Home | History | Annotate | Line # | Download | only in raidframe
rf_reconstruct.c revision 1.95.2.4
      1 /*	$NetBSD: rf_reconstruct.c,v 1.95.2.4 2008/12/27 19:32:58 bouyer Exp $	*/
      2 /*
      3  * Copyright (c) 1995 Carnegie-Mellon University.
      4  * All rights reserved.
      5  *
      6  * Author: Mark Holland
      7  *
      8  * Permission to use, copy, modify and distribute this software and
      9  * its documentation is hereby granted, provided that both the copyright
     10  * notice and this permission notice appear in all copies of the
     11  * software, derivative works or modified versions, and any portions
     12  * thereof, and that both notices appear in supporting documentation.
     13  *
     14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
     15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
     16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
     17  *
     18  * Carnegie Mellon requests users of this software to return to
     19  *
     20  *  Software Distribution Coordinator  or  Software.Distribution (at) CS.CMU.EDU
     21  *  School of Computer Science
     22  *  Carnegie Mellon University
     23  *  Pittsburgh PA 15213-3890
     24  *
     25  * any improvements or extensions that they make and grant Carnegie the
     26  * rights to redistribute these changes.
     27  */
     28 
     29 /************************************************************
     30  *
     31  * rf_reconstruct.c -- code to perform on-line reconstruction
     32  *
     33  ************************************************************/
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.95.2.4 2008/12/27 19:32:58 bouyer Exp $");
     37 
     38 #include <sys/time.h>
     39 #include <sys/buf.h>
     40 #include <sys/errno.h>
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/proc.h>
     45 #include <sys/ioctl.h>
     46 #include <sys/fcntl.h>
     47 #include <sys/vnode.h>
     48 #include <dev/raidframe/raidframevar.h>
     49 
     50 #include "rf_raid.h"
     51 #include "rf_reconutil.h"
     52 #include "rf_revent.h"
     53 #include "rf_reconbuffer.h"
     54 #include "rf_acctrace.h"
     55 #include "rf_etimer.h"
     56 #include "rf_dag.h"
     57 #include "rf_desc.h"
     58 #include "rf_debugprint.h"
     59 #include "rf_general.h"
     60 #include "rf_driver.h"
     61 #include "rf_utils.h"
     62 #include "rf_shutdown.h"
     63 
     64 #include "rf_kintf.h"
     65 
     66 /* setting these to -1 causes them to be set to their default values if not set by debug options */
     67 
     68 #if RF_DEBUG_RECON
     69 #define Dprintf(s)         if (rf_reconDebug) rf_debug_printf(s,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     70 #define Dprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     71 #define Dprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     72 #define Dprintf3(s,a,b,c)     if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),NULL,NULL,NULL,NULL,NULL)
     73 #define Dprintf4(s,a,b,c,d)   if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),NULL,NULL,NULL,NULL)
     74 #define Dprintf5(s,a,b,c,d,e) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),NULL,NULL,NULL)
     75 #define Dprintf6(s,a,b,c,d,e,f) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),NULL,NULL)
     76 #define Dprintf7(s,a,b,c,d,e,f,g) if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),(void *)((unsigned long)c),(void *)((unsigned long)d),(void *)((unsigned long)e),(void *)((unsigned long)f),(void *)((unsigned long)g),NULL)
     77 
     78 #define DDprintf1(s,a)         if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),NULL,NULL,NULL,NULL,NULL,NULL,NULL)
     79 #define DDprintf2(s,a,b)       if (rf_reconDebug) rf_debug_printf(s,(void *)((unsigned long)a),(void *)((unsigned long)b),NULL,NULL,NULL,NULL,NULL,NULL)
     80 
     81 #else /* RF_DEBUG_RECON */
     82 
     83 #define Dprintf(s) {}
     84 #define Dprintf1(s,a) {}
     85 #define Dprintf2(s,a,b) {}
     86 #define Dprintf3(s,a,b,c) {}
     87 #define Dprintf4(s,a,b,c,d) {}
     88 #define Dprintf5(s,a,b,c,d,e) {}
     89 #define Dprintf6(s,a,b,c,d,e,f) {}
     90 #define Dprintf7(s,a,b,c,d,e,f,g) {}
     91 
     92 #define DDprintf1(s,a) {}
     93 #define DDprintf2(s,a,b) {}
     94 
     95 #endif /* RF_DEBUG_RECON */
     96 
     97 #define RF_RECON_DONE_READS   1
     98 #define RF_RECON_READ_ERROR   2
     99 #define RF_RECON_WRITE_ERROR  3
    100 #define RF_RECON_READ_STOPPED 4
    101 #define RF_RECON_WRITE_DONE   5
    102 
    103 #define RF_MAX_FREE_RECONBUFFER 32
    104 #define RF_MIN_FREE_RECONBUFFER 16
    105 
    106 static RF_RaidReconDesc_t *AllocRaidReconDesc(RF_Raid_t *, RF_RowCol_t,
    107 					      RF_RaidDisk_t *, int, RF_RowCol_t);
    108 static void FreeReconDesc(RF_RaidReconDesc_t *);
    109 static int ProcessReconEvent(RF_Raid_t *, RF_ReconEvent_t *);
    110 static int IssueNextReadRequest(RF_Raid_t *, RF_RowCol_t);
    111 static int TryToRead(RF_Raid_t *, RF_RowCol_t);
    112 static int ComputePSDiskOffsets(RF_Raid_t *, RF_StripeNum_t, RF_RowCol_t,
    113 				RF_SectorNum_t *, RF_SectorNum_t *, RF_RowCol_t *,
    114 				RF_SectorNum_t *);
    115 static int IssueNextWriteRequest(RF_Raid_t *);
    116 static int ReconReadDoneProc(void *, int);
    117 static int ReconWriteDoneProc(void *, int);
    118 static void CheckForNewMinHeadSep(RF_Raid_t *, RF_HeadSepLimit_t);
    119 static int CheckHeadSeparation(RF_Raid_t *, RF_PerDiskReconCtrl_t *,
    120 			       RF_RowCol_t, RF_HeadSepLimit_t,
    121 			       RF_ReconUnitNum_t);
    122 static int CheckForcedOrBlockedReconstruction(RF_Raid_t *,
    123 					      RF_ReconParityStripeStatus_t *,
    124 					      RF_PerDiskReconCtrl_t *,
    125 					      RF_RowCol_t, RF_StripeNum_t,
    126 					      RF_ReconUnitNum_t);
    127 static void ForceReconReadDoneProc(void *, int);
    128 static void rf_ShutdownReconstruction(void *);
    129 
    130 struct RF_ReconDoneProc_s {
    131 	void    (*proc) (RF_Raid_t *, void *);
    132 	void   *arg;
    133 	RF_ReconDoneProc_t *next;
    134 };
    135 
    136 /**************************************************************************
    137  *
    138  * sets up the parameters that will be used by the reconstruction process
    139  * currently there are none, except for those that the layout-specific
    140  * configuration (e.g. rf_ConfigureDeclustered) routine sets up.
    141  *
    142  * in the kernel, we fire off the recon thread.
    143  *
    144  **************************************************************************/
    145 static void
    146 rf_ShutdownReconstruction(void *ignored)
    147 {
    148 	pool_destroy(&rf_pools.reconbuffer);
    149 }
    150 
    151 int
    152 rf_ConfigureReconstruction(RF_ShutdownList_t **listp)
    153 {
    154 
    155 	rf_pool_init(&rf_pools.reconbuffer, sizeof(RF_ReconBuffer_t),
    156 		     "rf_reconbuffer_pl", RF_MIN_FREE_RECONBUFFER, RF_MAX_FREE_RECONBUFFER);
    157 	rf_ShutdownCreate(listp, rf_ShutdownReconstruction, NULL);
    158 
    159 	return (0);
    160 }
    161 
    162 static RF_RaidReconDesc_t *
    163 AllocRaidReconDesc(RF_Raid_t *raidPtr, RF_RowCol_t col,
    164 		   RF_RaidDisk_t *spareDiskPtr, int numDisksDone,
    165 		   RF_RowCol_t scol)
    166 {
    167 
    168 	RF_RaidReconDesc_t *reconDesc;
    169 
    170 	RF_Malloc(reconDesc, sizeof(RF_RaidReconDesc_t),
    171 		  (RF_RaidReconDesc_t *));
    172 	reconDesc->raidPtr = raidPtr;
    173 	reconDesc->col = col;
    174 	reconDesc->spareDiskPtr = spareDiskPtr;
    175 	reconDesc->numDisksDone = numDisksDone;
    176 	reconDesc->scol = scol;
    177 	reconDesc->next = NULL;
    178 
    179 	return (reconDesc);
    180 }
    181 
    182 static void
    183 FreeReconDesc(RF_RaidReconDesc_t *reconDesc)
    184 {
    185 #if RF_RECON_STATS > 0
    186 	printf("raid%d: %lu recon event waits, %lu recon delays\n",
    187 	       reconDesc->raidPtr->raidid,
    188 	       (long) reconDesc->numReconEventWaits,
    189 	       (long) reconDesc->numReconExecDelays);
    190 #endif				/* RF_RECON_STATS > 0 */
    191 	printf("raid%d: %lu max exec ticks\n",
    192 	       reconDesc->raidPtr->raidid,
    193 	       (long) reconDesc->maxReconExecTicks);
    194 #if (RF_RECON_STATS > 0) || defined(KERNEL)
    195 	printf("\n");
    196 #endif				/* (RF_RECON_STATS > 0) || KERNEL */
    197 	RF_Free(reconDesc, sizeof(RF_RaidReconDesc_t));
    198 }
    199 
    200 
    201 /*****************************************************************************
    202  *
    203  * primary routine to reconstruct a failed disk.  This should be called from
    204  * within its own thread.  It won't return until reconstruction completes,
    205  * fails, or is aborted.
    206  *****************************************************************************/
    207 int
    208 rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
    209 {
    210 	const RF_LayoutSW_t *lp;
    211 	int     rc;
    212 
    213 	lp = raidPtr->Layout.map;
    214 	if (lp->SubmitReconBuffer) {
    215 		/*
    216 	         * The current infrastructure only supports reconstructing one
    217 	         * disk at a time for each array.
    218 	         */
    219 		RF_LOCK_MUTEX(raidPtr->mutex);
    220 		while (raidPtr->reconInProgress) {
    221 			RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    222 		}
    223 		raidPtr->reconInProgress++;
    224 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    225 		rc = rf_ReconstructFailedDiskBasic(raidPtr, col);
    226 		RF_LOCK_MUTEX(raidPtr->mutex);
    227 		raidPtr->reconInProgress--;
    228 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    229 	} else {
    230 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    231 		    lp->parityConfig);
    232 		rc = EIO;
    233 	}
    234 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    235 	return (rc);
    236 }
    237 
    238 int
    239 rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
    240 {
    241 	RF_ComponentLabel_t c_label;
    242 	RF_RaidDisk_t *spareDiskPtr = NULL;
    243 	RF_RaidReconDesc_t *reconDesc;
    244 	RF_RowCol_t scol;
    245 	int     numDisksDone = 0, rc;
    246 
    247 	/* first look for a spare drive onto which to reconstruct the data */
    248 	/* spare disk descriptors are stored in row 0.  This may have to
    249 	 * change eventually */
    250 
    251 	RF_LOCK_MUTEX(raidPtr->mutex);
    252 	RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed);
    253 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    254 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    255 		if (raidPtr->status != rf_rs_degraded) {
    256 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because status not degraded\n", col);
    257 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    258 			return (EINVAL);
    259 		}
    260 		scol = (-1);
    261 	} else {
    262 #endif
    263 		for (scol = raidPtr->numCol; scol < raidPtr->numCol + raidPtr->numSpare; scol++) {
    264 			if (raidPtr->Disks[scol].status == rf_ds_spare) {
    265 				spareDiskPtr = &raidPtr->Disks[scol];
    266 				spareDiskPtr->status = rf_ds_used_spare;
    267 				break;
    268 			}
    269 		}
    270 		if (!spareDiskPtr) {
    271 			RF_ERRORMSG1("Unable to reconstruct disk at col %d because no spares are available\n", col);
    272 			RF_UNLOCK_MUTEX(raidPtr->mutex);
    273 			return (ENOSPC);
    274 		}
    275 		printf("RECON: initiating reconstruction on col %d -> spare at col %d\n", col, scol);
    276 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    277 	}
    278 #endif
    279 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    280 
    281 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr, numDisksDone, scol);
    282 	raidPtr->reconDesc = (void *) reconDesc;
    283 #if RF_RECON_STATS > 0
    284 	reconDesc->hsStallCount = 0;
    285 	reconDesc->numReconExecDelays = 0;
    286 	reconDesc->numReconEventWaits = 0;
    287 #endif				/* RF_RECON_STATS > 0 */
    288 	reconDesc->reconExecTimerRunning = 0;
    289 	reconDesc->reconExecTicks = 0;
    290 	reconDesc->maxReconExecTicks = 0;
    291 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    292 
    293 	if (!rc) {
    294 		/* fix up the component label */
    295 		/* Don't actually need the read here.. */
    296 		raidread_component_label(
    297                         raidPtr->raid_cinfo[scol].ci_dev,
    298 			raidPtr->raid_cinfo[scol].ci_vp,
    299 			&c_label);
    300 
    301 		raid_init_component_label( raidPtr, &c_label);
    302 		c_label.row = 0;
    303 		c_label.column = col;
    304 		c_label.clean = RF_RAID_DIRTY;
    305 		c_label.status = rf_ds_optimal;
    306 		c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
    307 
    308 		/* We've just done a rebuild based on all the other
    309 		   disks, so at this point the parity is known to be
    310 		   clean, even if it wasn't before. */
    311 
    312 		/* XXX doesn't hold for RAID 6!!*/
    313 
    314 		RF_LOCK_MUTEX(raidPtr->mutex);
    315 		raidPtr->parity_good = RF_RAID_CLEAN;
    316 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    317 
    318 		/* XXXX MORE NEEDED HERE */
    319 
    320 		raidwrite_component_label(
    321                         raidPtr->raid_cinfo[scol].ci_dev,
    322 			raidPtr->raid_cinfo[scol].ci_vp,
    323 			&c_label);
    324 
    325 	} else {
    326 		/* Reconstruct failed. */
    327 
    328 		RF_LOCK_MUTEX(raidPtr->mutex);
    329 		/* Failed disk goes back to "failed" status */
    330 		raidPtr->Disks[col].status = rf_ds_failed;
    331 
    332 		/* Spare disk goes back to "spare" status. */
    333 		spareDiskPtr->status = rf_ds_spare;
    334 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    335 
    336 	}
    337 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
    338 	return (rc);
    339 }
    340 
    341 /*
    342 
    343    Allow reconstructing a disk in-place -- i.e. component /dev/sd2e goes AWOL,
    344    and you don't get a spare until the next Monday.  With this function
    345    (and hot-swappable drives) you can now put your new disk containing
    346    /dev/sd2e on the bus, scsictl it alive, and then use raidctl(8) to
    347    rebuild the data "on the spot".
    348 
    349 */
    350 
    351 int
    352 rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
    353 {
    354 	RF_RaidDisk_t *spareDiskPtr = NULL;
    355 	RF_RaidReconDesc_t *reconDesc;
    356 	const RF_LayoutSW_t *lp;
    357 	RF_ComponentLabel_t c_label;
    358 	int     numDisksDone = 0, rc;
    359 	struct partinfo dpart;
    360 	struct vnode *vp;
    361 	struct vattr va;
    362 	struct lwp *lwp;
    363 	int retcode;
    364 	int ac;
    365 
    366 	lp = raidPtr->Layout.map;
    367 	if (!lp->SubmitReconBuffer) {
    368 		RF_ERRORMSG1("RECON: no way to reconstruct failed disk for arch %c\n",
    369 			     lp->parityConfig);
    370 		/* wakeup anyone who might be waiting to do a reconstruct */
    371 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    372 		return(EIO);
    373 	}
    374 
    375 	/*
    376 	 * The current infrastructure only supports reconstructing one
    377 	 * disk at a time for each array.
    378 	 */
    379 	RF_LOCK_MUTEX(raidPtr->mutex);
    380 
    381 	if (raidPtr->Disks[col].status != rf_ds_failed) {
    382 		/* "It's gone..." */
    383 		raidPtr->numFailures++;
    384 		raidPtr->Disks[col].status = rf_ds_failed;
    385 		raidPtr->status = rf_rs_degraded;
    386 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    387 		rf_update_component_labels(raidPtr,
    388 					   RF_NORMAL_COMPONENT_UPDATE);
    389 		RF_LOCK_MUTEX(raidPtr->mutex);
    390 	}
    391 
    392 	while (raidPtr->reconInProgress) {
    393 		RF_WAIT_COND(raidPtr->waitForReconCond, raidPtr->mutex);
    394 	}
    395 
    396 	raidPtr->reconInProgress++;
    397 
    398 	/* first look for a spare drive onto which to reconstruct the
    399 	   data.  spare disk descriptors are stored in row 0.  This
    400 	   may have to change eventually */
    401 
    402 	/* Actually, we don't care if it's failed or not...  On a RAID
    403 	   set with correct parity, this function should be callable
    404 	   on any component without ill affects. */
    405 	/* RF_ASSERT(raidPtr->Disks[col].status == rf_ds_failed); */
    406 
    407 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
    408 	if (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE) {
    409 		RF_ERRORMSG1("Unable to reconstruct to disk at col %d: operation not supported for RF_DISTRIBUTE_SPARE\n", col);
    410 
    411 		raidPtr->reconInProgress--;
    412 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    413 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    414 		return (EINVAL);
    415 	}
    416 #endif
    417 	lwp = LIST_FIRST(&raidPtr->engine_thread->p_lwps);
    418 
    419 	/* This device may have been opened successfully the
    420 	   first time. Close it before trying to open it again.. */
    421 
    422 	if (raidPtr->raid_cinfo[col].ci_vp != NULL) {
    423 #if 0
    424 		printf("Closed the open device: %s\n",
    425 		       raidPtr->Disks[col].devname);
    426 #endif
    427 		vp = raidPtr->raid_cinfo[col].ci_vp;
    428 		ac = raidPtr->Disks[col].auto_configured;
    429 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    430 		rf_close_component(raidPtr, vp, ac);
    431 		RF_LOCK_MUTEX(raidPtr->mutex);
    432 		raidPtr->raid_cinfo[col].ci_vp = NULL;
    433 	}
    434 	/* note that this disk was *not* auto_configured (any longer)*/
    435 	raidPtr->Disks[col].auto_configured = 0;
    436 
    437 #if 0
    438 	printf("About to (re-)open the device for rebuilding: %s\n",
    439 	       raidPtr->Disks[col].devname);
    440 #endif
    441 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    442 	retcode = dk_lookup(raidPtr->Disks[col].devname, lwp, &vp, UIO_SYSSPACE);
    443 
    444 	if (retcode) {
    445 		printf("raid%d: rebuilding: dk_lookup on device: %s failed: %d!\n",raidPtr->raidid,
    446 		       raidPtr->Disks[col].devname, retcode);
    447 
    448 		/* the component isn't responding properly...
    449 		   must be still dead :-( */
    450 		RF_LOCK_MUTEX(raidPtr->mutex);
    451 		raidPtr->reconInProgress--;
    452 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    453 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    454 		return(retcode);
    455 	}
    456 
    457 	/* Ok, so we can at least do a lookup...
    458 	   How about actually getting a vp for it? */
    459 
    460 	if ((retcode = VOP_GETATTR(vp, &va, lwp->l_cred, lwp)) != 0) {
    461 		RF_LOCK_MUTEX(raidPtr->mutex);
    462 		raidPtr->reconInProgress--;
    463 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    464 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    465 		return(retcode);
    466 	}
    467 
    468 	retcode = VOP_IOCTL(vp, DIOCGPART, &dpart, FREAD, lwp->l_cred, lwp);
    469 	if (retcode) {
    470 		RF_LOCK_MUTEX(raidPtr->mutex);
    471 		raidPtr->reconInProgress--;
    472 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    473 		RF_SIGNAL_COND(raidPtr->waitForReconCond);
    474 		return(retcode);
    475 	}
    476 	RF_LOCK_MUTEX(raidPtr->mutex);
    477 	raidPtr->Disks[col].blockSize =	dpart.disklab->d_secsize;
    478 
    479 	raidPtr->Disks[col].numBlocks = dpart.part->p_size -
    480 		rf_protectedSectors;
    481 
    482 	raidPtr->raid_cinfo[col].ci_vp = vp;
    483 	raidPtr->raid_cinfo[col].ci_dev = va.va_rdev;
    484 
    485 	raidPtr->Disks[col].dev = va.va_rdev;
    486 
    487 	/* we allow the user to specify that only a fraction
    488 	   of the disks should be used this is just for debug:
    489 	   it speeds up * the parity scan */
    490 	raidPtr->Disks[col].numBlocks = raidPtr->Disks[col].numBlocks *
    491 		rf_sizePercentage / 100;
    492 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    493 
    494 	spareDiskPtr = &raidPtr->Disks[col];
    495 	spareDiskPtr->status = rf_ds_used_spare;
    496 
    497 	printf("raid%d: initiating in-place reconstruction on column %d\n",
    498 	       raidPtr->raidid, col);
    499 
    500 	reconDesc = AllocRaidReconDesc((void *) raidPtr, col, spareDiskPtr,
    501 				       numDisksDone, col);
    502 	raidPtr->reconDesc = (void *) reconDesc;
    503 #if RF_RECON_STATS > 0
    504 	reconDesc->hsStallCount = 0;
    505 	reconDesc->numReconExecDelays = 0;
    506 	reconDesc->numReconEventWaits = 0;
    507 #endif				/* RF_RECON_STATS > 0 */
    508 	reconDesc->reconExecTimerRunning = 0;
    509 	reconDesc->reconExecTicks = 0;
    510 	reconDesc->maxReconExecTicks = 0;
    511 	rc = rf_ContinueReconstructFailedDisk(reconDesc);
    512 
    513 	if (!rc) {
    514 		RF_LOCK_MUTEX(raidPtr->mutex);
    515 		/* Need to set these here, as at this point it'll be claiming
    516 		   that the disk is in rf_ds_spared!  But we know better :-) */
    517 
    518 		raidPtr->Disks[col].status = rf_ds_optimal;
    519 		raidPtr->status = rf_rs_optimal;
    520 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    521 
    522 		/* fix up the component label */
    523 		/* Don't actually need the read here.. */
    524 		raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
    525 					 raidPtr->raid_cinfo[col].ci_vp,
    526 					 &c_label);
    527 
    528 		RF_LOCK_MUTEX(raidPtr->mutex);
    529 		raid_init_component_label(raidPtr, &c_label);
    530 
    531 		c_label.row = 0;
    532 		c_label.column = col;
    533 
    534 		/* We've just done a rebuild based on all the other
    535 		   disks, so at this point the parity is known to be
    536 		   clean, even if it wasn't before. */
    537 
    538 		/* XXX doesn't hold for RAID 6!!*/
    539 
    540 		raidPtr->parity_good = RF_RAID_CLEAN;
    541 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    542 
    543 		raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
    544 					  raidPtr->raid_cinfo[col].ci_vp,
    545 					  &c_label);
    546 
    547 	} else {
    548 		/* Reconstruct-in-place failed.  Disk goes back to
    549 		   "failed" status, regardless of what it was before.  */
    550 		RF_LOCK_MUTEX(raidPtr->mutex);
    551 		raidPtr->Disks[col].status = rf_ds_failed;
    552 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    553 	}
    554 
    555 	rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
    556 
    557 	RF_LOCK_MUTEX(raidPtr->mutex);
    558 	raidPtr->reconInProgress--;
    559 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    560 
    561 	RF_SIGNAL_COND(raidPtr->waitForReconCond);
    562 	return (rc);
    563 }
    564 
    565 
    566 int
    567 rf_ContinueReconstructFailedDisk(RF_RaidReconDesc_t *reconDesc)
    568 {
    569 	RF_Raid_t *raidPtr = reconDesc->raidPtr;
    570 	RF_RowCol_t col = reconDesc->col;
    571 	RF_RowCol_t scol = reconDesc->scol;
    572 	RF_ReconMap_t *mapPtr;
    573 	RF_ReconCtrl_t *tmp_reconctrl;
    574 	RF_ReconEvent_t *event;
    575 	RF_StripeCount_t incPSID,lastPSID,num_writes,pending_writes,prev;
    576 	RF_ReconUnitCount_t RUsPerPU;
    577 	struct timeval etime, elpsd;
    578 	unsigned long xor_s, xor_resid_us;
    579 	int     i, ds;
    580 	int status, done;
    581 	int recon_error, write_error;
    582 
    583 	raidPtr->accumXorTimeUs = 0;
    584 #if RF_ACC_TRACE > 0
    585 	/* create one trace record per physical disk */
    586 	RF_Malloc(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
    587 #endif
    588 
    589 	/* quiesce the array prior to starting recon.  this is needed
    590 	 * to assure no nasty interactions with pending user writes.
    591 	 * We need to do this before we change the disk or row status. */
    592 
    593 	Dprintf("RECON: begin request suspend\n");
    594 	rf_SuspendNewRequestsAndWait(raidPtr);
    595 	Dprintf("RECON: end request suspend\n");
    596 
    597 	/* allocate our RF_ReconCTRL_t before we protect raidPtr->reconControl[row] */
    598 	tmp_reconctrl = rf_MakeReconControl(reconDesc, col, scol);
    599 
    600 	RF_LOCK_MUTEX(raidPtr->mutex);
    601 
    602 	/* create the reconstruction control pointer and install it in
    603 	 * the right slot */
    604 	raidPtr->reconControl = tmp_reconctrl;
    605 	mapPtr = raidPtr->reconControl->reconMap;
    606 	raidPtr->reconControl->numRUsTotal = mapPtr->totalRUs;
    607 	raidPtr->reconControl->numRUsComplete =	0;
    608 	raidPtr->status = rf_rs_reconstructing;
    609 	raidPtr->Disks[col].status = rf_ds_reconstructing;
    610 	raidPtr->Disks[col].spareCol = scol;
    611 
    612 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    613 
    614 	RF_GETTIME(raidPtr->reconControl->starttime);
    615 
    616 	Dprintf("RECON: resume requests\n");
    617 	rf_ResumeNewRequests(raidPtr);
    618 
    619 
    620 	mapPtr = raidPtr->reconControl->reconMap;
    621 
    622 	incPSID = RF_RECONMAP_SIZE;
    623 	lastPSID = raidPtr->Layout.numStripe / raidPtr->Layout.SUsPerPU;
    624 	RUsPerPU = raidPtr->Layout.SUsPerPU / raidPtr->Layout.SUsPerRU;
    625 	recon_error = 0;
    626 	write_error = 0;
    627 	pending_writes = incPSID;
    628 	raidPtr->reconControl->lastPSID = incPSID;
    629 
    630 	/* start the actual reconstruction */
    631 
    632 	done = 0;
    633 	while (!done) {
    634 
    635 		if (raidPtr->waitShutdown) {
    636 			/* someone is unconfiguring this array... bail on the reconstruct.. */
    637 			recon_error = 1;
    638 			break;
    639 		}
    640 
    641 		num_writes = 0;
    642 
    643 		/* issue a read for each surviving disk */
    644 
    645 		reconDesc->numDisksDone = 0;
    646 		for (i = 0; i < raidPtr->numCol; i++) {
    647 			if (i != col) {
    648 				/* find and issue the next I/O on the
    649 				 * indicated disk */
    650 				if (IssueNextReadRequest(raidPtr, i)) {
    651 					Dprintf1("RECON: done issuing for c%d\n", i);
    652 					reconDesc->numDisksDone++;
    653 				}
    654 			}
    655 		}
    656 
    657 		/* process reconstruction events until all disks report that
    658 		 * they've completed all work */
    659 
    660 		while (reconDesc->numDisksDone < raidPtr->numCol - 1) {
    661 
    662 			event = rf_GetNextReconEvent(reconDesc);
    663 			status = ProcessReconEvent(raidPtr, event);
    664 
    665 			/* the normal case is that a read completes, and all is well. */
    666 			if (status == RF_RECON_DONE_READS) {
    667 				reconDesc->numDisksDone++;
    668 			} else if ((status == RF_RECON_READ_ERROR) ||
    669 				   (status == RF_RECON_WRITE_ERROR)) {
    670 				/* an error was encountered while reconstructing...
    671 				   Pretend we've finished this disk.
    672 				*/
    673 				recon_error = 1;
    674 				raidPtr->reconControl->error = 1;
    675 
    676 				/* bump the numDisksDone count for reads,
    677 				   but not for writes */
    678 				if (status == RF_RECON_READ_ERROR)
    679 					reconDesc->numDisksDone++;
    680 
    681 				/* write errors are special -- when we are
    682 				   done dealing with the reads that are
    683 				   finished, we don't want to wait for any
    684 				   writes */
    685 				if (status == RF_RECON_WRITE_ERROR)
    686 					write_error = 1;
    687 
    688 			} else if (status == RF_RECON_READ_STOPPED) {
    689 				/* count this component as being "done" */
    690 				reconDesc->numDisksDone++;
    691 			} else if (status == RF_RECON_WRITE_DONE) {
    692 				num_writes++;
    693 			}
    694 
    695 			if (recon_error) {
    696 				/* make sure any stragglers are woken up so that
    697 				   their theads will complete, and we can get out
    698 				   of here with all IO processed */
    699 
    700 				rf_WakeupHeadSepCBWaiters(raidPtr);
    701 			}
    702 
    703 			raidPtr->reconControl->numRUsTotal =
    704 				mapPtr->totalRUs;
    705 			raidPtr->reconControl->numRUsComplete =
    706 				mapPtr->totalRUs -
    707 				rf_UnitsLeftToReconstruct(mapPtr);
    708 
    709 #if RF_DEBUG_RECON
    710 			raidPtr->reconControl->percentComplete =
    711 				(raidPtr->reconControl->numRUsComplete * 100 / raidPtr->reconControl->numRUsTotal);
    712 			if (rf_prReconSched) {
    713 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    714 			}
    715 #endif
    716 		}
    717 
    718 		/* reads done, wakup any waiters, and then wait for writes */
    719 
    720 		rf_WakeupHeadSepCBWaiters(raidPtr);
    721 
    722 		while (!recon_error && (num_writes < pending_writes)) {
    723 			event = rf_GetNextReconEvent(reconDesc);
    724 			status = ProcessReconEvent(raidPtr, event);
    725 
    726 			if (status == RF_RECON_WRITE_ERROR) {
    727 				recon_error = 1;
    728 				raidPtr->reconControl->error = 1;
    729 				/* an error was encountered at the very end... bail */
    730 			} else if (status == RF_RECON_WRITE_DONE) {
    731 				num_writes++;
    732 			}
    733 		}
    734 		if (recon_error ||
    735 		    (raidPtr->reconControl->lastPSID == lastPSID)) {
    736 			done = 1;
    737 			break;
    738 		}
    739 
    740 		prev = raidPtr->reconControl->lastPSID;
    741 		raidPtr->reconControl->lastPSID += incPSID;
    742 
    743 		if (raidPtr->reconControl->lastPSID > lastPSID) {
    744 			pending_writes = lastPSID - prev;
    745 			raidPtr->reconControl->lastPSID = lastPSID;
    746 		}
    747 
    748 		/* back down curPSID to get ready for the next round... */
    749 		for (i = 0; i < raidPtr->numCol; i++) {
    750 			if (i != col) {
    751 				raidPtr->reconControl->perDiskInfo[i].curPSID--;
    752 				raidPtr->reconControl->perDiskInfo[i].ru_count = RUsPerPU - 1;
    753 			}
    754 		}
    755 	}
    756 
    757 	mapPtr = raidPtr->reconControl->reconMap;
    758 	if (rf_reconDebug) {
    759 		printf("RECON: all reads completed\n");
    760 	}
    761 	/* at this point all the reads have completed.  We now wait
    762 	 * for any pending writes to complete, and then we're done */
    763 
    764 	while (!recon_error && rf_UnitsLeftToReconstruct(raidPtr->reconControl->reconMap) > 0) {
    765 
    766 		event = rf_GetNextReconEvent(reconDesc);
    767 		status = ProcessReconEvent(raidPtr, event);
    768 
    769 		if (status == RF_RECON_WRITE_ERROR) {
    770 			recon_error = 1;
    771 			raidPtr->reconControl->error = 1;
    772 			/* an error was encountered at the very end... bail */
    773 		} else {
    774 #if RF_DEBUG_RECON
    775 			raidPtr->reconControl->percentComplete = 100 - (rf_UnitsLeftToReconstruct(mapPtr) * 100 / mapPtr->totalRUs);
    776 			if (rf_prReconSched) {
    777 				rf_PrintReconSchedule(raidPtr->reconControl->reconMap, &(raidPtr->reconControl->starttime));
    778 			}
    779 #endif
    780 		}
    781 	}
    782 
    783 	if (recon_error) {
    784 		/* we've encountered an error in reconstructing. */
    785 		printf("raid%d: reconstruction failed.\n", raidPtr->raidid);
    786 
    787 		/* we start by blocking IO to the RAID set. */
    788 		rf_SuspendNewRequestsAndWait(raidPtr);
    789 
    790 		RF_LOCK_MUTEX(raidPtr->mutex);
    791 		/* mark set as being degraded, rather than
    792 		   rf_rs_reconstructing as we were before the problem.
    793 		   After this is done we can update status of the
    794 		   component disks without worrying about someone
    795 		   trying to read from a failed component.
    796 		*/
    797 		raidPtr->status = rf_rs_degraded;
    798 		RF_UNLOCK_MUTEX(raidPtr->mutex);
    799 
    800 		/* resume IO */
    801 		rf_ResumeNewRequests(raidPtr);
    802 
    803 		/* At this point there are two cases:
    804 		   1) If we've experienced a read error, then we've
    805 		   already waited for all the reads we're going to get,
    806 		   and we just need to wait for the writes.
    807 
    808 		   2) If we've experienced a write error, we've also
    809 		   already waited for all the reads to complete,
    810 		   but there is little point in waiting for the writes --
    811 		   when they do complete, they will just be ignored.
    812 
    813 		   So we just wait for writes to complete if we didn't have a
    814 		   write error.
    815 		*/
    816 
    817 		if (!write_error) {
    818 			/* wait for writes to complete */
    819 			while (raidPtr->reconControl->pending_writes > 0) {
    820 
    821 				event = rf_GetNextReconEvent(reconDesc);
    822 				status = ProcessReconEvent(raidPtr, event);
    823 
    824 				if (status == RF_RECON_WRITE_ERROR) {
    825 					raidPtr->reconControl->error = 1;
    826 					/* an error was encountered at the very end... bail.
    827 					   This will be very bad news for the user, since
    828 					   at this point there will have been a read error
    829 					   on one component, and a write error on another!
    830 					*/
    831 					break;
    832 				}
    833 			}
    834 		}
    835 
    836 
    837 		/* cleanup */
    838 
    839 		/* drain the event queue - after waiting for the writes above,
    840 		   there shouldn't be much (if anything!) left in the queue. */
    841 
    842 		rf_DrainReconEventQueue(reconDesc);
    843 
    844 		/* XXX  As much as we'd like to free the recon control structure
    845 		   and the reconDesc, we have no way of knowing if/when those will
    846 		   be touched by IO that has yet to occur.  It is rather poor to be
    847 		   basically causing a 'memory leak' here, but there doesn't seem to be
    848 		   a cleaner alternative at this time.  Perhaps when the reconstruct code
    849 		   gets a makeover this problem will go away.
    850 		*/
    851 #if 0
    852 		rf_FreeReconControl(raidPtr);
    853 #endif
    854 
    855 #if RF_ACC_TRACE > 0
    856 		RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    857 #endif
    858 		/* XXX see comment above */
    859 #if 0
    860 		FreeReconDesc(reconDesc);
    861 #endif
    862 
    863 		return (1);
    864 	}
    865 
    866 	/* Success:  mark the dead disk as reconstructed.  We quiesce
    867 	 * the array here to assure no nasty interactions with pending
    868 	 * user accesses when we free up the psstatus structure as
    869 	 * part of FreeReconControl() */
    870 
    871 	rf_SuspendNewRequestsAndWait(raidPtr);
    872 
    873 	RF_LOCK_MUTEX(raidPtr->mutex);
    874 	raidPtr->numFailures--;
    875 	ds = (raidPtr->Layout.map->flags & RF_DISTRIBUTE_SPARE);
    876 	raidPtr->Disks[col].status = (ds) ? rf_ds_dist_spared : rf_ds_spared;
    877 	raidPtr->status = (ds) ? rf_rs_reconfigured : rf_rs_optimal;
    878 	RF_UNLOCK_MUTEX(raidPtr->mutex);
    879 	RF_GETTIME(etime);
    880 	RF_TIMEVAL_DIFF(&(raidPtr->reconControl->starttime), &etime, &elpsd);
    881 
    882 	rf_ResumeNewRequests(raidPtr);
    883 
    884 	printf("raid%d: Reconstruction of disk at col %d completed\n",
    885 	       raidPtr->raidid, col);
    886 	xor_s = raidPtr->accumXorTimeUs / 1000000;
    887 	xor_resid_us = raidPtr->accumXorTimeUs % 1000000;
    888 	printf("raid%d: Recon time was %d.%06d seconds, accumulated XOR time was %ld us (%ld.%06ld)\n",
    889 	       raidPtr->raidid,
    890 	       (int) elpsd.tv_sec, (int) elpsd.tv_usec,
    891 	       raidPtr->accumXorTimeUs, xor_s, xor_resid_us);
    892 	printf("raid%d:  (start time %d sec %d usec, end time %d sec %d usec)\n",
    893 	       raidPtr->raidid,
    894 	       (int) raidPtr->reconControl->starttime.tv_sec,
    895 	       (int) raidPtr->reconControl->starttime.tv_usec,
    896 	       (int) etime.tv_sec, (int) etime.tv_usec);
    897 #if RF_RECON_STATS > 0
    898 	printf("raid%d: Total head-sep stall count was %d\n",
    899 	       raidPtr->raidid, (int) reconDesc->hsStallCount);
    900 #endif				/* RF_RECON_STATS > 0 */
    901 	rf_FreeReconControl(raidPtr);
    902 #if RF_ACC_TRACE > 0
    903 	RF_Free(raidPtr->recon_tracerecs, raidPtr->numCol * sizeof(RF_AccTraceEntry_t));
    904 #endif
    905 	FreeReconDesc(reconDesc);
    906 
    907 	return (0);
    908 
    909 }
    910 /*****************************************************************************
    911  * do the right thing upon each reconstruction event.
    912  *****************************************************************************/
    913 static int
    914 ProcessReconEvent(RF_Raid_t *raidPtr, RF_ReconEvent_t *event)
    915 {
    916 	int     retcode = 0, submitblocked;
    917 	RF_ReconBuffer_t *rbuf;
    918 	RF_SectorCount_t sectorsPerRU;
    919 
    920 	retcode = RF_RECON_READ_STOPPED;
    921 
    922 	Dprintf1("RECON: ProcessReconEvent type %d\n", event->type);
    923 
    924 	switch (event->type) {
    925 
    926 		/* a read I/O has completed */
    927 	case RF_REVENT_READDONE:
    928 		rbuf = raidPtr->reconControl->perDiskInfo[event->col].rbuf;
    929 		Dprintf2("RECON: READDONE EVENT: col %d psid %ld\n",
    930 		    event->col, rbuf->parityStripeID);
    931 		Dprintf7("RECON: done read  psid %ld buf %lx  %02x %02x %02x %02x %02x\n",
    932 		    rbuf->parityStripeID, rbuf->buffer, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
    933 		    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
    934 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    935 		if (!raidPtr->reconControl->error) {
    936 			submitblocked = rf_SubmitReconBuffer(rbuf, 0, 0);
    937 			Dprintf1("RECON: submitblocked=%d\n", submitblocked);
    938 			if (!submitblocked)
    939 				retcode = IssueNextReadRequest(raidPtr, event->col);
    940 			else
    941 				retcode = 0;
    942 		}
    943 		break;
    944 
    945 		/* a write I/O has completed */
    946 	case RF_REVENT_WRITEDONE:
    947 #if RF_DEBUG_RECON
    948 		if (rf_floatingRbufDebug) {
    949 			rf_CheckFloatingRbufCount(raidPtr, 1);
    950 		}
    951 #endif
    952 		sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
    953 		rbuf = (RF_ReconBuffer_t *) event->arg;
    954 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
    955 		Dprintf3("RECON: WRITEDONE EVENT: psid %d ru %d (%d %% complete)\n",
    956 		    rbuf->parityStripeID, rbuf->which_ru, raidPtr->reconControl->percentComplete);
    957 		rf_ReconMapUpdate(raidPtr, raidPtr->reconControl->reconMap,
    958 		    rbuf->failedDiskSectorOffset, rbuf->failedDiskSectorOffset + sectorsPerRU - 1);
    959 		rf_RemoveFromActiveReconTable(raidPtr, rbuf->parityStripeID, rbuf->which_ru);
    960 
    961 		RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    962 		raidPtr->reconControl->pending_writes--;
    963 		RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    964 
    965 		if (rbuf->type == RF_RBUF_TYPE_FLOATING) {
    966 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    967 			while(raidPtr->reconControl->rb_lock) {
    968 				ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO, "reconctrlpre1", 0,
    969 					&raidPtr->reconControl->rb_mutex);
    970 			}
    971 			raidPtr->reconControl->rb_lock = 1;
    972 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    973 
    974 			raidPtr->numFullReconBuffers--;
    975 			rf_ReleaseFloatingReconBuffer(raidPtr, rbuf);
    976 
    977 			RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    978 			raidPtr->reconControl->rb_lock = 0;
    979 			wakeup(&raidPtr->reconControl->rb_lock);
    980 			RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
    981 		} else
    982 			if (rbuf->type == RF_RBUF_TYPE_FORCED)
    983 				rf_FreeReconBuffer(rbuf);
    984 			else
    985 				RF_ASSERT(0);
    986 		retcode = RF_RECON_WRITE_DONE;
    987 		break;
    988 
    989 	case RF_REVENT_BUFCLEAR:	/* A buffer-stall condition has been
    990 					 * cleared */
    991 		Dprintf1("RECON: BUFCLEAR EVENT: col %d\n", event->col);
    992 		if (!raidPtr->reconControl->error) {
    993 			submitblocked = rf_SubmitReconBuffer(raidPtr->reconControl->perDiskInfo[event->col].rbuf,
    994 							     0, (int) (long) event->arg);
    995 			RF_ASSERT(!submitblocked);	/* we wouldn't have gotten the
    996 							 * BUFCLEAR event if we
    997 							 * couldn't submit */
    998 			retcode = IssueNextReadRequest(raidPtr, event->col);
    999 		}
   1000 		break;
   1001 
   1002 	case RF_REVENT_BLOCKCLEAR:	/* A user-write reconstruction
   1003 					 * blockage has been cleared */
   1004 		DDprintf1("RECON: BLOCKCLEAR EVENT: col %d\n", event->col);
   1005 		if (!raidPtr->reconControl->error) {
   1006 			retcode = TryToRead(raidPtr, event->col);
   1007 		}
   1008 		break;
   1009 
   1010 	case RF_REVENT_HEADSEPCLEAR:	/* A max-head-separation
   1011 					 * reconstruction blockage has been
   1012 					 * cleared */
   1013 		Dprintf1("RECON: HEADSEPCLEAR EVENT: col %d\n", event->col);
   1014 		if (!raidPtr->reconControl->error) {
   1015 			retcode = TryToRead(raidPtr, event->col);
   1016 		}
   1017 		break;
   1018 
   1019 		/* a buffer has become ready to write */
   1020 	case RF_REVENT_BUFREADY:
   1021 		Dprintf1("RECON: BUFREADY EVENT: col %d\n", event->col);
   1022 		if (!raidPtr->reconControl->error) {
   1023 			retcode = IssueNextWriteRequest(raidPtr);
   1024 #if RF_DEBUG_RECON
   1025 			if (rf_floatingRbufDebug) {
   1026 				rf_CheckFloatingRbufCount(raidPtr, 1);
   1027 			}
   1028 #endif
   1029 		}
   1030 		break;
   1031 
   1032 		/* we need to skip the current RU entirely because it got
   1033 		 * recon'd while we were waiting for something else to happen */
   1034 	case RF_REVENT_SKIP:
   1035 		DDprintf1("RECON: SKIP EVENT: col %d\n", event->col);
   1036 		if (!raidPtr->reconControl->error) {
   1037 			retcode = IssueNextReadRequest(raidPtr, event->col);
   1038 		}
   1039 		break;
   1040 
   1041 		/* a forced-reconstruction read access has completed.  Just
   1042 		 * submit the buffer */
   1043 	case RF_REVENT_FORCEDREADDONE:
   1044 		rbuf = (RF_ReconBuffer_t *) event->arg;
   1045 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
   1046 		DDprintf1("RECON: FORCEDREADDONE EVENT: col %d\n", event->col);
   1047 		if (!raidPtr->reconControl->error) {
   1048 			submitblocked = rf_SubmitReconBuffer(rbuf, 1, 0);
   1049 			RF_ASSERT(!submitblocked);
   1050 			retcode = 0;
   1051 		}
   1052 		break;
   1053 
   1054 		/* A read I/O failed to complete */
   1055 	case RF_REVENT_READ_FAILED:
   1056 		retcode = RF_RECON_READ_ERROR;
   1057 		break;
   1058 
   1059 		/* A write I/O failed to complete */
   1060 	case RF_REVENT_WRITE_FAILED:
   1061 		retcode = RF_RECON_WRITE_ERROR;
   1062 
   1063 		rbuf = (RF_ReconBuffer_t *) event->arg;
   1064 
   1065 		/* cleanup the disk queue data */
   1066 		rf_FreeDiskQueueData((RF_DiskQueueData_t *) rbuf->arg);
   1067 
   1068 		/* At this point we're erroring out, badly, and floatingRbufs
   1069 		   may not even be valid.  Rather than putting this back onto
   1070 		   the floatingRbufs list, just arrange for its immediate
   1071 		   destruction.
   1072 		*/
   1073 		rf_FreeReconBuffer(rbuf);
   1074 		break;
   1075 
   1076 		/* a forced read I/O failed to complete */
   1077 	case RF_REVENT_FORCEDREAD_FAILED:
   1078 		retcode = RF_RECON_READ_ERROR;
   1079 		break;
   1080 
   1081 	default:
   1082 		RF_PANIC();
   1083 	}
   1084 	rf_FreeReconEventDesc(event);
   1085 	return (retcode);
   1086 }
   1087 /*****************************************************************************
   1088  *
   1089  * find the next thing that's needed on the indicated disk, and issue
   1090  * a read request for it.  We assume that the reconstruction buffer
   1091  * associated with this process is free to receive the data.  If
   1092  * reconstruction is blocked on the indicated RU, we issue a
   1093  * blockage-release request instead of a physical disk read request.
   1094  * If the current disk gets too far ahead of the others, we issue a
   1095  * head-separation wait request and return.
   1096  *
   1097  * ctrl->{ru_count, curPSID, diskOffset} and
   1098  * rbuf->failedDiskSectorOffset are maintained to point to the unit
   1099  * we're currently accessing.  Note that this deviates from the
   1100  * standard C idiom of having counters point to the next thing to be
   1101  * accessed.  This allows us to easily retry when we're blocked by
   1102  * head separation or reconstruction-blockage events.
   1103  *
   1104  *****************************************************************************/
   1105 static int
   1106 IssueNextReadRequest(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1107 {
   1108 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1109 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1110 	RF_ReconBuffer_t *rbuf = ctrl->rbuf;
   1111 	RF_ReconUnitCount_t RUsPerPU = layoutPtr->SUsPerPU / layoutPtr->SUsPerRU;
   1112 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1113 	int     do_new_check = 0, retcode = 0, status;
   1114 
   1115 	/* if we are currently the slowest disk, mark that we have to do a new
   1116 	 * check */
   1117 	if (ctrl->headSepCounter <= raidPtr->reconControl->minHeadSepCounter)
   1118 		do_new_check = 1;
   1119 
   1120 	while (1) {
   1121 
   1122 		ctrl->ru_count++;
   1123 		if (ctrl->ru_count < RUsPerPU) {
   1124 			ctrl->diskOffset += sectorsPerRU;
   1125 			rbuf->failedDiskSectorOffset += sectorsPerRU;
   1126 		} else {
   1127 			ctrl->curPSID++;
   1128 			ctrl->ru_count = 0;
   1129 			/* code left over from when head-sep was based on
   1130 			 * parity stripe id */
   1131 			if (ctrl->curPSID >= raidPtr->reconControl->lastPSID) {
   1132 				CheckForNewMinHeadSep(raidPtr, ++(ctrl->headSepCounter));
   1133 				return (RF_RECON_DONE_READS);	/* finito! */
   1134 			}
   1135 			/* find the disk offsets of the start of the parity
   1136 			 * stripe on both the current disk and the failed
   1137 			 * disk. skip this entire parity stripe if either disk
   1138 			 * does not appear in the indicated PS */
   1139 			status = ComputePSDiskOffsets(raidPtr, ctrl->curPSID, col, &ctrl->diskOffset, &rbuf->failedDiskSectorOffset,
   1140 			    &rbuf->spCol, &rbuf->spOffset);
   1141 			if (status) {
   1142 				ctrl->ru_count = RUsPerPU - 1;
   1143 				continue;
   1144 			}
   1145 		}
   1146 		rbuf->which_ru = ctrl->ru_count;
   1147 
   1148 		/* skip this RU if it's already been reconstructed */
   1149 		if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, rbuf->failedDiskSectorOffset)) {
   1150 			Dprintf2("Skipping psid %ld ru %d: already reconstructed\n", ctrl->curPSID, ctrl->ru_count);
   1151 			continue;
   1152 		}
   1153 		break;
   1154 	}
   1155 	ctrl->headSepCounter++;
   1156 	if (do_new_check)
   1157 		CheckForNewMinHeadSep(raidPtr, ctrl->headSepCounter);	/* update min if needed */
   1158 
   1159 
   1160 	/* at this point, we have definitely decided what to do, and we have
   1161 	 * only to see if we can actually do it now */
   1162 	rbuf->parityStripeID = ctrl->curPSID;
   1163 	rbuf->which_ru = ctrl->ru_count;
   1164 #if RF_ACC_TRACE > 0
   1165 	memset((char *) &raidPtr->recon_tracerecs[col], 0,
   1166 	    sizeof(raidPtr->recon_tracerecs[col]));
   1167 	raidPtr->recon_tracerecs[col].reconacc = 1;
   1168 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1169 #endif
   1170 	retcode = TryToRead(raidPtr, col);
   1171 	return (retcode);
   1172 }
   1173 
   1174 /*
   1175  * tries to issue the next read on the indicated disk.  We may be
   1176  * blocked by (a) the heads being too far apart, or (b) recon on the
   1177  * indicated RU being blocked due to a write by a user thread.  In
   1178  * this case, we issue a head-sep or blockage wait request, which will
   1179  * cause this same routine to be invoked again later when the blockage
   1180  * has cleared.
   1181  */
   1182 
   1183 static int
   1184 TryToRead(RF_Raid_t *raidPtr, RF_RowCol_t col)
   1185 {
   1186 	RF_PerDiskReconCtrl_t *ctrl = &raidPtr->reconControl->perDiskInfo[col];
   1187 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;
   1188 	RF_StripeNum_t psid = ctrl->curPSID;
   1189 	RF_ReconUnitNum_t which_ru = ctrl->ru_count;
   1190 	RF_DiskQueueData_t *req;
   1191 	int     status;
   1192 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;
   1193 
   1194 	/* if the current disk is too far ahead of the others, issue a
   1195 	 * head-separation wait and return */
   1196 	if (CheckHeadSeparation(raidPtr, ctrl, col, ctrl->headSepCounter, which_ru))
   1197 		return (0);
   1198 
   1199 	/* allocate a new PSS in case we need it */
   1200 	newpssPtr = rf_AllocPSStatus(raidPtr);
   1201 
   1202 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1203 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE, newpssPtr);
   1204 
   1205 	if (pssPtr != newpssPtr) {
   1206 		rf_FreePSStatus(raidPtr, newpssPtr);
   1207 	}
   1208 
   1209 	/* if recon is blocked on the indicated parity stripe, issue a
   1210 	 * block-wait request and return. this also must mark the indicated RU
   1211 	 * in the stripe as under reconstruction if not blocked. */
   1212 	status = CheckForcedOrBlockedReconstruction(raidPtr, pssPtr, ctrl, col, psid, which_ru);
   1213 	if (status == RF_PSS_RECON_BLOCKED) {
   1214 		Dprintf2("RECON: Stalling psid %ld ru %d: recon blocked\n", psid, which_ru);
   1215 		goto out;
   1216 	} else
   1217 		if (status == RF_PSS_FORCED_ON_WRITE) {
   1218 			rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1219 			goto out;
   1220 		}
   1221 	/* make one last check to be sure that the indicated RU didn't get
   1222 	 * reconstructed while we were waiting for something else to happen.
   1223 	 * This is unfortunate in that it causes us to make this check twice
   1224 	 * in the normal case.  Might want to make some attempt to re-work
   1225 	 * this so that we only do this check if we've definitely blocked on
   1226 	 * one of the above checks.  When this condition is detected, we may
   1227 	 * have just created a bogus status entry, which we need to delete. */
   1228 	if (rf_CheckRUReconstructed(raidPtr->reconControl->reconMap, ctrl->rbuf->failedDiskSectorOffset)) {
   1229 		Dprintf2("RECON: Skipping psid %ld ru %d: prior recon after stall\n", psid, which_ru);
   1230 		if (pssPtr == newpssPtr)
   1231 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1232 		rf_CauseReconEvent(raidPtr, col, NULL, RF_REVENT_SKIP);
   1233 		goto out;
   1234 	}
   1235 	/* found something to read.  issue the I/O */
   1236 	Dprintf4("RECON: Read for psid %ld on col %d offset %ld buf %lx\n",
   1237 	    psid, col, ctrl->diskOffset, ctrl->rbuf->buffer);
   1238 #if RF_ACC_TRACE > 0
   1239 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[col].recon_timer);
   1240 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[col].recon_timer);
   1241 	raidPtr->recon_tracerecs[col].specific.recon.recon_start_to_fetch_us =
   1242 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[col].recon_timer);
   1243 	RF_ETIMER_START(raidPtr->recon_tracerecs[col].recon_timer);
   1244 #endif
   1245 	/* should be ok to use a NULL proc pointer here, all the bufs we use
   1246 	 * should be in kernel space */
   1247 	req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, ctrl->diskOffset, sectorsPerRU, ctrl->rbuf->buffer, psid, which_ru,
   1248 	    ReconReadDoneProc, (void *) ctrl,
   1249 #if RF_ACC_TRACE > 0
   1250 				     &raidPtr->recon_tracerecs[col],
   1251 #else
   1252 				     NULL,
   1253 #endif
   1254 				     (void *) raidPtr, 0, NULL, PR_WAITOK);
   1255 
   1256 	ctrl->rbuf->arg = (void *) req;
   1257 	rf_DiskIOEnqueue(&raidPtr->Queues[col], req, RF_IO_RECON_PRIORITY);
   1258 	pssPtr->issued[col] = 1;
   1259 
   1260 out:
   1261 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1262 	return (0);
   1263 }
   1264 
   1265 
   1266 /*
   1267  * given a parity stripe ID, we want to find out whether both the
   1268  * current disk and the failed disk exist in that parity stripe.  If
   1269  * not, we want to skip this whole PS.  If so, we want to find the
   1270  * disk offset of the start of the PS on both the current disk and the
   1271  * failed disk.
   1272  *
   1273  * this works by getting a list of disks comprising the indicated
   1274  * parity stripe, and searching the list for the current and failed
   1275  * disks.  Once we've decided they both exist in the parity stripe, we
   1276  * need to decide whether each is data or parity, so that we'll know
   1277  * which mapping function to call to get the corresponding disk
   1278  * offsets.
   1279  *
   1280  * this is kind of unpleasant, but doing it this way allows the
   1281  * reconstruction code to use parity stripe IDs rather than physical
   1282  * disks address to march through the failed disk, which greatly
   1283  * simplifies a lot of code, as well as eliminating the need for a
   1284  * reverse-mapping function.  I also think it will execute faster,
   1285  * since the calls to the mapping module are kept to a minimum.
   1286  *
   1287  * ASSUMES THAT THE STRIPE IDENTIFIER IDENTIFIES THE DISKS COMPRISING
   1288  * THE STRIPE IN THE CORRECT ORDER
   1289  *
   1290  * raidPtr          - raid descriptor
   1291  * psid             - parity stripe identifier
   1292  * col              - column of disk to find the offsets for
   1293  * spCol            - out: col of spare unit for failed unit
   1294  * spOffset         - out: offset into disk containing spare unit
   1295  *
   1296  */
   1297 
   1298 
   1299 static int
   1300 ComputePSDiskOffsets(RF_Raid_t *raidPtr, RF_StripeNum_t psid,
   1301 		     RF_RowCol_t col, RF_SectorNum_t *outDiskOffset,
   1302 		     RF_SectorNum_t *outFailedDiskSectorOffset,
   1303 		     RF_RowCol_t *spCol, RF_SectorNum_t *spOffset)
   1304 {
   1305 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1306 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1307 	RF_RaidAddr_t sosRaidAddress;	/* start-of-stripe */
   1308 	RF_RowCol_t *diskids;
   1309 	u_int   i, j, k, i_offset, j_offset;
   1310 	RF_RowCol_t pcol;
   1311 	int     testcol;
   1312 	RF_SectorNum_t poffset;
   1313 	char    i_is_parity = 0, j_is_parity = 0;
   1314 	RF_RowCol_t stripeWidth = layoutPtr->numDataCol + layoutPtr->numParityCol;
   1315 
   1316 	/* get a listing of the disks comprising that stripe */
   1317 	sosRaidAddress = rf_ParityStripeIDToRaidAddress(layoutPtr, psid);
   1318 	(layoutPtr->map->IdentifyStripe) (raidPtr, sosRaidAddress, &diskids);
   1319 	RF_ASSERT(diskids);
   1320 
   1321 	/* reject this entire parity stripe if it does not contain the
   1322 	 * indicated disk or it does not contain the failed disk */
   1323 
   1324 	for (i = 0; i < stripeWidth; i++) {
   1325 		if (col == diskids[i])
   1326 			break;
   1327 	}
   1328 	if (i == stripeWidth)
   1329 		goto skipit;
   1330 	for (j = 0; j < stripeWidth; j++) {
   1331 		if (fcol == diskids[j])
   1332 			break;
   1333 	}
   1334 	if (j == stripeWidth) {
   1335 		goto skipit;
   1336 	}
   1337 	/* find out which disk the parity is on */
   1338 	(layoutPtr->map->MapParity) (raidPtr, sosRaidAddress, &pcol, &poffset, RF_DONT_REMAP);
   1339 
   1340 	/* find out if either the current RU or the failed RU is parity */
   1341 	/* also, if the parity occurs in this stripe prior to the data and/or
   1342 	 * failed col, we need to decrement i and/or j */
   1343 	for (k = 0; k < stripeWidth; k++)
   1344 		if (diskids[k] == pcol)
   1345 			break;
   1346 	RF_ASSERT(k < stripeWidth);
   1347 	i_offset = i;
   1348 	j_offset = j;
   1349 	if (k < i)
   1350 		i_offset--;
   1351 	else
   1352 		if (k == i) {
   1353 			i_is_parity = 1;
   1354 			i_offset = 0;
   1355 		}		/* set offsets to zero to disable multiply
   1356 				 * below */
   1357 	if (k < j)
   1358 		j_offset--;
   1359 	else
   1360 		if (k == j) {
   1361 			j_is_parity = 1;
   1362 			j_offset = 0;
   1363 		}
   1364 	/* at this point, [ij]_is_parity tells us whether the [current,failed]
   1365 	 * disk is parity at the start of this RU, and, if data, "[ij]_offset"
   1366 	 * tells us how far into the stripe the [current,failed] disk is. */
   1367 
   1368 	/* call the mapping routine to get the offset into the current disk,
   1369 	 * repeat for failed disk. */
   1370 	if (i_is_parity)
   1371 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1372 	else
   1373 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + i_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outDiskOffset, RF_DONT_REMAP);
   1374 
   1375 	RF_ASSERT(col == testcol);
   1376 
   1377 	if (j_is_parity)
   1378 		layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1379 	else
   1380 		layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, &testcol, outFailedDiskSectorOffset, RF_DONT_REMAP);
   1381 	RF_ASSERT(fcol == testcol);
   1382 
   1383 	/* now locate the spare unit for the failed unit */
   1384 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1385 	if (layoutPtr->map->flags & RF_DISTRIBUTE_SPARE) {
   1386 		if (j_is_parity)
   1387 			layoutPtr->map->MapParity(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1388 		else
   1389 			layoutPtr->map->MapSector(raidPtr, sosRaidAddress + j_offset * layoutPtr->sectorsPerStripeUnit, spCol, spOffset, RF_REMAP);
   1390 	} else {
   1391 #endif
   1392 		*spCol = raidPtr->reconControl->spareCol;
   1393 		*spOffset = *outFailedDiskSectorOffset;
   1394 #if RF_INCLUDE_PARITY_DECLUSTERING_DS > 0
   1395 	}
   1396 #endif
   1397 	return (0);
   1398 
   1399 skipit:
   1400 	Dprintf2("RECON: Skipping psid %ld: nothing needed from r%d c%d\n",
   1401 	    psid, col);
   1402 	return (1);
   1403 }
   1404 /* this is called when a buffer has become ready to write to the replacement disk */
   1405 static int
   1406 IssueNextWriteRequest(RF_Raid_t *raidPtr)
   1407 {
   1408 	RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
   1409 	RF_SectorCount_t sectorsPerRU = layoutPtr->sectorsPerStripeUnit * layoutPtr->SUsPerRU;
   1410 #if RF_ACC_TRACE > 0
   1411 	RF_RowCol_t fcol = raidPtr->reconControl->fcol;
   1412 #endif
   1413 	RF_ReconBuffer_t *rbuf;
   1414 	RF_DiskQueueData_t *req;
   1415 
   1416 	rbuf = rf_GetFullReconBuffer(raidPtr->reconControl);
   1417 	RF_ASSERT(rbuf);	/* there must be one available, or we wouldn't
   1418 				 * have gotten the event that sent us here */
   1419 	RF_ASSERT(rbuf->pssPtr);
   1420 
   1421 	rbuf->pssPtr->writeRbuf = rbuf;
   1422 	rbuf->pssPtr = NULL;
   1423 
   1424 	Dprintf6("RECON: New write (c %d offs %d) for psid %ld ru %d (failed disk offset %ld) buf %lx\n",
   1425 	    rbuf->spCol, rbuf->spOffset, rbuf->parityStripeID,
   1426 	    rbuf->which_ru, rbuf->failedDiskSectorOffset, rbuf->buffer);
   1427 	Dprintf6("RECON: new write psid %ld   %02x %02x %02x %02x %02x\n",
   1428 	    rbuf->parityStripeID, rbuf->buffer[0] & 0xff, rbuf->buffer[1] & 0xff,
   1429 	    rbuf->buffer[2] & 0xff, rbuf->buffer[3] & 0xff, rbuf->buffer[4] & 0xff);
   1430 
   1431 	/* should be ok to use a NULL b_proc here b/c all addrs should be in
   1432 	 * kernel space */
   1433 	req = rf_CreateDiskQueueData(RF_IO_TYPE_WRITE, rbuf->spOffset,
   1434 	    sectorsPerRU, rbuf->buffer,
   1435 	    rbuf->parityStripeID, rbuf->which_ru,
   1436 	    ReconWriteDoneProc, (void *) rbuf,
   1437 #if RF_ACC_TRACE > 0
   1438 	    &raidPtr->recon_tracerecs[fcol],
   1439 #else
   1440 				     NULL,
   1441 #endif
   1442 	    (void *) raidPtr, 0, NULL, PR_WAITOK);
   1443 
   1444 	rbuf->arg = (void *) req;
   1445 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1446 	raidPtr->reconControl->pending_writes++;
   1447 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1448 	rf_DiskIOEnqueue(&raidPtr->Queues[rbuf->spCol], req, RF_IO_RECON_PRIORITY);
   1449 
   1450 	return (0);
   1451 }
   1452 
   1453 /*
   1454  * this gets called upon the completion of a reconstruction read
   1455  * operation the arg is a pointer to the per-disk reconstruction
   1456  * control structure for the process that just finished a read.
   1457  *
   1458  * called at interrupt context in the kernel, so don't do anything
   1459  * illegal here.
   1460  */
   1461 static int
   1462 ReconReadDoneProc(void *arg, int status)
   1463 {
   1464 	RF_PerDiskReconCtrl_t *ctrl = (RF_PerDiskReconCtrl_t *) arg;
   1465 	RF_Raid_t *raidPtr;
   1466 
   1467 	/* Detect that reconCtrl is no longer valid, and if that
   1468 	   is the case, bail without calling rf_CauseReconEvent().
   1469 	   There won't be anyone listening for this event anyway */
   1470 
   1471 	if (ctrl->reconCtrl == NULL)
   1472 		return(0);
   1473 
   1474 	raidPtr = ctrl->reconCtrl->reconDesc->raidPtr;
   1475 
   1476 	if (status) {
   1477 		printf("raid%d: Recon read failed!\n", raidPtr->raidid);
   1478 		rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READ_FAILED);
   1479 		return(0);
   1480 	}
   1481 #if RF_ACC_TRACE > 0
   1482 	RF_ETIMER_STOP(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1483 	RF_ETIMER_EVAL(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1484 	raidPtr->recon_tracerecs[ctrl->col].specific.recon.recon_fetch_to_return_us =
   1485 	    RF_ETIMER_VAL_US(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1486 	RF_ETIMER_START(raidPtr->recon_tracerecs[ctrl->col].recon_timer);
   1487 #endif
   1488 	rf_CauseReconEvent(raidPtr, ctrl->col, NULL, RF_REVENT_READDONE);
   1489 	return (0);
   1490 }
   1491 /* this gets called upon the completion of a reconstruction write operation.
   1492  * the arg is a pointer to the rbuf that was just written
   1493  *
   1494  * called at interrupt context in the kernel, so don't do anything illegal here.
   1495  */
   1496 static int
   1497 ReconWriteDoneProc(void *arg, int status)
   1498 {
   1499 	RF_ReconBuffer_t *rbuf = (RF_ReconBuffer_t *) arg;
   1500 
   1501 	/* Detect that reconControl is no longer valid, and if that
   1502 	   is the case, bail without calling rf_CauseReconEvent().
   1503 	   There won't be anyone listening for this event anyway */
   1504 
   1505 	if (rbuf->raidPtr->reconControl == NULL)
   1506 		return(0);
   1507 
   1508 	Dprintf2("Reconstruction completed on psid %ld ru %d\n", rbuf->parityStripeID, rbuf->which_ru);
   1509 	if (status) {
   1510 		printf("raid%d: Recon write failed!\n", rbuf->raidPtr->raidid);
   1511 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITE_FAILED);
   1512 		return(0);
   1513 	}
   1514 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, arg, RF_REVENT_WRITEDONE);
   1515 	return (0);
   1516 }
   1517 
   1518 
   1519 /*
   1520  * computes a new minimum head sep, and wakes up anyone who needs to
   1521  * be woken as a result
   1522  */
   1523 static void
   1524 CheckForNewMinHeadSep(RF_Raid_t *raidPtr, RF_HeadSepLimit_t hsCtr)
   1525 {
   1526 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1527 	RF_HeadSepLimit_t new_min;
   1528 	RF_RowCol_t i;
   1529 	RF_CallbackDesc_t *p;
   1530 	RF_ASSERT(hsCtr >= reconCtrlPtr->minHeadSepCounter);	/* from the definition
   1531 								 * of a minimum */
   1532 
   1533 
   1534 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1535 	while(reconCtrlPtr->rb_lock) {
   1536 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlcnmhs", 0, &reconCtrlPtr->rb_mutex);
   1537 	}
   1538 	reconCtrlPtr->rb_lock = 1;
   1539 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1540 
   1541 	new_min = ~(1L << (8 * sizeof(long) - 1));	/* 0x7FFF....FFF */
   1542 	for (i = 0; i < raidPtr->numCol; i++)
   1543 		if (i != reconCtrlPtr->fcol) {
   1544 			if (reconCtrlPtr->perDiskInfo[i].headSepCounter < new_min)
   1545 				new_min = reconCtrlPtr->perDiskInfo[i].headSepCounter;
   1546 		}
   1547 	/* set the new minimum and wake up anyone who can now run again */
   1548 	if (new_min != reconCtrlPtr->minHeadSepCounter) {
   1549 		reconCtrlPtr->minHeadSepCounter = new_min;
   1550 		Dprintf1("RECON:  new min head pos counter val is %ld\n", new_min);
   1551 		while (reconCtrlPtr->headSepCBList) {
   1552 			if (reconCtrlPtr->headSepCBList->callbackArg.v > new_min)
   1553 				break;
   1554 			p = reconCtrlPtr->headSepCBList;
   1555 			reconCtrlPtr->headSepCBList = p->next;
   1556 			p->next = NULL;
   1557 			rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1558 			rf_FreeCallbackDesc(p);
   1559 		}
   1560 
   1561 	}
   1562 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1563 	reconCtrlPtr->rb_lock = 0;
   1564 	wakeup(&reconCtrlPtr->rb_lock);
   1565 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1566 }
   1567 
   1568 /*
   1569  * checks to see that the maximum head separation will not be violated
   1570  * if we initiate a reconstruction I/O on the indicated disk.
   1571  * Limiting the maximum head separation between two disks eliminates
   1572  * the nasty buffer-stall conditions that occur when one disk races
   1573  * ahead of the others and consumes all of the floating recon buffers.
   1574  * This code is complex and unpleasant but it's necessary to avoid
   1575  * some very nasty, albeit fairly rare, reconstruction behavior.
   1576  *
   1577  * returns non-zero if and only if we have to stop working on the
   1578  * indicated disk due to a head-separation delay.
   1579  */
   1580 static int
   1581 CheckHeadSeparation(RF_Raid_t *raidPtr, RF_PerDiskReconCtrl_t *ctrl,
   1582 		    RF_RowCol_t col, RF_HeadSepLimit_t hsCtr,
   1583 		    RF_ReconUnitNum_t which_ru)
   1584 {
   1585 	RF_ReconCtrl_t *reconCtrlPtr = raidPtr->reconControl;
   1586 	RF_CallbackDesc_t *cb, *p, *pt;
   1587 	int     retval = 0;
   1588 
   1589 	/* if we're too far ahead of the slowest disk, stop working on this
   1590 	 * disk until the slower ones catch up.  We do this by scheduling a
   1591 	 * wakeup callback for the time when the slowest disk has caught up.
   1592 	 * We define "caught up" with 20% hysteresis, i.e. the head separation
   1593 	 * must have fallen to at most 80% of the max allowable head
   1594 	 * separation before we'll wake up.
   1595 	 *
   1596 	 */
   1597 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1598 	while(reconCtrlPtr->rb_lock) {
   1599 		ltsleep(&reconCtrlPtr->rb_lock, PRIBIO, "reconctlchs", 0, &reconCtrlPtr->rb_mutex);
   1600 	}
   1601 	reconCtrlPtr->rb_lock = 1;
   1602 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1603 	if ((raidPtr->headSepLimit >= 0) &&
   1604 	    ((ctrl->headSepCounter - reconCtrlPtr->minHeadSepCounter) > raidPtr->headSepLimit)) {
   1605 		Dprintf5("raid%d: RECON: head sep stall: col %d hsCtr %ld minHSCtr %ld limit %ld\n",
   1606 			 raidPtr->raidid, col, ctrl->headSepCounter,
   1607 			 reconCtrlPtr->minHeadSepCounter,
   1608 			 raidPtr->headSepLimit);
   1609 		cb = rf_AllocCallbackDesc();
   1610 		/* the minHeadSepCounter value we have to get to before we'll
   1611 		 * wake up.  build in 20% hysteresis. */
   1612 		cb->callbackArg.v = (ctrl->headSepCounter - raidPtr->headSepLimit + raidPtr->headSepLimit / 5);
   1613 		cb->col = col;
   1614 		cb->next = NULL;
   1615 
   1616 		/* insert this callback descriptor into the sorted list of
   1617 		 * pending head-sep callbacks */
   1618 		p = reconCtrlPtr->headSepCBList;
   1619 		if (!p)
   1620 			reconCtrlPtr->headSepCBList = cb;
   1621 		else
   1622 			if (cb->callbackArg.v < p->callbackArg.v) {
   1623 				cb->next = reconCtrlPtr->headSepCBList;
   1624 				reconCtrlPtr->headSepCBList = cb;
   1625 			} else {
   1626 				for (pt = p, p = p->next; p && (p->callbackArg.v < cb->callbackArg.v); pt = p, p = p->next);
   1627 				cb->next = p;
   1628 				pt->next = cb;
   1629 			}
   1630 		retval = 1;
   1631 #if RF_RECON_STATS > 0
   1632 		ctrl->reconCtrl->reconDesc->hsStallCount++;
   1633 #endif				/* RF_RECON_STATS > 0 */
   1634 	}
   1635 	RF_LOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1636 	reconCtrlPtr->rb_lock = 0;
   1637 	wakeup(&reconCtrlPtr->rb_lock);
   1638 	RF_UNLOCK_MUTEX(reconCtrlPtr->rb_mutex);
   1639 
   1640 	return (retval);
   1641 }
   1642 /*
   1643  * checks to see if reconstruction has been either forced or blocked
   1644  * by a user operation.  if forced, we skip this RU entirely.  else if
   1645  * blocked, put ourselves on the wait list.  else return 0.
   1646  *
   1647  * ASSUMES THE PSS MUTEX IS LOCKED UPON ENTRY
   1648  */
   1649 static int
   1650 CheckForcedOrBlockedReconstruction(RF_Raid_t *raidPtr,
   1651 				   RF_ReconParityStripeStatus_t *pssPtr,
   1652 				   RF_PerDiskReconCtrl_t *ctrl,
   1653 				   RF_RowCol_t col,
   1654 				   RF_StripeNum_t psid,
   1655 				   RF_ReconUnitNum_t which_ru)
   1656 {
   1657 	RF_CallbackDesc_t *cb;
   1658 	int     retcode = 0;
   1659 
   1660 	if ((pssPtr->flags & RF_PSS_FORCED_ON_READ) || (pssPtr->flags & RF_PSS_FORCED_ON_WRITE))
   1661 		retcode = RF_PSS_FORCED_ON_WRITE;
   1662 	else
   1663 		if (pssPtr->flags & RF_PSS_RECON_BLOCKED) {
   1664 			Dprintf3("RECON: col %d blocked at psid %ld ru %d\n", col, psid, which_ru);
   1665 			cb = rf_AllocCallbackDesc();	/* append ourselves to
   1666 							 * the blockage-wait
   1667 							 * list */
   1668 			cb->col = col;
   1669 			cb->next = pssPtr->blockWaitList;
   1670 			pssPtr->blockWaitList = cb;
   1671 			retcode = RF_PSS_RECON_BLOCKED;
   1672 		}
   1673 	if (!retcode)
   1674 		pssPtr->flags |= RF_PSS_UNDER_RECON;	/* mark this RU as under
   1675 							 * reconstruction */
   1676 
   1677 	return (retcode);
   1678 }
   1679 /*
   1680  * if reconstruction is currently ongoing for the indicated stripeID,
   1681  * reconstruction is forced to completion and we return non-zero to
   1682  * indicate that the caller must wait.  If not, then reconstruction is
   1683  * blocked on the indicated stripe and the routine returns zero.  If
   1684  * and only if we return non-zero, we'll cause the cbFunc to get
   1685  * invoked with the cbArg when the reconstruction has completed.
   1686  */
   1687 int
   1688 rf_ForceOrBlockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
   1689 		     void (*cbFunc)(RF_Raid_t *, void *), void *cbArg)
   1690 {
   1691 	RF_StripeNum_t stripeID = asmap->stripeID;	/* the stripe ID we're
   1692 							 * forcing recon on */
   1693 	RF_SectorCount_t sectorsPerRU = raidPtr->Layout.sectorsPerStripeUnit * raidPtr->Layout.SUsPerRU;	/* num sects in one RU */
   1694 	RF_ReconParityStripeStatus_t *pssPtr, *newpssPtr;	/* a pointer to the parity
   1695 						 * stripe status structure */
   1696 	RF_StripeNum_t psid;	/* parity stripe id */
   1697 	RF_SectorNum_t offset, fd_offset;	/* disk offset, failed-disk
   1698 						 * offset */
   1699 	RF_RowCol_t *diskids;
   1700 	RF_ReconUnitNum_t which_ru;	/* RU within parity stripe */
   1701 	RF_RowCol_t fcol, diskno, i;
   1702 	RF_ReconBuffer_t *new_rbuf;	/* ptr to newly allocated rbufs */
   1703 	RF_DiskQueueData_t *req;/* disk I/O req to be enqueued */
   1704 	RF_CallbackDesc_t *cb;
   1705 	int     nPromoted;
   1706 
   1707 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1708 
   1709 	/* allocate a new PSS in case we need it */
   1710         newpssPtr = rf_AllocPSStatus(raidPtr);
   1711 
   1712 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1713 
   1714 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_CREATE | RF_PSS_RECON_BLOCKED, newpssPtr);
   1715 
   1716         if (pssPtr != newpssPtr) {
   1717                 rf_FreePSStatus(raidPtr, newpssPtr);
   1718         }
   1719 
   1720 	/* if recon is not ongoing on this PS, just return */
   1721 	if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1722 		RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1723 		return (0);
   1724 	}
   1725 	/* otherwise, we have to wait for reconstruction to complete on this
   1726 	 * RU. */
   1727 	/* In order to avoid waiting for a potentially large number of
   1728 	 * low-priority accesses to complete, we force a normal-priority (i.e.
   1729 	 * not low-priority) reconstruction on this RU. */
   1730 	if (!(pssPtr->flags & RF_PSS_FORCED_ON_WRITE) && !(pssPtr->flags & RF_PSS_FORCED_ON_READ)) {
   1731 		DDprintf1("Forcing recon on psid %ld\n", psid);
   1732 		pssPtr->flags |= RF_PSS_FORCED_ON_WRITE;	/* mark this RU as under
   1733 								 * forced recon */
   1734 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;	/* clear the blockage
   1735 							 * that we just set */
   1736 		fcol = raidPtr->reconControl->fcol;
   1737 
   1738 		/* get a listing of the disks comprising the indicated stripe */
   1739 		(raidPtr->Layout.map->IdentifyStripe) (raidPtr, asmap->raidAddress, &diskids);
   1740 
   1741 		/* For previously issued reads, elevate them to normal
   1742 		 * priority.  If the I/O has already completed, it won't be
   1743 		 * found in the queue, and hence this will be a no-op. For
   1744 		 * unissued reads, allocate buffers and issue new reads.  The
   1745 		 * fact that we've set the FORCED bit means that the regular
   1746 		 * recon procs will not re-issue these reqs */
   1747 		for (i = 0; i < raidPtr->Layout.numDataCol + raidPtr->Layout.numParityCol; i++)
   1748 			if ((diskno = diskids[i]) != fcol) {
   1749 				if (pssPtr->issued[diskno]) {
   1750 					nPromoted = rf_DiskIOPromote(&raidPtr->Queues[diskno], psid, which_ru);
   1751 					if (rf_reconDebug && nPromoted)
   1752 						printf("raid%d: promoted read from col %d\n", raidPtr->raidid, diskno);
   1753 				} else {
   1754 					new_rbuf = rf_MakeReconBuffer(raidPtr, diskno, RF_RBUF_TYPE_FORCED);	/* create new buf */
   1755 					ComputePSDiskOffsets(raidPtr, psid, diskno, &offset, &fd_offset,
   1756 					    &new_rbuf->spCol, &new_rbuf->spOffset);	/* find offsets & spare
   1757 													 * location */
   1758 					new_rbuf->parityStripeID = psid;	/* fill in the buffer */
   1759 					new_rbuf->which_ru = which_ru;
   1760 					new_rbuf->failedDiskSectorOffset = fd_offset;
   1761 					new_rbuf->priority = RF_IO_NORMAL_PRIORITY;
   1762 
   1763 					/* use NULL b_proc b/c all addrs
   1764 					 * should be in kernel space */
   1765 					req = rf_CreateDiskQueueData(RF_IO_TYPE_READ, offset + which_ru * sectorsPerRU, sectorsPerRU, new_rbuf->buffer,
   1766 					    psid, which_ru, (int (*) (void *, int)) ForceReconReadDoneProc, (void *) new_rbuf,
   1767 					    NULL, (void *) raidPtr, 0, NULL, PR_WAITOK);
   1768 
   1769 					new_rbuf->arg = req;
   1770 					rf_DiskIOEnqueue(&raidPtr->Queues[diskno], req, RF_IO_NORMAL_PRIORITY);	/* enqueue the I/O */
   1771 					Dprintf2("raid%d: Issued new read req on col %d\n", raidPtr->raidid, diskno);
   1772 				}
   1773 			}
   1774 		/* if the write is sitting in the disk queue, elevate its
   1775 		 * priority */
   1776 		if (rf_DiskIOPromote(&raidPtr->Queues[fcol], psid, which_ru))
   1777 			printf("raid%d: promoted write to col %d\n",
   1778 			       raidPtr->raidid, fcol);
   1779 	}
   1780 	/* install a callback descriptor to be invoked when recon completes on
   1781 	 * this parity stripe. */
   1782 	cb = rf_AllocCallbackDesc();
   1783 	/* XXX the following is bogus.. These functions don't really match!!
   1784 	 * GO */
   1785 	cb->callbackFunc = (void (*) (RF_CBParam_t)) cbFunc;
   1786 	cb->callbackArg.p = (void *) cbArg;
   1787 	cb->next = pssPtr->procWaitList;
   1788 	pssPtr->procWaitList = cb;
   1789 	DDprintf2("raid%d: Waiting for forced recon on psid %ld\n",
   1790 		  raidPtr->raidid, psid);
   1791 
   1792 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1793 	return (1);
   1794 }
   1795 /* called upon the completion of a forced reconstruction read.
   1796  * all we do is schedule the FORCEDREADONE event.
   1797  * called at interrupt context in the kernel, so don't do anything illegal here.
   1798  */
   1799 static void
   1800 ForceReconReadDoneProc(void *arg, int status)
   1801 {
   1802 	RF_ReconBuffer_t *rbuf = arg;
   1803 
   1804 	/* Detect that reconControl is no longer valid, and if that
   1805 	   is the case, bail without calling rf_CauseReconEvent().
   1806 	   There won't be anyone listening for this event anyway */
   1807 
   1808 	if (rbuf->raidPtr->reconControl == NULL)
   1809 		return;
   1810 
   1811 	if (status) {
   1812 		printf("raid%d: Forced recon read failed!\n", rbuf->raidPtr->raidid);
   1813 		rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREAD_FAILED);
   1814 		return;
   1815 	}
   1816 	rf_CauseReconEvent(rbuf->raidPtr, rbuf->col, (void *) rbuf, RF_REVENT_FORCEDREADDONE);
   1817 }
   1818 /* releases a block on the reconstruction of the indicated stripe */
   1819 int
   1820 rf_UnblockRecon(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap)
   1821 {
   1822 	RF_StripeNum_t stripeID = asmap->stripeID;
   1823 	RF_ReconParityStripeStatus_t *pssPtr;
   1824 	RF_ReconUnitNum_t which_ru;
   1825 	RF_StripeNum_t psid;
   1826 	RF_CallbackDesc_t *cb;
   1827 
   1828 	psid = rf_MapStripeIDToParityStripeID(&raidPtr->Layout, stripeID, &which_ru);
   1829 	RF_LOCK_PSS_MUTEX(raidPtr, psid);
   1830 	pssPtr = rf_LookupRUStatus(raidPtr, raidPtr->reconControl->pssTable, psid, which_ru, RF_PSS_NONE, NULL);
   1831 
   1832 	/* When recon is forced, the pss desc can get deleted before we get
   1833 	 * back to unblock recon. But, this can _only_ happen when recon is
   1834 	 * forced. It would be good to put some kind of sanity check here, but
   1835 	 * how to decide if recon was just forced or not? */
   1836 	if (!pssPtr) {
   1837 		/* printf("Warning: no pss descriptor upon unblock on psid %ld
   1838 		 * RU %d\n",psid,which_ru); */
   1839 #if (RF_DEBUG_RECON > 0) || (RF_DEBUG_PSS > 0)
   1840 		if (rf_reconDebug || rf_pssDebug)
   1841 			printf("Warning: no pss descriptor upon unblock on psid %ld RU %d\n", (long) psid, which_ru);
   1842 #endif
   1843 		goto out;
   1844 	}
   1845 	pssPtr->blockCount--;
   1846 	Dprintf3("raid%d: unblocking recon on psid %ld: blockcount is %d\n",
   1847 		 raidPtr->raidid, psid, pssPtr->blockCount);
   1848 	if (pssPtr->blockCount == 0) {	/* if recon blockage has been released */
   1849 
   1850 		/* unblock recon before calling CauseReconEvent in case
   1851 		 * CauseReconEvent causes us to try to issue a new read before
   1852 		 * returning here. */
   1853 		pssPtr->flags &= ~RF_PSS_RECON_BLOCKED;
   1854 
   1855 
   1856 		while (pssPtr->blockWaitList) {
   1857 			/* spin through the block-wait list and
   1858 			   release all the waiters */
   1859 			cb = pssPtr->blockWaitList;
   1860 			pssPtr->blockWaitList = cb->next;
   1861 			cb->next = NULL;
   1862 			rf_CauseReconEvent(raidPtr, cb->col, NULL, RF_REVENT_BLOCKCLEAR);
   1863 			rf_FreeCallbackDesc(cb);
   1864 		}
   1865 		if (!(pssPtr->flags & RF_PSS_UNDER_RECON)) {
   1866 			/* if no recon was requested while recon was blocked */
   1867 			rf_PSStatusDelete(raidPtr, raidPtr->reconControl->pssTable, pssPtr);
   1868 		}
   1869 	}
   1870 out:
   1871 	RF_UNLOCK_PSS_MUTEX(raidPtr, psid);
   1872 	return (0);
   1873 }
   1874 
   1875 void
   1876 rf_WakeupHeadSepCBWaiters(RF_Raid_t *raidPtr)
   1877 {
   1878 	RF_CallbackDesc_t *p;
   1879 
   1880 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1881 	while(raidPtr->reconControl->rb_lock) {
   1882 		ltsleep(&raidPtr->reconControl->rb_lock, PRIBIO,
   1883 			"rf_wakeuphscbw", 0, &raidPtr->reconControl->rb_mutex);
   1884 	}
   1885 
   1886 	raidPtr->reconControl->rb_lock = 1;
   1887 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1888 
   1889 	while (raidPtr->reconControl->headSepCBList) {
   1890 		p = raidPtr->reconControl->headSepCBList;
   1891 		raidPtr->reconControl->headSepCBList = p->next;
   1892 		p->next = NULL;
   1893 		rf_CauseReconEvent(raidPtr, p->col, NULL, RF_REVENT_HEADSEPCLEAR);
   1894 		rf_FreeCallbackDesc(p);
   1895 	}
   1896 	RF_LOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1897 	raidPtr->reconControl->rb_lock = 0;
   1898 	wakeup(&raidPtr->reconControl->rb_lock);
   1899 	RF_UNLOCK_MUTEX(raidPtr->reconControl->rb_mutex);
   1900 
   1901 }
   1902 
   1903