rf_states.c revision 1.10 1 /* $NetBSD: rf_states.c,v 1.10 1999/12/12 20:52:37 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/errno.h>
30
31 #include "rf_archs.h"
32 #include "rf_threadstuff.h"
33 #include "rf_raid.h"
34 #include "rf_dag.h"
35 #include "rf_desc.h"
36 #include "rf_aselect.h"
37 #include "rf_threadid.h"
38 #include "rf_general.h"
39 #include "rf_states.h"
40 #include "rf_dagutils.h"
41 #include "rf_driver.h"
42 #include "rf_engine.h"
43 #include "rf_map.h"
44 #include "rf_etimer.h"
45 #include "rf_kintf.h"
46
47 /* prototypes for some of the available states.
48
49 States must:
50
51 - not block.
52
53 - either schedule rf_ContinueRaidAccess as a callback and return
54 RF_TRUE, or complete all of their work and return RF_FALSE.
55
56 - increment desc->state when they have finished their work.
57 */
58
59 static char *
60 StateName(RF_AccessState_t state)
61 {
62 switch (state) {
63 case rf_QuiesceState:return "QuiesceState";
64 case rf_MapState:
65 return "MapState";
66 case rf_LockState:
67 return "LockState";
68 case rf_CreateDAGState:
69 return "CreateDAGState";
70 case rf_ExecuteDAGState:
71 return "ExecuteDAGState";
72 case rf_ProcessDAGState:
73 return "ProcessDAGState";
74 case rf_CleanupState:
75 return "CleanupState";
76 case rf_LastState:
77 return "LastState";
78 case rf_IncrAccessesCountState:
79 return "IncrAccessesCountState";
80 case rf_DecrAccessesCountState:
81 return "DecrAccessesCountState";
82 default:
83 return "!!! UnnamedState !!!";
84 }
85 }
86
87 void
88 rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc)
89 {
90 int suspended = RF_FALSE;
91 int current_state_index = desc->state;
92 RF_AccessState_t current_state = desc->states[current_state_index];
93
94 do {
95
96 current_state_index = desc->state;
97 current_state = desc->states[current_state_index];
98
99 switch (current_state) {
100
101 case rf_QuiesceState:
102 suspended = rf_State_Quiesce(desc);
103 break;
104 case rf_IncrAccessesCountState:
105 suspended = rf_State_IncrAccessCount(desc);
106 break;
107 case rf_MapState:
108 suspended = rf_State_Map(desc);
109 break;
110 case rf_LockState:
111 suspended = rf_State_Lock(desc);
112 break;
113 case rf_CreateDAGState:
114 suspended = rf_State_CreateDAG(desc);
115 break;
116 case rf_ExecuteDAGState:
117 suspended = rf_State_ExecuteDAG(desc);
118 break;
119 case rf_ProcessDAGState:
120 suspended = rf_State_ProcessDAG(desc);
121 break;
122 case rf_CleanupState:
123 suspended = rf_State_Cleanup(desc);
124 break;
125 case rf_DecrAccessesCountState:
126 suspended = rf_State_DecrAccessCount(desc);
127 break;
128 case rf_LastState:
129 suspended = rf_State_LastState(desc);
130 break;
131 }
132
133 /* after this point, we cannot dereference desc since desc may
134 * have been freed. desc is only freed in LastState, so if we
135 * renter this function or loop back up, desc should be valid. */
136
137 if (rf_printStatesDebug) {
138 int tid;
139 rf_get_threadid(tid);
140
141 printf("[%d] State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
142 tid, StateName(current_state), current_state_index, (long) desc,
143 suspended ? "callback scheduled" : "looping");
144 }
145 } while (!suspended && current_state != rf_LastState);
146
147 return;
148 }
149
150
151 void
152 rf_ContinueDagAccess(RF_DagList_t * dagList)
153 {
154 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
155 RF_RaidAccessDesc_t *desc;
156 RF_DagHeader_t *dag_h;
157 RF_Etimer_t timer;
158 int i;
159
160 desc = dagList->desc;
161
162 timer = tracerec->timer;
163 RF_ETIMER_STOP(timer);
164 RF_ETIMER_EVAL(timer);
165 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
166 RF_ETIMER_START(tracerec->timer);
167
168 /* skip to dag which just finished */
169 dag_h = dagList->dags;
170 for (i = 0; i < dagList->numDagsDone; i++) {
171 dag_h = dag_h->next;
172 }
173
174 /* check to see if retry is required */
175 if (dag_h->status == rf_rollBackward) {
176 /* when a dag fails, mark desc status as bad and allow all
177 * other dags in the desc to execute to completion. then,
178 * free all dags and start over */
179 desc->status = 1; /* bad status */
180 {
181 printf("[%d] DAG failure: %c addr 0x%lx (%ld) nblk 0x%x (%d) buf 0x%lx\n",
182 desc->tid, desc->type, (long) desc->raidAddress,
183 (long) desc->raidAddress, (int) desc->numBlocks,
184 (int) desc->numBlocks, (unsigned long) (desc->bufPtr));
185 }
186 }
187 dagList->numDagsDone++;
188 rf_ContinueRaidAccess(desc);
189 }
190
191 int
192 rf_State_LastState(RF_RaidAccessDesc_t * desc)
193 {
194 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
195 RF_CBParam_t callbackArg;
196
197 callbackArg.p = desc->callbackArg;
198
199 /*
200 * If this is not an async request, wake up the caller
201 */
202 if (desc->async_flag == 0)
203 wakeup(desc->bp);
204
205 /*
206 * Wakeup any requests waiting to go.
207 */
208
209 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
210 ((RF_Raid_t *) desc->raidPtr)->openings++;
211 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
212
213 /* wake up any pending IO */
214 raidstart(((RF_Raid_t *) desc->raidPtr));
215
216 /* printf("Calling biodone on 0x%x\n",desc->bp); */
217 biodone(desc->bp); /* access came through ioctl */
218
219 if (callbackFunc)
220 callbackFunc(callbackArg);
221 rf_FreeRaidAccDesc(desc);
222
223 return RF_FALSE;
224 }
225
226 int
227 rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc)
228 {
229 RF_Raid_t *raidPtr;
230
231 raidPtr = desc->raidPtr;
232 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
233 * below */
234 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
235 raidPtr->accs_in_flight++; /* used to detect quiescence */
236 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
237
238 desc->state++;
239 return RF_FALSE;
240 }
241
242 int
243 rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc)
244 {
245 RF_Raid_t *raidPtr;
246
247 raidPtr = desc->raidPtr;
248
249 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
250 raidPtr->accs_in_flight--;
251 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
252 rf_SignalQuiescenceLock(raidPtr, raidPtr->reconDesc);
253 }
254 rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks);
255 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
256
257 desc->state++;
258 return RF_FALSE;
259 }
260
261 int
262 rf_State_Quiesce(RF_RaidAccessDesc_t * desc)
263 {
264 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
265 RF_Etimer_t timer;
266 int suspended = RF_FALSE;
267 RF_Raid_t *raidPtr;
268
269 raidPtr = desc->raidPtr;
270
271 RF_ETIMER_START(timer);
272 RF_ETIMER_START(desc->timer);
273
274 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
275 if (raidPtr->accesses_suspended) {
276 RF_CallbackDesc_t *cb;
277 cb = rf_AllocCallbackDesc();
278 /* XXX the following cast is quite bogus...
279 * rf_ContinueRaidAccess takes a (RF_RaidAccessDesc_t *) as an
280 * argument.. GO */
281 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
282 cb->callbackArg.p = (void *) desc;
283 cb->next = raidPtr->quiesce_wait_list;
284 raidPtr->quiesce_wait_list = cb;
285 suspended = RF_TRUE;
286 }
287 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
288
289 RF_ETIMER_STOP(timer);
290 RF_ETIMER_EVAL(timer);
291 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
292
293 if (suspended && rf_quiesceDebug)
294 printf("Stalling access due to quiescence lock\n");
295
296 desc->state++;
297 return suspended;
298 }
299
300 int
301 rf_State_Map(RF_RaidAccessDesc_t * desc)
302 {
303 RF_Raid_t *raidPtr = desc->raidPtr;
304 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
305 RF_Etimer_t timer;
306
307 RF_ETIMER_START(timer);
308
309 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
310 desc->bufPtr, RF_DONT_REMAP)))
311 RF_PANIC();
312
313 RF_ETIMER_STOP(timer);
314 RF_ETIMER_EVAL(timer);
315 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
316
317 desc->state++;
318 return RF_FALSE;
319 }
320
321 int
322 rf_State_Lock(RF_RaidAccessDesc_t * desc)
323 {
324 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
325 RF_Raid_t *raidPtr = desc->raidPtr;
326 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
327 RF_AccessStripeMap_t *asm_p;
328 RF_Etimer_t timer;
329 int suspended = RF_FALSE;
330
331 RF_ETIMER_START(timer);
332 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
333 RF_StripeNum_t lastStripeID = -1;
334
335 /* acquire each lock that we don't already hold */
336 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
337 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
338 if (!rf_suppressLocksAndLargeWrites &&
339 asm_p->parityInfo &&
340 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
341 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
342 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
343 RF_ASSERT(asm_p->stripeID > lastStripeID); /* locks must be
344 * acquired
345 * hierarchically */
346 lastStripeID = asm_p->stripeID;
347 /* XXX the cast to (void (*)(RF_CBParam_t))
348 * below is bogus! GO */
349 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
350 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
351 raidPtr->Layout.dataSectorsPerStripe);
352 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
353 &asm_p->lockReqDesc)) {
354 suspended = RF_TRUE;
355 break;
356 }
357 }
358 if (desc->type == RF_IO_TYPE_WRITE &&
359 raidPtr->status[asm_p->physInfo->row] == rf_rs_reconstructing) {
360 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
361 int val;
362
363 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
364 /* XXX the cast below is quite
365 * bogus!!! XXX GO */
366 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
367 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
368 if (val == 0) {
369 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
370 } else {
371 suspended = RF_TRUE;
372 break;
373 }
374 } else {
375 if (rf_pssDebug) {
376 printf("[%d] skipping force/block because already done, psid %ld\n",
377 desc->tid, (long) asm_p->stripeID);
378 }
379 }
380 } else {
381 if (rf_pssDebug) {
382 printf("[%d] skipping force/block because not write or not under recon, psid %ld\n",
383 desc->tid, (long) asm_p->stripeID);
384 }
385 }
386 }
387
388 RF_ETIMER_STOP(timer);
389 RF_ETIMER_EVAL(timer);
390 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
391
392 if (suspended)
393 return (RF_TRUE);
394 }
395 desc->state++;
396 return (RF_FALSE);
397 }
398 /*
399 * the following three states create, execute, and post-process dags
400 * the error recovery unit is a single dag.
401 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
402 * in some tricky cases, multiple dags per stripe are created
403 * - dags within a parity stripe are executed sequentially (arbitrary order)
404 * - dags for distinct parity stripes are executed concurrently
405 *
406 * repeat until all dags complete successfully -or- dag selection fails
407 *
408 * while !done
409 * create dag(s) (SelectAlgorithm)
410 * if dag
411 * execute dag (DispatchDAG)
412 * if dag successful
413 * done (SUCCESS)
414 * else
415 * !done (RETRY - start over with new dags)
416 * else
417 * done (FAIL)
418 */
419 int
420 rf_State_CreateDAG(RF_RaidAccessDesc_t * desc)
421 {
422 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
423 RF_Etimer_t timer;
424 RF_DagHeader_t *dag_h;
425 int i, selectStatus;
426
427 /* generate a dag for the access, and fire it off. When the dag
428 * completes, we'll get re-invoked in the next state. */
429 RF_ETIMER_START(timer);
430 /* SelectAlgorithm returns one or more dags */
431 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
432 if (rf_printDAGsDebug)
433 for (i = 0; i < desc->numStripes; i++)
434 rf_PrintDAGList(desc->dagArray[i].dags);
435 RF_ETIMER_STOP(timer);
436 RF_ETIMER_EVAL(timer);
437 /* update time to create all dags */
438 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
439
440 desc->status = 0; /* good status */
441
442 if (selectStatus) {
443 /* failed to create a dag */
444 /* this happens when there are too many faults or incomplete
445 * dag libraries */
446 printf("[Failed to create a DAG\n]");
447 RF_PANIC();
448 } else {
449 /* bind dags to desc */
450 for (i = 0; i < desc->numStripes; i++) {
451 dag_h = desc->dagArray[i].dags;
452 while (dag_h) {
453 dag_h->bp = (struct buf *) desc->bp;
454 dag_h->tracerec = tracerec;
455 dag_h = dag_h->next;
456 }
457 }
458 desc->flags |= RF_DAG_DISPATCH_RETURNED;
459 desc->state++; /* next state should be rf_State_ExecuteDAG */
460 }
461 return RF_FALSE;
462 }
463
464
465
466 /* the access has an array of dagLists, one dagList per parity stripe.
467 * fire the first dag in each parity stripe (dagList).
468 * dags within a stripe (dagList) must be executed sequentially
469 * - this preserves atomic parity update
470 * dags for independents parity groups (stripes) are fired concurrently */
471
472 int
473 rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc)
474 {
475 int i;
476 RF_DagHeader_t *dag_h;
477 RF_DagList_t *dagArray = desc->dagArray;
478
479 /* next state is always rf_State_ProcessDAG important to do this
480 * before firing the first dag (it may finish before we leave this
481 * routine) */
482 desc->state++;
483
484 /* sweep dag array, a stripe at a time, firing the first dag in each
485 * stripe */
486 for (i = 0; i < desc->numStripes; i++) {
487 RF_ASSERT(dagArray[i].numDags > 0);
488 RF_ASSERT(dagArray[i].numDagsDone == 0);
489 RF_ASSERT(dagArray[i].numDagsFired == 0);
490 RF_ETIMER_START(dagArray[i].tracerec.timer);
491 /* fire first dag in this stripe */
492 dag_h = dagArray[i].dags;
493 RF_ASSERT(dag_h);
494 dagArray[i].numDagsFired++;
495 /* XXX Yet another case where we pass in a conflicting
496 * function pointer :-( XXX GO */
497 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, &dagArray[i]);
498 }
499
500 /* the DAG will always call the callback, even if there was no
501 * blocking, so we are always suspended in this state */
502 return RF_TRUE;
503 }
504
505
506
507 /* rf_State_ProcessDAG is entered when a dag completes.
508 * first, check to all dags in the access have completed
509 * if not, fire as many dags as possible */
510
511 int
512 rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc)
513 {
514 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
515 RF_Raid_t *raidPtr = desc->raidPtr;
516 RF_DagHeader_t *dag_h;
517 int i, j, done = RF_TRUE;
518 RF_DagList_t *dagArray = desc->dagArray;
519 RF_Etimer_t timer;
520
521 /* check to see if this is the last dag */
522 for (i = 0; i < desc->numStripes; i++)
523 if (dagArray[i].numDags != dagArray[i].numDagsDone)
524 done = RF_FALSE;
525
526 if (done) {
527 if (desc->status) {
528 /* a dag failed, retry */
529 RF_ETIMER_START(timer);
530 /* free all dags */
531 for (i = 0; i < desc->numStripes; i++) {
532 rf_FreeDAG(desc->dagArray[i].dags);
533 }
534 rf_MarkFailuresInASMList(raidPtr, asmh);
535 /* back up to rf_State_CreateDAG */
536 desc->state = desc->state - 2;
537 return RF_FALSE;
538 } else {
539 /* move on to rf_State_Cleanup */
540 desc->state++;
541 }
542 return RF_FALSE;
543 } else {
544 /* more dags to execute */
545 /* see if any are ready to be fired. if so, fire them */
546 /* don't fire the initial dag in a list, it's fired in
547 * rf_State_ExecuteDAG */
548 for (i = 0; i < desc->numStripes; i++) {
549 if ((dagArray[i].numDagsDone < dagArray[i].numDags)
550 && (dagArray[i].numDagsDone == dagArray[i].numDagsFired)
551 && (dagArray[i].numDagsFired > 0)) {
552 RF_ETIMER_START(dagArray[i].tracerec.timer);
553 /* fire next dag in this stripe */
554 /* first, skip to next dag awaiting execution */
555 dag_h = dagArray[i].dags;
556 for (j = 0; j < dagArray[i].numDagsDone; j++)
557 dag_h = dag_h->next;
558 dagArray[i].numDagsFired++;
559 /* XXX and again we pass a different function
560 * pointer.. GO */
561 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
562 &dagArray[i]);
563 }
564 }
565 return RF_TRUE;
566 }
567 }
568 /* only make it this far if all dags complete successfully */
569 int
570 rf_State_Cleanup(RF_RaidAccessDesc_t * desc)
571 {
572 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
573 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
574 RF_Raid_t *raidPtr = desc->raidPtr;
575 RF_AccessStripeMap_t *asm_p;
576 RF_DagHeader_t *dag_h;
577 RF_Etimer_t timer;
578 int tid, i;
579
580 desc->state++;
581
582 rf_get_threadid(tid);
583
584 timer = tracerec->timer;
585 RF_ETIMER_STOP(timer);
586 RF_ETIMER_EVAL(timer);
587 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
588
589 /* the RAID I/O is complete. Clean up. */
590 tracerec->specific.user.dag_retry_us = 0;
591
592 RF_ETIMER_START(timer);
593 if (desc->flags & RF_DAG_RETURN_DAG) {
594 /* copy dags into paramDAG */
595 *(desc->paramDAG) = desc->dagArray[0].dags;
596 dag_h = *(desc->paramDAG);
597 for (i = 1; i < desc->numStripes; i++) {
598 /* concatenate dags from remaining stripes */
599 RF_ASSERT(dag_h);
600 while (dag_h->next)
601 dag_h = dag_h->next;
602 dag_h->next = desc->dagArray[i].dags;
603 }
604 } else {
605 /* free all dags */
606 for (i = 0; i < desc->numStripes; i++) {
607 rf_FreeDAG(desc->dagArray[i].dags);
608 }
609 }
610
611 RF_ETIMER_STOP(timer);
612 RF_ETIMER_EVAL(timer);
613 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
614
615 RF_ETIMER_START(timer);
616 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
617 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
618 if (!rf_suppressLocksAndLargeWrites &&
619 asm_p->parityInfo &&
620 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
621 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
622 rf_ReleaseStripeLock(raidPtr->lockTable, asm_p->stripeID,
623 &asm_p->lockReqDesc);
624 }
625 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
626 rf_UnblockRecon(raidPtr, asm_p);
627 }
628 }
629 }
630 RF_ETIMER_STOP(timer);
631 RF_ETIMER_EVAL(timer);
632 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
633
634 RF_ETIMER_START(timer);
635 if (desc->flags & RF_DAG_RETURN_ASM)
636 *(desc->paramASM) = asmh;
637 else
638 rf_FreeAccessStripeMap(asmh);
639 RF_ETIMER_STOP(timer);
640 RF_ETIMER_EVAL(timer);
641 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
642
643 RF_ETIMER_STOP(desc->timer);
644 RF_ETIMER_EVAL(desc->timer);
645
646 timer = desc->tracerec.tot_timer;
647 RF_ETIMER_STOP(timer);
648 RF_ETIMER_EVAL(timer);
649 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
650
651 rf_LogTraceRec(raidPtr, tracerec);
652
653 desc->flags |= RF_DAG_ACCESS_COMPLETE;
654
655 return RF_FALSE;
656 }
657