rf_states.c revision 1.14 1 /* $NetBSD: rf_states.c,v 1.14 2000/10/12 03:28:49 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/errno.h>
30
31 #include "rf_archs.h"
32 #include "rf_threadstuff.h"
33 #include "rf_raid.h"
34 #include "rf_dag.h"
35 #include "rf_desc.h"
36 #include "rf_aselect.h"
37 #include "rf_general.h"
38 #include "rf_states.h"
39 #include "rf_dagutils.h"
40 #include "rf_driver.h"
41 #include "rf_engine.h"
42 #include "rf_map.h"
43 #include "rf_etimer.h"
44 #include "rf_kintf.h"
45
46 /* prototypes for some of the available states.
47
48 States must:
49
50 - not block.
51
52 - either schedule rf_ContinueRaidAccess as a callback and return
53 RF_TRUE, or complete all of their work and return RF_FALSE.
54
55 - increment desc->state when they have finished their work.
56 */
57
58 static char *
59 StateName(RF_AccessState_t state)
60 {
61 switch (state) {
62 case rf_QuiesceState:return "QuiesceState";
63 case rf_MapState:
64 return "MapState";
65 case rf_LockState:
66 return "LockState";
67 case rf_CreateDAGState:
68 return "CreateDAGState";
69 case rf_ExecuteDAGState:
70 return "ExecuteDAGState";
71 case rf_ProcessDAGState:
72 return "ProcessDAGState";
73 case rf_CleanupState:
74 return "CleanupState";
75 case rf_LastState:
76 return "LastState";
77 case rf_IncrAccessesCountState:
78 return "IncrAccessesCountState";
79 case rf_DecrAccessesCountState:
80 return "DecrAccessesCountState";
81 default:
82 return "!!! UnnamedState !!!";
83 }
84 }
85
86 void
87 rf_ContinueRaidAccess(RF_RaidAccessDesc_t * desc)
88 {
89 int suspended = RF_FALSE;
90 int current_state_index = desc->state;
91 RF_AccessState_t current_state = desc->states[current_state_index];
92 int unit = desc->raidPtr->raidid;
93
94 do {
95
96 current_state_index = desc->state;
97 current_state = desc->states[current_state_index];
98
99 switch (current_state) {
100
101 case rf_QuiesceState:
102 suspended = rf_State_Quiesce(desc);
103 break;
104 case rf_IncrAccessesCountState:
105 suspended = rf_State_IncrAccessCount(desc);
106 break;
107 case rf_MapState:
108 suspended = rf_State_Map(desc);
109 break;
110 case rf_LockState:
111 suspended = rf_State_Lock(desc);
112 break;
113 case rf_CreateDAGState:
114 suspended = rf_State_CreateDAG(desc);
115 break;
116 case rf_ExecuteDAGState:
117 suspended = rf_State_ExecuteDAG(desc);
118 break;
119 case rf_ProcessDAGState:
120 suspended = rf_State_ProcessDAG(desc);
121 break;
122 case rf_CleanupState:
123 suspended = rf_State_Cleanup(desc);
124 break;
125 case rf_DecrAccessesCountState:
126 suspended = rf_State_DecrAccessCount(desc);
127 break;
128 case rf_LastState:
129 suspended = rf_State_LastState(desc);
130 break;
131 }
132
133 /* after this point, we cannot dereference desc since desc may
134 * have been freed. desc is only freed in LastState, so if we
135 * renter this function or loop back up, desc should be valid. */
136
137 if (rf_printStatesDebug) {
138 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
139 unit, StateName(current_state),
140 current_state_index, (long) desc,
141 suspended ? "callback scheduled" : "looping");
142 }
143 } while (!suspended && current_state != rf_LastState);
144
145 return;
146 }
147
148
149 void
150 rf_ContinueDagAccess(RF_DagList_t * dagList)
151 {
152 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
153 RF_RaidAccessDesc_t *desc;
154 RF_DagHeader_t *dag_h;
155 RF_Etimer_t timer;
156 int i;
157
158 desc = dagList->desc;
159
160 timer = tracerec->timer;
161 RF_ETIMER_STOP(timer);
162 RF_ETIMER_EVAL(timer);
163 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
164 RF_ETIMER_START(tracerec->timer);
165
166 /* skip to dag which just finished */
167 dag_h = dagList->dags;
168 for (i = 0; i < dagList->numDagsDone; i++) {
169 dag_h = dag_h->next;
170 }
171
172 /* check to see if retry is required */
173 if (dag_h->status == rf_rollBackward) {
174 /* when a dag fails, mark desc status as bad and allow all
175 * other dags in the desc to execute to completion. then,
176 * free all dags and start over */
177 desc->status = 1; /* bad status */
178 {
179 printf("raid%d: DAG failure: %c addr 0x%lx (%ld) nblk 0x%x (%d) buf 0x%lx\n",
180 desc->raidPtr->raidid, desc->type,
181 (long) desc->raidAddress,
182 (long) desc->raidAddress, (int) desc->numBlocks,
183 (int) desc->numBlocks,
184 (unsigned long) (desc->bufPtr));
185 }
186 }
187 dagList->numDagsDone++;
188 rf_ContinueRaidAccess(desc);
189 }
190
191 int
192 rf_State_LastState(RF_RaidAccessDesc_t * desc)
193 {
194 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
195 RF_CBParam_t callbackArg;
196
197 callbackArg.p = desc->callbackArg;
198
199 /*
200 * If this is not an async request, wake up the caller
201 */
202 if (desc->async_flag == 0)
203 wakeup(desc->bp);
204
205 /*
206 * Wakeup any requests waiting to go.
207 */
208
209 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
210 ((RF_Raid_t *) desc->raidPtr)->openings++;
211 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
212
213 /* wake up any pending IO */
214 raidstart(((RF_Raid_t *) desc->raidPtr));
215
216 /* printf("Calling biodone on 0x%x\n",desc->bp); */
217 biodone(desc->bp); /* access came through ioctl */
218
219 if (callbackFunc)
220 callbackFunc(callbackArg);
221 rf_FreeRaidAccDesc(desc);
222
223 return RF_FALSE;
224 }
225
226 int
227 rf_State_IncrAccessCount(RF_RaidAccessDesc_t * desc)
228 {
229 RF_Raid_t *raidPtr;
230
231 raidPtr = desc->raidPtr;
232 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
233 * below */
234 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
235 raidPtr->accs_in_flight++; /* used to detect quiescence */
236 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
237
238 desc->state++;
239 return RF_FALSE;
240 }
241
242 int
243 rf_State_DecrAccessCount(RF_RaidAccessDesc_t * desc)
244 {
245 RF_Raid_t *raidPtr;
246
247 raidPtr = desc->raidPtr;
248
249 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
250 raidPtr->accs_in_flight--;
251 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
252 rf_SignalQuiescenceLock(raidPtr, raidPtr->reconDesc);
253 }
254 rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks);
255 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
256
257 desc->state++;
258 return RF_FALSE;
259 }
260
261 int
262 rf_State_Quiesce(RF_RaidAccessDesc_t * desc)
263 {
264 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
265 RF_Etimer_t timer;
266 int suspended = RF_FALSE;
267 RF_Raid_t *raidPtr;
268
269 raidPtr = desc->raidPtr;
270
271 RF_ETIMER_START(timer);
272 RF_ETIMER_START(desc->timer);
273
274 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
275 if (raidPtr->accesses_suspended) {
276 RF_CallbackDesc_t *cb;
277 cb = rf_AllocCallbackDesc();
278 /* XXX the following cast is quite bogus...
279 * rf_ContinueRaidAccess takes a (RF_RaidAccessDesc_t *) as an
280 * argument.. GO */
281 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
282 cb->callbackArg.p = (void *) desc;
283 cb->next = raidPtr->quiesce_wait_list;
284 raidPtr->quiesce_wait_list = cb;
285 suspended = RF_TRUE;
286 }
287 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
288
289 RF_ETIMER_STOP(timer);
290 RF_ETIMER_EVAL(timer);
291 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
292
293 if (suspended && rf_quiesceDebug)
294 printf("Stalling access due to quiescence lock\n");
295
296 desc->state++;
297 return suspended;
298 }
299
300 int
301 rf_State_Map(RF_RaidAccessDesc_t * desc)
302 {
303 RF_Raid_t *raidPtr = desc->raidPtr;
304 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
305 RF_Etimer_t timer;
306
307 RF_ETIMER_START(timer);
308
309 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
310 desc->bufPtr, RF_DONT_REMAP)))
311 RF_PANIC();
312
313 RF_ETIMER_STOP(timer);
314 RF_ETIMER_EVAL(timer);
315 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
316
317 desc->state++;
318 return RF_FALSE;
319 }
320
321 int
322 rf_State_Lock(RF_RaidAccessDesc_t * desc)
323 {
324 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
325 RF_Raid_t *raidPtr = desc->raidPtr;
326 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
327 RF_AccessStripeMap_t *asm_p;
328 RF_Etimer_t timer;
329 int suspended = RF_FALSE;
330
331 RF_ETIMER_START(timer);
332 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
333 RF_StripeNum_t lastStripeID = -1;
334
335 /* acquire each lock that we don't already hold */
336 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
337 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
338 if (!rf_suppressLocksAndLargeWrites &&
339 asm_p->parityInfo &&
340 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
341 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
342 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
343 RF_ASSERT(asm_p->stripeID > lastStripeID); /* locks must be
344 * acquired
345 * hierarchically */
346 lastStripeID = asm_p->stripeID;
347 /* XXX the cast to (void (*)(RF_CBParam_t))
348 * below is bogus! GO */
349 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
350 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
351 raidPtr->Layout.dataSectorsPerStripe);
352 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
353 &asm_p->lockReqDesc)) {
354 suspended = RF_TRUE;
355 break;
356 }
357 }
358 if (desc->type == RF_IO_TYPE_WRITE &&
359 raidPtr->status[asm_p->physInfo->row] == rf_rs_reconstructing) {
360 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
361 int val;
362
363 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
364 /* XXX the cast below is quite
365 * bogus!!! XXX GO */
366 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
367 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
368 if (val == 0) {
369 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
370 } else {
371 suspended = RF_TRUE;
372 break;
373 }
374 } else {
375 if (rf_pssDebug) {
376 printf("raid%d: skipping force/block because already done, psid %ld\n",
377 desc->raidPtr->raidid,
378 (long) asm_p->stripeID);
379 }
380 }
381 } else {
382 if (rf_pssDebug) {
383 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
384 desc->raidPtr->raidid,
385 (long) asm_p->stripeID);
386 }
387 }
388 }
389
390 RF_ETIMER_STOP(timer);
391 RF_ETIMER_EVAL(timer);
392 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
393
394 if (suspended)
395 return (RF_TRUE);
396 }
397 desc->state++;
398 return (RF_FALSE);
399 }
400 /*
401 * the following three states create, execute, and post-process dags
402 * the error recovery unit is a single dag.
403 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
404 * in some tricky cases, multiple dags per stripe are created
405 * - dags within a parity stripe are executed sequentially (arbitrary order)
406 * - dags for distinct parity stripes are executed concurrently
407 *
408 * repeat until all dags complete successfully -or- dag selection fails
409 *
410 * while !done
411 * create dag(s) (SelectAlgorithm)
412 * if dag
413 * execute dag (DispatchDAG)
414 * if dag successful
415 * done (SUCCESS)
416 * else
417 * !done (RETRY - start over with new dags)
418 * else
419 * done (FAIL)
420 */
421 int
422 rf_State_CreateDAG(RF_RaidAccessDesc_t * desc)
423 {
424 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
425 RF_Etimer_t timer;
426 RF_DagHeader_t *dag_h;
427 int i, selectStatus;
428
429 /* generate a dag for the access, and fire it off. When the dag
430 * completes, we'll get re-invoked in the next state. */
431 RF_ETIMER_START(timer);
432 /* SelectAlgorithm returns one or more dags */
433 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
434 if (rf_printDAGsDebug)
435 for (i = 0; i < desc->numStripes; i++)
436 rf_PrintDAGList(desc->dagArray[i].dags);
437 RF_ETIMER_STOP(timer);
438 RF_ETIMER_EVAL(timer);
439 /* update time to create all dags */
440 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
441
442 desc->status = 0; /* good status */
443
444 if (selectStatus) {
445 /* failed to create a dag */
446 /* this happens when there are too many faults or incomplete
447 * dag libraries */
448 printf("[Failed to create a DAG]\n");
449 RF_PANIC();
450 } else {
451 /* bind dags to desc */
452 for (i = 0; i < desc->numStripes; i++) {
453 dag_h = desc->dagArray[i].dags;
454 while (dag_h) {
455 dag_h->bp = (struct buf *) desc->bp;
456 dag_h->tracerec = tracerec;
457 dag_h = dag_h->next;
458 }
459 }
460 desc->flags |= RF_DAG_DISPATCH_RETURNED;
461 desc->state++; /* next state should be rf_State_ExecuteDAG */
462 }
463 return RF_FALSE;
464 }
465
466
467
468 /* the access has an array of dagLists, one dagList per parity stripe.
469 * fire the first dag in each parity stripe (dagList).
470 * dags within a stripe (dagList) must be executed sequentially
471 * - this preserves atomic parity update
472 * dags for independents parity groups (stripes) are fired concurrently */
473
474 int
475 rf_State_ExecuteDAG(RF_RaidAccessDesc_t * desc)
476 {
477 int i;
478 RF_DagHeader_t *dag_h;
479 RF_DagList_t *dagArray = desc->dagArray;
480
481 /* next state is always rf_State_ProcessDAG important to do this
482 * before firing the first dag (it may finish before we leave this
483 * routine) */
484 desc->state++;
485
486 /* sweep dag array, a stripe at a time, firing the first dag in each
487 * stripe */
488 for (i = 0; i < desc->numStripes; i++) {
489 RF_ASSERT(dagArray[i].numDags > 0);
490 RF_ASSERT(dagArray[i].numDagsDone == 0);
491 RF_ASSERT(dagArray[i].numDagsFired == 0);
492 RF_ETIMER_START(dagArray[i].tracerec.timer);
493 /* fire first dag in this stripe */
494 dag_h = dagArray[i].dags;
495 RF_ASSERT(dag_h);
496 dagArray[i].numDagsFired++;
497 /* XXX Yet another case where we pass in a conflicting
498 * function pointer :-( XXX GO */
499 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, &dagArray[i]);
500 }
501
502 /* the DAG will always call the callback, even if there was no
503 * blocking, so we are always suspended in this state */
504 return RF_TRUE;
505 }
506
507
508
509 /* rf_State_ProcessDAG is entered when a dag completes.
510 * first, check to all dags in the access have completed
511 * if not, fire as many dags as possible */
512
513 int
514 rf_State_ProcessDAG(RF_RaidAccessDesc_t * desc)
515 {
516 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
517 RF_Raid_t *raidPtr = desc->raidPtr;
518 RF_DagHeader_t *dag_h;
519 int i, j, done = RF_TRUE;
520 RF_DagList_t *dagArray = desc->dagArray;
521 RF_Etimer_t timer;
522
523 /* check to see if this is the last dag */
524 for (i = 0; i < desc->numStripes; i++)
525 if (dagArray[i].numDags != dagArray[i].numDagsDone)
526 done = RF_FALSE;
527
528 if (done) {
529 if (desc->status) {
530 /* a dag failed, retry */
531 RF_ETIMER_START(timer);
532 /* free all dags */
533 for (i = 0; i < desc->numStripes; i++) {
534 rf_FreeDAG(desc->dagArray[i].dags);
535 }
536 rf_MarkFailuresInASMList(raidPtr, asmh);
537 /* back up to rf_State_CreateDAG */
538 desc->state = desc->state - 2;
539 return RF_FALSE;
540 } else {
541 /* move on to rf_State_Cleanup */
542 desc->state++;
543 }
544 return RF_FALSE;
545 } else {
546 /* more dags to execute */
547 /* see if any are ready to be fired. if so, fire them */
548 /* don't fire the initial dag in a list, it's fired in
549 * rf_State_ExecuteDAG */
550 for (i = 0; i < desc->numStripes; i++) {
551 if ((dagArray[i].numDagsDone < dagArray[i].numDags)
552 && (dagArray[i].numDagsDone == dagArray[i].numDagsFired)
553 && (dagArray[i].numDagsFired > 0)) {
554 RF_ETIMER_START(dagArray[i].tracerec.timer);
555 /* fire next dag in this stripe */
556 /* first, skip to next dag awaiting execution */
557 dag_h = dagArray[i].dags;
558 for (j = 0; j < dagArray[i].numDagsDone; j++)
559 dag_h = dag_h->next;
560 dagArray[i].numDagsFired++;
561 /* XXX and again we pass a different function
562 * pointer.. GO */
563 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
564 &dagArray[i]);
565 }
566 }
567 return RF_TRUE;
568 }
569 }
570 /* only make it this far if all dags complete successfully */
571 int
572 rf_State_Cleanup(RF_RaidAccessDesc_t * desc)
573 {
574 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
575 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
576 RF_Raid_t *raidPtr = desc->raidPtr;
577 RF_AccessStripeMap_t *asm_p;
578 RF_DagHeader_t *dag_h;
579 RF_Etimer_t timer;
580 int i;
581
582 desc->state++;
583
584 timer = tracerec->timer;
585 RF_ETIMER_STOP(timer);
586 RF_ETIMER_EVAL(timer);
587 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
588
589 /* the RAID I/O is complete. Clean up. */
590 tracerec->specific.user.dag_retry_us = 0;
591
592 RF_ETIMER_START(timer);
593 if (desc->flags & RF_DAG_RETURN_DAG) {
594 /* copy dags into paramDAG */
595 *(desc->paramDAG) = desc->dagArray[0].dags;
596 dag_h = *(desc->paramDAG);
597 for (i = 1; i < desc->numStripes; i++) {
598 /* concatenate dags from remaining stripes */
599 RF_ASSERT(dag_h);
600 while (dag_h->next)
601 dag_h = dag_h->next;
602 dag_h->next = desc->dagArray[i].dags;
603 }
604 } else {
605 /* free all dags */
606 for (i = 0; i < desc->numStripes; i++) {
607 rf_FreeDAG(desc->dagArray[i].dags);
608 }
609 }
610
611 RF_ETIMER_STOP(timer);
612 RF_ETIMER_EVAL(timer);
613 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
614
615 RF_ETIMER_START(timer);
616 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
617 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
618 if (!rf_suppressLocksAndLargeWrites &&
619 asm_p->parityInfo &&
620 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
621 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
622 rf_ReleaseStripeLock(raidPtr->lockTable,
623 asm_p->stripeID,
624 &asm_p->lockReqDesc);
625 }
626 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
627 rf_UnblockRecon(raidPtr, asm_p);
628 }
629 }
630 }
631 RF_ETIMER_STOP(timer);
632 RF_ETIMER_EVAL(timer);
633 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
634
635 RF_ETIMER_START(timer);
636 if (desc->flags & RF_DAG_RETURN_ASM)
637 *(desc->paramASM) = asmh;
638 else
639 rf_FreeAccessStripeMap(asmh);
640 RF_ETIMER_STOP(timer);
641 RF_ETIMER_EVAL(timer);
642 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
643
644 RF_ETIMER_STOP(desc->timer);
645 RF_ETIMER_EVAL(desc->timer);
646
647 timer = desc->tracerec.tot_timer;
648 RF_ETIMER_STOP(timer);
649 RF_ETIMER_EVAL(timer);
650 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
651
652 rf_LogTraceRec(raidPtr, tracerec);
653
654 desc->flags |= RF_DAG_ACCESS_COMPLETE;
655
656 return RF_FALSE;
657 }
658