCK_MUTEX(raidPtr->mutex);
    219 		while (raidPtr->reconInProgress) {
    220 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    221 		}
    222 		raidPtr->reconInProgress++;
    223 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    224 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
    225 		RF_LOCK_MUTEX(raidPtr->mutex);
    226 		raidPtr->reconInProgress--;
    227 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    228 	} else {
    229 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    230 		    lp->parityConfig);
    231 		rc = EIO;
    232 	}
    233 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    234 	return (rc);
    235 }
    236 
    237 int
    238 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
    239 {
    240 	RF_ComponentLabel_t c_label;
    241 	RF_RaidDisk_t *spareDiskPtr = NULL;
    242 	RF_RaidReconDesc_t *reconDesc;
    243 	RF_RowCol_t scol;
    244 	int     numDisksDone = 0, rc;
    245 
    246 	/* first look for a spare drive onto which to reconstruct the data */
    247 	/* spare disk descriptors are stored in row 0.  This may have to
    248 	 * change eventually */
    249 
    250 	RF_LOCK_MUTEX(raidPtr->mutex);
    251 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
    252 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    253 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    254 		if (raidPtr->status != rf_rs_degraded) {
    255 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
    256 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    257 			return (EINVAL);
    258 		}
    259 		scol = (-1);
    260 	} else {
    261 #endif
    262 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
    263 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
    264 				spareDiskPtr = &raidPtr->Disks[scol];
    265 				spareDiskPtr->status = rf_ds_used_spare;
    266 				break;
    267 			}
    268 		}
    269 		if (!spareDiskPtr) {
    270 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
    271 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    272 			return (ENOSPC);
    273 		}
    274 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
    275 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    276 	}
    277 #endif
    278 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    279 
    280 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
    281 	raidPtr->reconDesc = (void *) reconDesc;
    282 #if RF_RECON_STATS > 0
    283 	reconDesc->hsStallCount = 0;
    284 	reconDesc->numReconExecDelays = 0;
    285 	reconDesc->numReconEventWaits = 0;
    286 #endif				/* RF_RECON_STATS > 0 */
    287 	reconDesc->reconExecTimerRunning = 0;
    288 	reconDesc->reconExecTicks = 0;
    289 	reconDesc->maxReconExecTicks = 0;
    290 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    291 
    292 	if (!rc) {
    293 		/* fix up the component label */
    294 		/* Don't actually need the read here.. */
    295 		raidread_component_label(
    296                         raidPtr->raid_cinfo[scol].ci_dev,
    297 			raidPtr->raid_cinfo[scol].ci_vp,
    298 			&c_label);
    299 
    300 		raid_init_component_label( raidPtr, &c_label);
    301 		c_label.row = 0;
    302 		c_label.column = col;
    303 		c_label.clean = RF_RAID_DIRTY;
    304 		c_label.status = rf_ds_optimal;
    305 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
    306 
    307 		/* We've just done a rebuild based on all the other
    308 		   disks, so at this point the parity is known to be
    309 		   clean, even if it wasn't before. */
    310 
    311 		/* XXX doesn't hold for RAID 6!!*/
    312 
    313 		RF_LOCK_MUTEX(raidPtr->mutex);
    314 		raidPtr->parity_good = RF_RAID_CLEAN;
    315 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    316 
    317 		/* XXXX MORE NEEDED HERE */
    318 
    319 		raidwrite_component_label(
    320                         raidPtr->raid_cinfo[scol].ci_dev,
    321 			raidPtr->raid_cinfo[scol].ci_vp,
    322 			&c_label);
    323 
    324 	} else {
    325 		/* Reconstruct failed. */
    326 
    327 		RF_LOCK_MUTEX(raidPtr->mutex);
    328 		/* Failed disk goes back to "failed" status */
    329 		raidPtr->Disks[col].status = rf_ds_failed;
    330 
    331 		/* Spare disk goes back to "spare" status. */
    332 		spareDiskPtr->status = rf_ds_spare;
    333 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    334 
    335 	}
    336 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
    337 	return (rc);
    338 }
    339 
    340 /*
    341 
    342    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
    343    and you don't get a spare until the next Monday.  With this function
    344    (and hot-swappable drives) you can now put your new disk containing
    345    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
    346    rebuild the data "on the spot".
    347 
    348 */
    349 
    350 int
    351 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
    352 {
    353 	RF_RaidDisk_t *spareDiskPtr = NULL;
    354 	RF_RaidReconDesc_t *reconDesc;
    355 	const RF_LayoutSW_t *lp;
    356 	RF_ComponentLabel_t c_label;
    357 	int     numDisksDone = 0, rc;
    358 	struct partinfo dpart;
    359 	struct vnode *vp;
    360 	struct vattr va;
    361 	struct lwp *lwp;
    362 	int retcode;
    363 	int ac;
    364 
    365 	lp = raidPtr->Layout.map;
    366 	if (!lp->SubmitReconBuffer) {
    367 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    368 			     lp->parityConfig);
    369 		/* wakeup anyone who might be waiting to do a reconstruct */
    370 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    371 		return(EIO);
    372 	}
    373 
    374 	/*
    375 	 * The current infrastructure only supports reconstructing one
    376 	 * disk at a time for each array.
    377 	 */
    378 	RF_LOCK_MUTEX(raidPtr->mutex);
    379 
    380 	if (raidPtr->Disks[col].status != rf_ds_failed) {
    381 		/* "It's gone..." */
    382 		raidPtr->numFailures++;
    383 		raidPtr->Disks[col].status = rf_ds_failed;
    384 		raidPtr->status = rf_rs_degraded;
    385 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    386 		rf_update_component_labels(raidPtr,
    387 					   RF_NORMAL_COMPONENT_UPDATE);
    388 		RF_LOCK_MUTEX(raidPtr->mutex);
    389 	}
    390 
    391 	while (raidPtr->reconInProgress) {
    392 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    393 	}
    394 
    395 	raidPtr->reconInProgress++;
    396 
    397 	/* first look for a spare drive onto which to reconstruct the
    398 	   data.  spare disk descriptors are stored in row 0.  This
    399 	   may have to change eventually */
    400 
    401 	/* Actually, we don't care if it's failed or not...  On a RAID
    402 	   set with correct parity, this function should be callable
    403 	   on any component without ill affects. */
    404 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
    405 
    406 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    407 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    408 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
    409 
    410 		raidPtr->reconInProgress--;
    411 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    412 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    413 		return (EINVAL);
    414 	}
    415 #endif
    416 	lwp = LIST_FIRST(&raidPtr->engine_thread->p_lwps);
    417 
    418 	/* This device may have been opened successfully the
    419 	   first time. Close it before trying to open it again.. */
    420 
    421 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
    422 #if 0
    423 		printf("Closed the open device: %s\n",
    424 		       raidPtr->Disks[col].devname);
    425 #endif
    426 		vp = raidPtr->raid_cinfo[col].ci_vp;
    427 		ac = raidPtr->Disks[col].auto_configured;
    428 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    429 		rf_close_component(raidPtr, vp, ac);
    430 		RF_LOCK_MUTEX(raidPtr->mutex);
    431 		raidPtr->raid_cinfo[col].ci_vp = NULL;
    432 	}
    433 	/* note that this disk was *not* auto_configured (any longer)*/
    434 	raidPtr->Disks[col].auto_configured = 0;
    435 
    436 #if 0
    437 	printf("About to (re-)open the device for rebuilding: %s\n",
    438 	       raidPtr->Disks[col].devname);
    439 #endif
    440 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    441 	retcode = dk_lookup(raidPtr->Disks[col].devname, lwp, &vp, UIO_SYSSPACE);
    442 
    443 	if (retcode) {
    444 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
    445 		       raidPtr->Disks[col].devname, retcode);
    446 
    447 		/* the component isn't responding properly...
    448 		   must be still dead :-( */
    449 		RF_LOCK_MUTEX(raidPtr->mutex);
    450 		raidPtr->reconInProgress--;
    451 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    452 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    453 		return(retcode);
    454 	}
    455 
    456 	/* Ok, so we can at least do a lookup...
    457 	   How about actually getting a vp for it? */
    458 
    459 	if ((retcode = VOP_GETATTR(vp, &va, lwp->l_cred, lwp)) != 0) {
    460 		RF_LOCK_MUTEX(raidPtr->mutex);
    461 		raidPtr->reconInProgress--;
    462 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    463 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    464 		return(retcode);
    465 	}
    466 
    467 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, lwp->l_cred, lwp);
    468 	if (retcode) {
    469 		RF_LOCK_MUTEX(raidPtr->mutex);
    470 		raidPtr->reconInProgress--;
    471 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    472 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    473 		return(retcode);
    474 	}
    475 	RF_LOCK_MUTEX(raidPtr->mutex);
    476 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
    477 
    478 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
    479 		rf_protectedSectors;
    480 
    481 	raidPtr->raid_cinfo[col].ci_vp = vp;
    482 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
    483 
    484 	raidPtr->Disks[col].dev = va.va_rdev;
    485 
    486 	/* we allow the user to specify that only a fraction
    487 	   of the disks should be used this is just for debug:
    488 	   it speeds up * the parity scan */
    489 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
    490 		rf_sizePercentage / 100;
    491 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    492 
    493 	spareDiskPtr = &raidPtr->Disks[col];
    494 	spareDiskPtr->status = rf_ds_used_spare;
    495 
    496 	printf("raid%d: initiating in-place reconstruction on column %d\n",
    497 	       raidPtr->raidid, col);
    498 
    499 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
    500 				       numDisksDone, col);
    501 	raidPtr->reconDesc = (void *) reconDesc;
    502 #if RF_RECON_STATS > 0
    503 	reconDesc->hsStallCount = 0;
    504 	reconDesc->numReconExecDelays = 0;
    505 	reconDesc->numReconEventWaits = 0;
    506 #endif				/* RF_RECON_STATS > 0 */
    507 	reconDesc->reconExecTimerRunning = 0;
    508 	reconDesc->reconExecTicks = 0;
    509 	reconDesc->maxReconExecTicks = 0;
    510 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    511 
    512 	if (!rc) {
    513 		RF_LOCK_MUTEX(raidPtr->mutex);
    514 		/* Need to set these here, as at this point it'll be claiming
    515 		   that the disk is in rf_ds_spared!  But we know better :-) */
    516 
    517 		raidPtr->Disks[col].status = rf_ds_optimal;
    518 		raidPtr->status = rf_rs_optimal;
    519 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    520 
    521 		/* fix up the component label */
    522 		/* Don't actually need the read here.. */
    523 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
    524 					 raidPtr->raid_cinfo[col].ci_vp,
    525 					 &c_label);
    526 
    527 		RF_LOCK_MUTEX(raidPtr->mutex);
    528 		raid_init_component_label(raidPtr, &c_label);
    529 
    530 		c_label.row = 0;
    531 		c_label.column = col;
    532 
    533 		/* We've just done a rebuild based on all the other
    534 		   disks, so at this point the parity is known to be
    535 		   clean, even if it wasn't before. */
    536 
    537 		/* XXX doesn't hold for RAID 6!!*/
    538 
    539 		raidPtr->parity_good = RF_RAID_CLEAN;
    540 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    541 
    542 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
    543 					  raidPtr->raid_cinfo[col].ci_vp,
    544 					  &c_label);
    545 
    546 	} else {
    547 		/* Reconstruct-in-place failed.  Disk goes back to
    548 		   "failed" status, regardless of what it was before.  */
    549 		RF_LOCK_MUTEX(raidPtr->mutex);
    550 		raidPtr->Disks[col].status = rf_ds_failed;
    551 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    552 	}
    553 
    554 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
    555 
    556 	RF_LOCK_MUTEX(raidPtr->mutex);
    557 	raidPtr->reconInProgress--;
    558 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    559 
    560 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    561 	return (rc);
    562 }
    563 
    564 
    565 int
    566 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
    567 {
    568 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
    569 	RF_RowCol_t col = reconDesc->col;
    570 	RF_RowCol_t scol = reconDesc->scol;
    571 	RF_ReconMap_t *mapPtr;
    572 	RF_ReconCtrl_t *tmp_reconctrl;
    573 	RF_ReconEvent_t *event;
    574 	RF_CallbackDesc_t *p;
    575 	struct timeval etime, elpsd;
    576 	unsigned long xor_s, xor_resid_us;
    577 	int     i, ds;
    578 	int status;
    579 	int recon_error, write_error;
    580 
    581 	raidPtr->accumXorTimeUs = 0;
    582 #if RF_ACC_TRACE > 0
    583 	/* create one trace record per physical disk */
    584 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    585 #endif
    586 
    587 	/* quiesce the array prior to starting recon.  this is needed
    588 	 * to assure no nasty interactions with pending user writes.
    589 	 * We need to do this before we change the disk or row status. */
    590 
    591 	Dprintf("RECON: begin request suspend\n");
    592 	rf_SuspendNewRequestsAndWait(raidPtr);
    593 	Dprintf("RECON: end request suspend\n");
    594 
    595 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
    596 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
    597 
    598 	RF_LOCK_MUTEX(raidPtr->mutex);
    599 
    600 	/* create the reconstruction control pointer and install it in
    601 	 * the right slot */
    602 	raidPtr->reconControl = tmp_reconctrl;
    603 	mapPtr = raidPtr->reconControl->reconMap;
    604 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
    605 	raidPtr->reconControl->numRUsComplete =	0;
    606 	raidPtr->status = rf_rs_reconstructing;
    607 	raidPtr->Disks[col].status = rf_ds_reconstructing;
    608 	raidPtr->Disks[col].spareCol = scol;
    609 
    610 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    611 
    612 	RF_GETTIME(raidPtr->reconControl->starttime);
    613 
    614 	/* now start up the actual reconstruction: issue a read for
    615 	 * each surviving disk */
    616 
    617 	reconDesc->numDisksDone = 0;
    618 	for (i = 0; i < raidPtr->numCol; i++) {
    619 		if (i != col) {
    620 			/* find and issue the next I/O on the
    621 			 * indicated disk */
    622 			if (IssueNextReadRequest(raidPtr, i)) {
    623 				Dprintf1("RECON: done issuing for c%d\n", i);
    624 				reconDesc->numDisksDone++;
    625 			}
    626 		}
    627 	}
    628 
    629 	Dprintf("RECON: resume requests\n");
    630 	rf_ResumeNewRequests(raidPtr);
    631 
    632 	/* process reconstruction events until all disks report that
    633 	 * they've completed all work */
    634 
    635 	mapPtr = raidPtr->reconControl->reconMap;
    636 	recon_error = 0;
    637 	write_error = 0;
    638 
    639 	while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
    640 
    641 		event = rf_GetNextReconEvent(reconDesc);
    642 		status = ProcessReconEvent(raidPtr, event);
    643 
    644 		/* the normal case is that a read completes, and all is well. */
    645 		if (status == RF_RECON_DONE_READS) {
    646 			reconDesc->numDisksDone++;
    647 		} else if ((status == RF_RECON_READ_ERROR) ||
    648 			   (status == RF_RECON_WRITE_ERROR)) {
    649 			/* an error was encountered while reconstructing...
    650 			   Pretend we've finished this disk.
    651 			*/
    652 			recon_error = 1;
    653 			raidPtr->reconControl->error = 1;
    654 
    655 			/* bump the numDisksDone count for reads,
    656 			   but not for writes */
    657 			if (status == RF_RECON_READ_ERROR)
    658 				reconDesc->numDisksDone++;
    659 
    660 			/* write errors are special -- when we are
    661 			   done dealing with the reads that are
    662 			   finished, we don't want to wait for any
    663 			   writes */
    664 			if (status == RF_RECON_WRITE_ERROR)
    665 				write_error = 1;
    666 
    667 		} else if (status == RF_RECON_READ_STOPPED) {
    668 			/* count this component as being "done" */
    669 			reconDesc->numDisksDone++;
    670 		}
    671 
    672 		if (recon_error) {
    673 
    674 			/* make sure any stragglers are woken up so that
    675 			   their theads will complete, and we can get out
    676 			   of here with all IO processed */
    677 
    678 			while (raidPtr->reconControl->headSepCBList) {
    679 				p = raidPtr->reconControl->headSepCBList;
    680 				raidPtr->reconControl->headSepCBList = p->next;
    681 				p->next = NULL;
    682 				rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
    683 				rf_FreeCallbackDesc(p);
    684 			}
    685 		}
    686 
    687 		raidPtr->reconControl->numRUsTotal =
    688 			mapPtr->totalRUs;
    689 		raidPtr->reconControl->numRUsComplete =
    690 			mapPtr->totalRUs -
    691 			rf_UnitsLeftToReconstruct(mapPtr);
    692 
    693 #if RF_DEBUG_RECON
    694 		raidPtr->reconControl->percentComplete =
    695 			(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
    696 		if (rf_prReconSched) {
    697 			rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    698 		}
    699 #endif
    700 	}
    701 
    702 	mapPtr = raidPtr->reconControl->reconMap;
    703 	if (rf_reconDebug) {
    704 		printf("RECON: all reads completed\n");
    705 	}
    706 	/* at this point all the reads have completed.  We now wait
    707 	 * for any pending writes to complete, and then we're done */
    708 
    709 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
    710 
    711 		event = rf_GetNextReconEvent(reconDesc);
    712 		status = ProcessReconEvent(raidPtr, event);
    713 
    714 		if (status == RF_RECON_WRITE_ERROR) {
    715 			recon_error = 1;
    716 			raidPtr->reconControl->error = 1;
    717 			/* an error was encountered at the very end... bail */
    718 		} else {
    719 #if RF_DEBUG_RECON
    720 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
    721 			if (rf_prReconSched) {
    722 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    723 			}
    724 #endif
    725 		}
    726 	}
    727 
    728 	if (recon_error) {
    729 		/* we've encountered an error in reconstructing. */
    730 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
    731 
    732 		/* we start by blocking IO to the RAID set. */
    733 		rf_SuspendNewRequestsAndWait(raidPtr);
    734 
    735 		RF_LOCK_MUTEX(raidPtr->mutex);
    736 		/* mark set as being degraded, rather than
    737 		   rf_rs_reconstructing as we were before the problem.
    738 		   After this is done we can update status of the
    739 		   component disks without worrying about someone
    740 		   trying to read from a failed component.
    741 		*/
    742 		raidPtr->status = rf_rs_degraded;
    743 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    744 
    745 		/* resume IO */
    746 		rf_ResumeNewRequests(raidPtr);
    747 
    748 		/* At this point there are two cases:
    749 		   1) If we've experienced a read error, then we've
    750 		   already waited for all the reads we're going to get,
    751 		   and we just need to wait for the writes.
    752 
    753 		   2) If we've experienced a write error, we've also
    754 		   already waited for all the reads to complete,
    755 		   but there is little point in waiting for the writes --
    756 		   when they do complete, they will just be ignored.
    757 
    758 		   So we just wait for writes to complete if we didn't have a
    759 		   write error.
    760 		*/
    761 
    762 		if (!write_error) {
    763 			/* wait for writes to complete */
    764 			while (raidPtr->reconControl->pending_writes > 0) {
    765 
    766 				event = rf_GetNextReconEvent(reconDesc);
    767 				status = ProcessReconEvent(raidPtr, event);
    768 
    769 				if (status == RF_RECON_WRITE_ERROR) {
    770 					raidPtr->reconControl->error = 1;
    771 					/* an error was encountered at the very end... bail.
    772 					   This will be very bad news for the user, since
    773 					   at this point there will have been a read error
    774 					   on one component, and a write error on another!
    775 					*/
    776 					break;
    777 				}
    778 			}
    779 		}
    780 
    781 
    782 		/* cleanup */
    783 
    784 		/* drain the event queue - after waiting for the writes above,
    785 		   there shouldn't be much (if anything!) left in the queue. */
    786 
    787 		rf_DrainReconEventQueue(reconDesc);
    788 
    789 		/* XXX  As much as we'd like to free the recon control structure
    790 		   and the reconDesc, we have no way of knowing if/when those will
    791 		   be touched by IO that has yet to occur.  It is rather poor to be
    792 		   basically causing a 'memory leak' here, but there doesn't seem to be
    793 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
    794 		   gets a makeover this problem will go away.
    795 		*/
    796 #if 0
    797 		rf_FreeReconControl(raidPtr);
    798 #endif
    799 
    800 #if RF_ACC_TRACE > 0
    801 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    802 #endif
    803 		/* XXX see comment above */
    804 #if 0
    805 		FreeReconDesc(reconDesc);
    806 #endif
    807 
    808 		return (1);
    809 	}
    810 
    811 	/* Success:  mark the dead disk as reconstructed.  We quiesce
    812 	 * the array here to assure no nasty interactions with pending
    813 	 * user accesses when we free up the psstatus structure as
    814 	 * part of FreeReconControl() */
    815 
    816 	rf_SuspendNewRequestsAndWait(raidPtr);
    817 
    818 	RF_LOCK_MUTEX(raidPtr->mutex);
    819 	raidPtr->numFailures--;
    820 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
    821 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
    822 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
    823 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    824 	RF_GETTIME(etime);
    825 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
    826 
    827 	rf_ResumeNewRequests(raidPtr);
    828 
    829 	printf("raid%d: Reconstruction of disk at col %d completed\n",
    830 	       raidPtr->raidid, col);
    831 	xor_s = raidPtr->accumXorTimeUs / 1000000;
    832 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
    833 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
    834 	       raidPtr->raidid,
    835 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
    836 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
    837 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
    838 	       raidPtr->raidid,
    839 	       (int) raidPtr->reconControl->starttime.tv_sec,
    840 	       (int) raidPtr->reconControl->starttime.tv_usec,
    841 	       (int) etime.tv_sec, (int) etime.tv_usec);
    842 #if RF_RECON_STATS > 0
    843 	printf("raid%d: Total head-sep stall count was %d\n",
    844 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
    845 #endif				/* RF_RECON_STATS > 0 */
    846 	rf_FreeReconControl(raidPtr);
    847 #if RF_ACC_TRACE > 0
    848 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    849 #endif
    850 	FreeReconDesc(reconDesc);
    851 
    852 	return (0);
    853 
    854 }
    855 /*****************************************************************************
    856  * do the right thing upon each reconstruction event.
    857  *****************************************************************************/
    858 static int
    859 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
    860 {
    861 	int     retcode = 0, submitblocked;
    862 	RF_ReconBuffer_t *rbuf;
    863 	RF_SectorCount_t sectorsPerRU;
    864 
    865 	retcode = RF_RECON_READ_STOPPED;
    866 
    867 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
    868 	switch (event->type) {
    869 
    870 		/* a read I/O has completed */
    871 	case RF_REVENT_READDONE:
    872 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
    873 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
    874 		    event->col, rbuf->parityStripeID);
    875 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
    876 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
    877 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
    878 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    879 		if (!raidPtr->reconControl->error) {
    880 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
    881 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
    882 			if (!submitblocked)
    883 				retcode = IssueNextReadRequest(raidPtr, event->col);
    884 			else
    885 				retcode = 0;
    886 		}
    887 		break;
    888 
    889 		/* a write I/O has completed */
    890 	case RF_REVENT_WRITEDONE:
    891 #if RF_DEBUG_RECON
    892 		if (rf_floatingRbufDebug) {
    893 			rf_CheckFloatingRbufCount(raidPtr, 1);
    894 		}
    895 #endif
    896 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
    897 		rbuf = (RF_ReconBuffer_t *) event->arg;
    898 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    899 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
    900 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
    901 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
    902 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
    903 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
    904 
    905 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    906 		raidPtr->reconControl->pending_writes--;
    907 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    908 
    909 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
    910 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    911 			while(raidPtr->reconControl->rb_lock) {
    912 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
    913 					&raidPtr->reconControl->rb_mutex);
    914 			}
    915 			raidPtr->reconControl->rb_lock = 1;
    916 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    917 
    918 			raidPtr->numFullReconBuffers--;
    919 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
    920 
    921 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    922 			raidPtr->reconControl->rb_lock = 0;
    923 			wakeup(&raidPtr->reconControl->rb_lock);
    924 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    925 		} else
    926 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
    927 				rf_FreeReconBuffer(rbuf);
    928 			else
    929 				RF_ASSERT(0);
    930 		retcode = 0;
    931 		break;
    932 
    933 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
    934 					 * cleared */
    935 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
    936 		if (!raidPtr->reconControl->error) {
    937 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
    938 							     0, (int) (long) event->arg);
    939 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
    940 							 * BUFCLEAR event if we
    941 							 * couldn't submit */
    942 			retcode = IssueNextReadRequest(raidPtr, event->col);
    943 		}
    944 		break;
    945 
    946 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
    947 					 * blockage has been cleared */
    948 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
    949 		if (!raidPtr->reconControl->error) {
    950 			retcode = TryToRead(raidPtr, event->col);
    951 		}
    952 		break;
    953 
    954 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
    955 					 * reconstruction blockage has been
    956 					 * cleared */
    957 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
    958 		if (!raidPtr->reconControl->error) {
    959 			retcode = TryToRead(raidPtr, event->col);
    960 		}
    961 		break;
    962 
    963 		/* a buffer has become ready to write */
    964 	case RF_REVENT_BUFREADY:
    965 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
    966 		if (!raidPtr->reconControl->error) {
    967 			retcode = IssueNextWriteRequest(raidPtr);
    968 #if RF_DEBUG_RECON
    969 			if (rf_floatingRbufDebug) {
    970 				rf_CheckFloatingRbufCount(raidPtr, 1);
    971 			}
    972 #endif
    973 		}
    974 		break;
    975 
    976 		/* we need to skip the current RU entirely because it got
    977 		 * recon'd while we were waiting for something else to happen */
    978 	case RF_REVENT_SKIP:
    979 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
    980 		if (!raidPtr->reconControl->error) {
    981 			retcode = IssueNextReadRequest(raidPtr, event->col);
    982 		}
    983 		break;
    984 
    985 		/* a forced-reconstruction read access has completed.  Just
    986 		 * submit the buffer */
    987 	case RF_REVENT_FORCEDREADDONE:
    988 		rbuf = (RF_ReconBuffer_t *) event->arg;
    989 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    990 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
    991 		if (!raidPtr->reconControl->error) {
    992 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
    993 			RF_ASSERT(!submitblocked);
    994 			retcode = 0;
    995 		}
    996 		break;
    997 
    998 		/* A read I/O failed to complete */
    999 	case RF_REVENT_READ_FAILED:
   1000 		retcode = RF_RECON_READ_ERROR;
   1001 		break;
   1002 
   1003 		/* A write I/O failed to complete */
   1004 	case RF_REVENT_WRITE_FAILED:
   1005 		retcode = RF_RECON_WRITE_ERROR;
   1006 
   1007 		rbuf = (RF_ReconBuffer_t *) event->arg;
   1008 
   1009 		/* cleanup the disk queue data */
   1010 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
   1011 
   1012 		/* At this point we're erroring out, badly, and floatingRbufs
   1013 		   may not even be valid.  Rather than putting this back onto
   1014 		   the floatingRbufs list, just arrange for its immediate
   1015 		   destruction.
   1016 		*/
   1017 		rf_FreeReconBuffer(rbuf);
   1018 		break;
   1019 
   1020 		/* a forced read I/O failed to complete */
   1021 	case RF_REVENT_FORCEDREAD_FAILED:
   1022 		retcode = RF_RECON_READ_ERROR;
   1023 		break;
   1024 
   1025 	default:
   1026 		RF_PANIC();
   1027 	}
   1028 	rf_FreeReconEventDesc(event);
   1029 	return (retcode);
   1030 }
   1031 /*****************************************************************************
   1032  *
   1033  * find the next thing that's needed on the indicated disk, and issue
   1034  * a read request for it.  We assume that the reconstruction buffer
   1035  * associated with this process is free to receive the data.  If
   1036  * reconstruction is blocked on the indicated RU, we issue a
   1037  * blockage-release request instead of a physical disk read request.
   1038  * If the current disk gets too far ahead of the others, we issue a
   1039  * head-separation wait request and return.
   1040  *
   1041  * ctrl->{ru_count, curPSID, diskOffset} and
   1042  * rbuf->failedDiskSectorOffset are maintained to point to the unit
   1043  * we're currently accessing.  Note that this deviates from the
   1044  * standard C idiom of having counters point to the next thing to be
   1045  * accessed.  This allows us to easily retry when we're blocked by
   1046  * head separation or reconstruction-blockage events.
   1047  *
   1048  *****************************************************************************/
   1049 static int
   1050 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1051 {
   1052 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1053 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1054 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
   1055 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
   1056 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1057 	int     do_new_check = 0, retcode = 0, status;
   1058 
   1059 	/* if we are currently the slowest disk, mark that we have to do a new
   1060 	 * check */
   1061 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
   1062 		do_new_check = 1;
   1063 
   1064 	while (1) {
   1065 
   1066 		ctrl->ru_count++;
   1067 		if (ctrl->ru_count < RUsPerPU) {
   1068 			ctrl->diskOffset += sectorsPerRU;
   1069 			rbuf->failedDiskSectorOffset += sectorsPerRU;
   1070 		} else {
   1071 			ctrl->curPSID++;
   1072 			ctrl->ru_count = 0;
   1073 			/* code left over from when head-sep was based on
   1074 			 * parity stripe id */
   1075 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
   1076 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
   1077 				return (RF_RECON_DONE_READS);	/* finito! */
   1078 			}
   1079 			/* find the disk offsets of the start of the parity
   1080 			 * stripe on both the current disk and the failed
   1081 			 * disk. skip this entire parity stripe if either disk
   1082 			 * does not appear in the indicated PS */
   1083 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
   1084 			    &rbuf->spCol, &rbuf->spOffset);
   1085 			if (status) {
   1086 				ctrl->ru_count = RUsPerPU - 1;
   1087 				continue;
   1088 			}
   1089 		}
   1090 		rbuf->which_ru = ctrl->ru_count;
   1091 
   1092 		/* skip this RU if it's already been reconstructed */
   1093 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
   1094 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
   1095 			continue;
   1096 		}
   1097 		break;
   1098 	}
   1099 	ctrl->headSepCounter++;
   1100 	if (do_new_check)
   1101 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
   1102 
   1103 
   1104 	/* at this point, we have definitely decided what to do, and we have
   1105 	 * only to see if we can actually do it now */
   1106 	rbuf->parityStripeID = ctrl->curPSID;
   1107 	rbuf->which_ru = ctrl->ru_count;
   1108 #if RF_ACC_TRACE > 0
   1109 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
   1110 	    sizeof(raidPtr->recon_tracerecs[col]));
   1111 	raidPtr->recon_tracerecs[col].reconacc = 1;
   1112 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1113 #endif
   1114 	retcode = TryToRead(raidPtr, col);
   1115 	return (retcode);
   1116 }
   1117 
   1118 /*
   1119  * tries to issue the next read on the indicated disk.  We may be
   1120  * blocked by (a) the heads being too far apart, or (b) recon on the
   1121  * indicated RU being blocked due to a write by a user thread.  In
   1122  * this case, we issue a head-sep or blockage wait request, which will
   1123  * cause this same routine to be invoked again later when the blockage
   1124  * has cleared.
   1125  */
   1126 
   1127 static int
   1128 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1129 {
   1130 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1131 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
   1132 	RF_StripeNum_t psid = ctrl->curPSID;
   1133 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
   1134 	RF_DiskQueueData_t *req;
   1135 	int     status;
   1136 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
   1137 
   1138 	/* if the current disk is too far ahead of the others, issue a
   1139 	 * head-separation wait and return */
   1140 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
   1141 		return (0);
   1142 
   1143 	/* allocate a new PSS in case we need it */
   1144 	newpssPtr = rf_AllocPSStatus(raidPtr);
   1145 
   1146 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1147 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
   1148 
   1149 	if (pssPtr != newpssPtr) {
   1150 		rf_FreePSStatus(raidPtr, newpssPtr);
   1151 	}
   1152 
   1153 	/* if recon is blocked on the indicated parity stripe, issue a
   1154 	 * block-wait request and return. this also must mark the indicated RU
   1155 	 * in the stripe as under reconstruction if not blocked. */
   1156 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
   1157 	if (status == RF_PSS_RECON_BLOCKED) {
   1158 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
   1159 		goto out;
   1160 	} else
   1161 		if (status == RF_PSS_FORCED_ON_WRITE) {
   1162 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1163 			goto out;
   1164 		}
   1165 	/* make one last check to be sure that the indicated RU didn't get
   1166 	 * reconstructed while we were waiting for something else to happen.
   1167 	 * This is unfortunate in that it causes us to make this check twice
   1168 	 * in the normal case.  Might want to make some attempt to re-work
   1169 	 * this so that we only do this check if we've definitely blocked on
   1170 	 * one of the above checks.  When this condition is detected, we may
   1171 	 * have just created a bogus status entry, which we need to delete. */
   1172 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
   1173 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
   1174 		if (pssPtr == newpssPtr)
   1175 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1176 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1177 		goto out;
   1178 	}
   1179 	/* found something to read.  issue the I/O */
   1180 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
   1181 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
   1182 #if RF_ACC_TRACE > 0
   1183 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
   1184 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
   1185 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
   1186 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
   1187 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1188 #endif
   1189 	/* should be ok to use a NULL proc pointer here, all the bufs we use
   1190 	 * should be in kernel space */
   1191 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
   1192 	    ReconReadDoneProc, (void *) ctrl,
   1193 #if RF_ACC_TRACE > 0
   1194 				     &raidPtr->recon_tracerecs[col],
   1195 #else
   1196 				     NULL,
   1197 #endif
   1198 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
   1199 
   1200 	ctrl->rbuf->arg = (void *) req;
   1201 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
   1202 	pssPtr->issued[col] = 1;
   1203 
   1204 out:
   1205 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1206 	return (0);
   1207 }
   1208 
   1209 
   1210 /*
   1211  * given a parity stripe ID, we want to find out whether both the
   1212  * current disk and the failed disk exist in that parity stripe.  If
   1213  * not, we want to skip this whole PS.  If so, we want to find the
   1214  * disk offset of the start of the PS on both the current disk and the
   1215  * failed disk.
   1216  *
   1217  * this works by getting a list of disks comprising the indicated
   1218  * parity stripe, and searching the list for the current and failed
   1219  * disks.  Once we've decided they both exist in the parity stripe, we
   1220  * need to decide whether each is data or parity, so that we'll know
   1221  * which mapping function to call to get the corresponding disk
   1222  * offsets.
   1223  *
   1224  * this is kind of unpleasant, but doing it this way allows the
   1225  * reconstruction code to use parity stripe IDs rather than physical
   1226  * disks address to march through the failed disk, which greatly
   1227  * simplifies a lot of code, as well as eliminating the need for a
   1228  * reverse-mapping function.  I also think it will execute faster,
   1229  * since the calls to the mapping module are kept to a minimum.
   1230  *
   1231  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
   1232  * THE STRIPE IN THE CORRECT ORDER
   1233  *
   1234  * raidPtr          - raid descriptor
   1235  * psid             - parity stripe identifier
   1236  * col              - column of disk to find the offsets for
   1237  * spCol            - out: col of spare unit for failed unit
   1238  * spOffset         - out: offset into disk containing spare unit
   1239  *
   1240  */
   1241 
   1242 
   1243 static int
   1244 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
   1245 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
   1246 		     RF_SectorNum_t *outFailedDiskSectorOffset,
   1247 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
   1248 {
   1249 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1250 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1251 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
   1252 	RF_RowCol_t *diskids;
   1253 	u_int   i, j, k, i_offset, j_offset;
   1254 	RF_RowCol_t pcol;
   1255 	int     testcol;
   1256 	RF_SectorNum_t poffset;
   1257 	char    i_is_parity = 0, j_is_parity = 0;
   1258 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
   1259 
   1260 	/* get a listing of the disks comprising that stripe */
   1261 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
   1262 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
   1263 	RF_ASSERT(diskids);
   1264 
   1265 	/* reject this entire parity stripe if it does not contain the
   1266 	 * indicated disk or it does not contain the failed disk */
   1267 
   1268 	for (i = 0; i < stripeWidth; i++) {
   1269 		if (col == diskids[i])
   1270 			break;
   1271 	}
   1272 	if (i == stripeWidth)
   1273 		goto skipit;
   1274 	for (j = 0; j < stripeWidth; j++) {
   1275 		if (fcol == diskids[j])
   1276 			break;
   1277 	}
   1278 	if (j == stripeWidth) {
   1279 		goto skipit;
   1280 	}
   1281 	/* find out which disk the parity is on */
   1282 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
   1283 
   1284 	/* find out if either the current RU or the failed RU is parity */
   1285 	/* also, if the parity occurs in this stripe prior to the data and/or
   1286 	 * failed col, we need to decrement i and/or j */
   1287 	for (k = 0; k < stripeWidth; k++)
   1288 		if (diskids[k] == pcol)
   1289 			break;
   1290 	RF_ASSERT(k < stripeWidth);
   1291 	i_offset = i;
   1292 	j_offset = j;
   1293 	if (k < i)
   1294 		i_offset--;
   1295 	else
   1296 		if (k == i) {
   1297 			i_is_parity = 1;
   1298 			i_offset = 0;
   1299 		}		/* set offsets to zero to disable multiply
   1300 				 * below */
   1301 	if (k < j)
   1302 		j_offset--;
   1303 	else
   1304 		if (k == j) {
   1305 			j_is_parity = 1;
   1306 			j_offset = 0;
   1307 		}
   1308 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
   1309 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
   1310 	 * tells us how far into the stripe the [current,failed] disk is. */
   1311 
   1312 	/* call the mapping routine to get the offset into the current disk,
   1313 	 * repeat for failed disk. */
   1314 	if (i_is_parity)
   1315 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1316 	else
   1317 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1318 
   1319 	RF_ASSERT(col == testcol);
   1320 
   1321 	if (j_is_parity)
   1322 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1323 	else
   1324 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1325 	RF_ASSERT(fcol == testcol);
   1326 
   1327 	/* now locate the spare unit for the failed unit */
   1328 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1329 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
   1330 		if (j_is_parity)
   1331 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1332 		else
   1333 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1334 	} else {
   1335 #endif
   1336 		*spCol = raidPtr->reconControl->spareCol;
   1337 		*spOffset = *outFailedDiskSectorOffset;
   1338 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1339 	}
   1340 #endif
   1341 	return (0);
   1342 
   1343 skipit:
   1344 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
   1345 	    psid, col);
   1346 	return (1);
   1347 }
   1348 /* this is called when a buffer has become ready to write to the replacement disk */
   1349 static int
   1350 IssueNextWriteRequest(RF_Raid_t *raidPtr)
   1351 {
   1352 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1353 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1354 #if RF_ACC_TRACE > 0
   1355 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1356 #endif
   1357 	RF_ReconBuffer_t *rbuf;
   1358 	RF_DiskQueueData_t *req;
   1359 
   1360 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
   1361 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
   1362 				 * have gotten the event that sent us here */
   1363 	RF_ASSERT(rbuf->pssPtr);
   1364 
   1365 	rbuf->pssPtr->writeRbuf = rbuf;
   1366 	rbuf->pssPtr = NULL;
   1367 
   1368 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
   1369 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
   1370 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
   1371 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
   1372 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
   1373 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
   1374 
   1375 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
   1376 	 * kernel space */
   1377 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
   1378 	    sectorsPerRU, rbuf->buffer,
   1379 	    rbuf->parityStripeID, rbuf->which_ru,
   1380 	    ReconWriteDoneProc, (void *) rbuf,
   1381 #if RF_ACC_TRACE > 0
   1382 	    &raidPtr->recon_tracerecs[fcol],
   1383 #else
   1384 				     NULL,
   1385 #endif
   1386 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
   1387 
   1388 	rbuf->arg = (void *) req;
   1389 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1390 	raidPtr->reconControl->pending_writes++;
   1391 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1392 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
   1393 
   1394 	return (0);
   1395 }
   1396 
   1397 /*
   1398  * this gets called upon the completion of a reconstruction read
   1399  * operation the arg is a pointer to the per-disk reconstruction
   1400  * control structure for the process that just finished a read.
   1401  *
   1402  * called at interrupt context in the kernel, so don't do anything
   1403  * illegal here.
   1404  */
   1405 static int
   1406 ReconReadDoneProc(void *arg, int status)
   1407 {
   1408 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
   1409 	RF_Raid_t *raidPtr;
   1410 
   1411 	/* Detect that reconCtrl is no longer valid, and if that
   1412 	   is the case, bail without calling rf_CauseReconEvent().
   1413 	   There won't be anyone listening for this event anyway */
   1414 
   1415 	if (ctrl->reconCtrl == NULL)
   1416 		return(0);
   1417 
   1418 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
   1419 
   1420 	if (status) {
   1421 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
   1422 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
   1423 		return(0);
   1424 	}
   1425 #if RF_ACC_TRACE > 0
   1426 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1427 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1428 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
   1429 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1430 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1431 #endif
   1432 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
   1433 	return (0);
   1434 }
   1435 /* this gets called upon the completion of a reconstruction write operation.
   1436  * the arg is a pointer to the rbuf that was just written
   1437  *
   1438  * called at interrupt context in the kernel, so don't do anything illegal here.
   1439  */
   1440 static int
   1441 ReconWriteDoneProc(void *arg, int status)
   1442 {
   1443 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
   1444 
   1445 	/* Detect that reconControl is no longer valid, and if that
   1446 	   is the case, bail without calling rf_CauseReconEvent().
   1447 	   There won't be anyone listening for this event anyway */
   1448 
   1449 	if (rbuf->raidPtr->reconControl == NULL)
   1450 		return(0);
   1451 
   1452 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
   1453 	if (status) {
   1454 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
   1455 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
   1456 		return(0);
   1457 	}
   1458 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
   1459 	return (0);
   1460 }
   1461 
   1462 
   1463 /*
   1464  * computes a new minimum head sep, and wakes up anyone who needs to
   1465  * be woken as a result
   1466  */
   1467 static void
   1468 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
   1469 {
   1470 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1471 	RF_HeadSepLimit_t new_min;
   1472 	RF_RowCol_t i;
   1473 	RF_CallbackDesc_t *p;
   1474 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
   1475 								 * of a minimum */
   1476 
   1477 
   1478 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1479 	while(reconCtrlPtr->rb_lock) {
   1480 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
   1481 	}
   1482 	reconCtrlPtr->rb_lock = 1;
   1483 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1484 
   1485 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
   1486 	for (i = 0; i < raidPtr->numCol; i++)
   1487 		if (i != reconCtrlPtr->fcol) {
   1488 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
   1489 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
   1490 		}
   1491 	/* set the new minimum and wake up anyone who can now run again */
   1492 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
   1493 		reconCtrlPtr->minHeadSepCounter = new_min;
   1494 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
   1495 		while (reconCtrlPtr->headSepCBList) {
   1496 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
   1497 				break;
   1498 			p = reconCtrlPtr->headSepCBList;
   1499 			reconCtrlPtr->headSepCBList = p->next;
   1500 			p->next = NULL;
   1501 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1502 			rf_FreeCallbackDesc(p);
   1503 		}
   1504 
   1505 	}
   1506 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1507 	reconCtrlPtr->rb_lock = 0;
   1508 	wakeup(&reconCtrlPtr->rb_lock);
   1509 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1510 }
   1511 
   1512 /*
   1513  * checks to see that the maximum head separation will not be violated
   1514  * if we initiate a reconstruction I/O on the indicated disk.
   1515  * Limiting the maximum head separation between two disks eliminates
   1516  * the nasty buffer-stall conditions that occur when one disk races
   1517  * ahead of the others and consumes all of the floating recon buffers.
   1518  * This code is complex and unpleasant but it's necessary to avoid
   1519  * some very nasty, albeit fairly rare, reconstruction behavior.
   1520  *
   1521  * returns non-zero if and only if we have to stop working on the
   1522  * indicated disk due to a head-separation delay.
   1523  */
   1524 static int
   1525 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
   1526 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
   1527 		    RF_ReconUnitNum_t which_ru)
   1528 {
   1529 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1530 	RF_CallbackDesc_t *cb, *p, *pt;
   1531 	int     retval = 0;
   1532 
   1533 	/* if we're too far ahead of the slowest disk, stop working on this
   1534 	 * disk until the slower ones catch up.  We do this by scheduling a
   1535 	 * wakeup callback for the time when the slowest disk has caught up.
   1536 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
   1537 	 * must have fallen to at most 80% of the max allowable head
   1538 	 * separation before we'll wake up.
   1539 	 *
   1540 	 */
   1541 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1542 	while(reconCtrlPtr->rb_lock) {
   1543 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
   1544 	}
   1545 	reconCtrlPtr->rb_lock = 1;
   1546 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1547 	if ((raidPtr->headSepLimit >= 0) &&
   1548 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
   1549 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
   1550 			 raidPtr->raidid, col, ctrl->headSepCounter,
   1551 			 reconCtrlPtr->minHeadSepCounter,
   1552 			 raidPtr->headSepLimit);
   1553 		cb = rf_AllocCallbackDesc();
   1554 		/* the minHeadSepCounter value we have to get to before we'll
   1555 		 * wake up.  build in 20% hysteresis. */
   1556 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
   1557 		cb->col = col;
   1558 		cb->next = NULL;
   1559 
   1560 		/* insert this callback descriptor into the sorted list of
   1561 		 * pending head-sep callbacks */
   1562 		p = reconCtrlPtr->headSepCBList;
   1563 		if (!p)
   1564 			reconCtrlPtr->headSepCBList = cb;
   1565 		else
   1566 			if (cb->callbackArg.v < p->callbackArg.v) {
   1567 				cb->next = reconCtrlPtr->headSepCBList;
   1568 				reconCtrlPtr->headSepCBList = cb;
   1569 			} else {
   1570 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
   1571 				cb->next = p;
   1572 				pt->next = cb;
   1573 			}
   1574 		retval = 1;
   1575 #if RF_RECON_STATS > 0
   1576 		ctrl->reconCtrl->reconDesc->hsStallCount++;
   1577 #endif				/* RF_RECON_STATS > 0 */
   1578 	}
   1579 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1580 	reconCtrlPtr->rb_lock = 0;
   1581 	wakeup(&reconCtrlPtr->rb_lock);
   1582 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1583 
   1584 	return (retval);
   1585 }
   1586 /*
   1587  * checks to see if reconstruction has been either forced or blocked
   1588  * by a user operation.  if forced, we skip this RU entirely.  else if
   1589  * blocked, put ourselves on the wait list.  else return 0.
   1590  *
   1591  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
   1592  */
   1593 static int
   1594 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
   1595 				   RF_ReconParityStripeStatus_t *pssPtr,
   1596 				   RF_PerDiskReconCtrl_t *ctrl,
   1597 				   RF_RowCol_t col,
   1598 				   RF_StripeNum_t psid,
   1599 				   RF_ReconUnitNum_t which_ru)
   1600 {
   1601 	RF_CallbackDesc_t *cb;
   1602 	int     retcode = 0;
   1603 
   1604 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
   1605 		retcode = RF_PSS_FORCED_ON_WRITE;
   1606 	else
   1607 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
   1608 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
   1609 			cb = rf_AllocCallbackDesc();	/* append ourselves to
   1610 							 * the blockage-wait
   1611 							 * list */
   1612 			cb->col = col;
   1613 			cb->next = pssPtr->blockWaitList;
   1614 			pssPtr->blockWaitList = cb;
   1615 			retcode = RF_PSS_RECON_BLOCKED;
   1616 		}
   1617 	if (!retcode)
   1618 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
   1619 							 * reconstruction */
   1620 
   1621 	return (retcode);
   1622 }
   1623 /*
   1624  * if reconstruction is currently ongoing for the indicated stripeID,
   1625  * reconstruction is forced to completion and we return non-zero to
   1626  * indicate that the caller must wait.  If not, then reconstruction is
   1627  * blocked on the indicated stripe and the routine returns zero.  If
   1628  * and only if we return non-zero, we'll cause the cbFunc to get
   1629  * invoked with the cbArg when the reconstruction has completed.
   1630  */
   1631 int
   1632 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1633 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
   1634 {
   1635 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
   1636 							 * forcing recon on */
   1637 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
   1638 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
   1639 						 * stripe status structure */
   1640 	RF_StripeNum_t psid;	/* parity stripe id */
   1641 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
   1642 						 * offset */
   1643 	RF_RowCol_t *diskids;
   1644 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
   1645 	RF_RowCol_t fcol, diskno, i;
   1646 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
   1647 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
   1648 	RF_CallbackDesc_t *cb;
   1649 	int     nPromoted;
   1650 
   1651 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1652 
   1653 	/* allocate a new PSS in case we need it */
   1654         newpssPtr = rf_AllocPSStatus(raidPtr);
   1655 
   1656 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1657 
   1658 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
   1659 
   1660         if (pssPtr != newpssPtr) {
   1661                 rf_FreePSStatus(raidPtr, newpssPtr);
   1662         }
   1663 
   1664 	/* if recon is not ongoing on this PS, just return */
   1665 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1666 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1667 		return (0);
   1668 	}
   1669 	/* otherwise, we have to wait for reconstruction to complete on this
   1670 	 * RU. */
   1671 	/* In order to avoid waiting for a potentially large number of
   1672 	 * low-priority accesses to complete, we force a normal-priority (i.e.
   1673 	 * not low-priority) reconstruction on this RU. */
   1674 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
   1675 		DDprintf1("Forcing recon on psid %ld\n", psid);
   1676 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
   1677 								 * forced recon */
   1678 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
   1679 							 * that we just set */
   1680 		fcol = raidPtr->reconControl->fcol;
   1681 
   1682 		/* get a listing of the disks comprising the indicated stripe */
   1683 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
   1684 
   1685 		/* For previously issued reads, elevate them to normal
   1686 		 * priority.  If the I/O has already completed, it won't be
   1687 		 * found in the queue, and hence this will be a no-op. For
   1688 		 * unissued reads, allocate buffers and issue new reads.  The
   1689 		 * fact that we've set the FORCED bit means that the regular
   1690 		 * recon procs will not re-issue these reqs */
   1691 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
   1692 			if ((diskno = diskids[i]) != fcol) {
   1693 				if (pssPtr->issued[diskno]) {
   1694 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
   1695 					if (rf_reconDebug && nPromoted)
   1696 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
   1697 				} else {
   1698 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
   1699 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
   1700 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
   1701 													 * location */
   1702 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
   1703 					new_rbuf->which_ru = which_ru;
   1704 					new_rbuf->failedDiskSectorOffset = fd_offset;
   1705 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
   1706 
   1707 					/* use NULL b_proc b/c all addrs
   1708 					 * should be in kernel space */
   1709 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
   1710 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
   1711 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
   1712 
   1713 					new_rbuf->arg = req;
   1714 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
   1715 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
   1716 				}
   1717 			}
   1718 		/* if the write is sitting in the disk queue, elevate its
   1719 		 * priority */
   1720 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
   1721 			printf("raid%d: promoted write to col %d\n",
   1722 			       raidPtr->raidid, fcol);
   1723 	}
   1724 	/* install a callback descriptor to be invoked when recon completes on
   1725 	 * this parity stripe. */
   1726 	cb = rf_AllocCallbackDesc();
   1727 	/* XXX the following is bogus.. These functions don't really match!!
   1728 	 * GO */
   1729 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
   1730 	cb->callbackArg.p = (void *) cbArg;
   1731 	cb->next = pssPtr->procWaitList;
   1732 	pssPtr->procWaitList = cb;
   1733 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
   1734 		  raidPtr->raidid, psid);
   1735 
   1736 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1737 	return (1);
   1738 }
   1739 /* called upon the completion of a forced reconstruction read.
   1740  * all we do is schedule the FORCEDREADONE event.
   1741  * called at interrupt context in the kernel, so don't do anything illegal here.
   1742  */
   1743 static void
   1744 ForceReconReadDoneProc(void *arg, int status)
   1745 {
   1746 	RF_ReconBuffer_t *rbuf = arg;
   1747 
   1748 	/* Detect that reconControl is no longer valid, and if that
   1749 	   is the case, bail without calling rf_CauseReconEvent().
   1750 	   There won't be anyone listening for this event anyway */
   1751 
   1752 	if (rbuf->raidPtr->reconControl == NULL)
   1753 		return;
   1754 
   1755 	if (status) {
   1756 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
   1757 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
   1758 		return;
   1759 	}
   1760 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
   1761 }
   1762 /* releases a block on the reconstruction of the indicated stripe */
   1763 int
   1764 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
   1765 {
   1766 	RF_StripeNum_t stripeID = asmap->stripeID;
   1767 	RF_ReconParityStripeStatus_t *pssPtr;
   1768 	RF_ReconUnitNum_t which_ru;
   1769 	RF_StripeNum_t psid;
   1770 	RF_CallbackDesc_t *cb;
   1771 
   1772 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1773 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1774 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
   1775 
   1776 	/* When recon is forced, the pss desc can get deleted before we get
   1777 	 * back to unblock recon. But, this can _only_ happen when recon is
   1778 	 * forced. It would be good to put some kind of sanity check here, but
   1779 	 * how to decide if recon was just forced or not? */
   1780 	if (!pssPtr) {
   1781 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
   1782 		 * RU %d\n",psid,which_ru); */
   1783 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
   1784 		if (rf_reconDebug || rf_pssDebug)
   1785 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
   1786 #endif
   1787 		goto out;
   1788 	}
   1789 	pssPtr->blockCount--;
   1790 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
   1791 		 raidPtr->raidid, psid, pssPtr->blockCount);
   1792 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
   1793 
   1794 		/* unblock recon before calling CauseReconEvent in case
   1795 		 * CauseReconEvent causes us to try to issue a new read before
   1796 		 * returning here. */
   1797 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
   1798 
   1799 
   1800 		while (pssPtr->blockWaitList) {
   1801 			/* spin through the block-wait list and
   1802 			   release all the waiters */
   1803 			cb = pssPtr->blockWaitList;
   1804 			pssPtr->blockWaitList = cb->next;
   1805 			cb->next = NULL;
   1806 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
   1807 			rf_FreeCallbackDesc(cb);
   1808 		}
   1809 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1810 			/* if no recon was requested while recon was blocked */
   1811 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1812 		}
   1813 	}
   1814 out:
   1815 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1816 	return (0);
   1817 }
   1818