rf_states.c revision 1.23 1 /* $NetBSD: rf_states.c,v 1.23 2003/12/31 17:47:53 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.23 2003/12/31 17:47:53 oster Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48
49 #ifndef RF_DEBUG_STATES
50 #define RF_DEBUG_STATES 0
51 #endif
52
53 /* prototypes for some of the available states.
54
55 States must:
56
57 - not block.
58
59 - either schedule rf_ContinueRaidAccess as a callback and return
60 RF_TRUE, or complete all of their work and return RF_FALSE.
61
62 - increment desc->state when they have finished their work.
63 */
64
65 #if RF_DEBUG_STATES
66 static char *
67 StateName(RF_AccessState_t state)
68 {
69 switch (state) {
70 case rf_QuiesceState:return "QuiesceState";
71 case rf_MapState:
72 return "MapState";
73 case rf_LockState:
74 return "LockState";
75 case rf_CreateDAGState:
76 return "CreateDAGState";
77 case rf_ExecuteDAGState:
78 return "ExecuteDAGState";
79 case rf_ProcessDAGState:
80 return "ProcessDAGState";
81 case rf_CleanupState:
82 return "CleanupState";
83 case rf_LastState:
84 return "LastState";
85 case rf_IncrAccessesCountState:
86 return "IncrAccessesCountState";
87 case rf_DecrAccessesCountState:
88 return "DecrAccessesCountState";
89 default:
90 return "!!! UnnamedState !!!";
91 }
92 }
93 #endif
94
95 void
96 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
97 {
98 int suspended = RF_FALSE;
99 int current_state_index = desc->state;
100 RF_AccessState_t current_state = desc->states[current_state_index];
101 #if RF_DEBUG_STATES
102 int unit = desc->raidPtr->raidid;
103 #endif
104
105 do {
106
107 current_state_index = desc->state;
108 current_state = desc->states[current_state_index];
109
110 switch (current_state) {
111
112 case rf_QuiesceState:
113 suspended = rf_State_Quiesce(desc);
114 break;
115 case rf_IncrAccessesCountState:
116 suspended = rf_State_IncrAccessCount(desc);
117 break;
118 case rf_MapState:
119 suspended = rf_State_Map(desc);
120 break;
121 case rf_LockState:
122 suspended = rf_State_Lock(desc);
123 break;
124 case rf_CreateDAGState:
125 suspended = rf_State_CreateDAG(desc);
126 break;
127 case rf_ExecuteDAGState:
128 suspended = rf_State_ExecuteDAG(desc);
129 break;
130 case rf_ProcessDAGState:
131 suspended = rf_State_ProcessDAG(desc);
132 break;
133 case rf_CleanupState:
134 suspended = rf_State_Cleanup(desc);
135 break;
136 case rf_DecrAccessesCountState:
137 suspended = rf_State_DecrAccessCount(desc);
138 break;
139 case rf_LastState:
140 suspended = rf_State_LastState(desc);
141 break;
142 }
143
144 /* after this point, we cannot dereference desc since
145 * desc may have been freed. desc is only freed in
146 * LastState, so if we renter this function or loop
147 * back up, desc should be valid. */
148
149 #if RF_DEBUG_STATES
150 if (rf_printStatesDebug) {
151 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
152 unit, StateName(current_state),
153 current_state_index, (long) desc,
154 suspended ? "callback scheduled" : "looping");
155 }
156 #endif
157 } while (!suspended && current_state != rf_LastState);
158
159 return;
160 }
161
162
163 void
164 rf_ContinueDagAccess(RF_DagList_t *dagList)
165 {
166 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
167 RF_RaidAccessDesc_t *desc;
168 RF_DagHeader_t *dag_h;
169 RF_Etimer_t timer;
170 int i;
171
172 desc = dagList->desc;
173
174 timer = tracerec->timer;
175 RF_ETIMER_STOP(timer);
176 RF_ETIMER_EVAL(timer);
177 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
178 RF_ETIMER_START(tracerec->timer);
179
180 /* skip to dag which just finished */
181 dag_h = dagList->dags;
182 for (i = 0; i < dagList->numDagsDone; i++) {
183 dag_h = dag_h->next;
184 }
185
186 /* check to see if retry is required */
187 if (dag_h->status == rf_rollBackward) {
188 /* when a dag fails, mark desc status as bad and allow
189 * all other dags in the desc to execute to
190 * completion. then, free all dags and start over */
191 desc->status = 1; /* bad status */
192
193 printf("raid%d: DAG failure: %c addr 0x%lx (%ld) nblk 0x%x (%d) buf 0x%lx\n",
194 desc->raidPtr->raidid, desc->type,
195 (long) desc->raidAddress,
196 (long) desc->raidAddress, (int) desc->numBlocks,
197 (int) desc->numBlocks,
198 (unsigned long) (desc->bufPtr));
199 }
200 dagList->numDagsDone++;
201 rf_ContinueRaidAccess(desc);
202 }
203
204 int
205 rf_State_LastState(RF_RaidAccessDesc_t *desc)
206 {
207 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
208 RF_CBParam_t callbackArg;
209
210 callbackArg.p = desc->callbackArg;
211
212 /*
213 * If this is not an async request, wake up the caller
214 */
215 if (desc->async_flag == 0)
216 wakeup(desc->bp);
217
218 /*
219 * That's all the IO for this one... unbusy the 'disk'.
220 */
221
222 rf_disk_unbusy(desc);
223
224 /*
225 * Wakeup any requests waiting to go.
226 */
227
228 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
229 ((RF_Raid_t *) desc->raidPtr)->openings++;
230 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
231
232 /* wake up any pending IO */
233 raidstart(((RF_Raid_t *) desc->raidPtr));
234
235 /* printf("Calling biodone on 0x%x\n",desc->bp); */
236 biodone(desc->bp); /* access came through ioctl */
237
238 if (callbackFunc)
239 callbackFunc(callbackArg);
240 rf_FreeRaidAccDesc(desc);
241
242 return RF_FALSE;
243 }
244
245 int
246 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
247 {
248 RF_Raid_t *raidPtr;
249
250 raidPtr = desc->raidPtr;
251 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
252 * below */
253 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
254 raidPtr->accs_in_flight++; /* used to detect quiescence */
255 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
256
257 desc->state++;
258 return RF_FALSE;
259 }
260
261 int
262 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
263 {
264 RF_Raid_t *raidPtr;
265
266 raidPtr = desc->raidPtr;
267
268 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
269 raidPtr->accs_in_flight--;
270 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
271 rf_SignalQuiescenceLock(raidPtr);
272 }
273 rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks);
274 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
275
276 desc->state++;
277 return RF_FALSE;
278 }
279
280 int
281 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
282 {
283 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
284 RF_Etimer_t timer;
285 int suspended = RF_FALSE;
286 RF_Raid_t *raidPtr;
287
288 raidPtr = desc->raidPtr;
289
290 RF_ETIMER_START(timer);
291 RF_ETIMER_START(desc->timer);
292
293 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
294 if (raidPtr->accesses_suspended) {
295 RF_CallbackDesc_t *cb;
296 cb = rf_AllocCallbackDesc();
297
298 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
299 cb->callbackArg.p = (void *) desc;
300 cb->next = raidPtr->quiesce_wait_list;
301 raidPtr->quiesce_wait_list = cb;
302 suspended = RF_TRUE;
303 }
304 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
305
306 RF_ETIMER_STOP(timer);
307 RF_ETIMER_EVAL(timer);
308 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
309
310 #if RF_DEBUG_QUIESCE
311 if (suspended && rf_quiesceDebug)
312 printf("Stalling access due to quiescence lock\n");
313 #endif
314 desc->state++;
315 return suspended;
316 }
317
318 int
319 rf_State_Map(RF_RaidAccessDesc_t *desc)
320 {
321 RF_Raid_t *raidPtr = desc->raidPtr;
322 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
323 RF_Etimer_t timer;
324
325 RF_ETIMER_START(timer);
326
327 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
328 desc->bufPtr, RF_DONT_REMAP)))
329 RF_PANIC();
330
331 RF_ETIMER_STOP(timer);
332 RF_ETIMER_EVAL(timer);
333 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
334
335 desc->state++;
336 return RF_FALSE;
337 }
338
339 int
340 rf_State_Lock(RF_RaidAccessDesc_t *desc)
341 {
342 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
343 RF_Raid_t *raidPtr = desc->raidPtr;
344 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
345 RF_AccessStripeMap_t *asm_p;
346 RF_Etimer_t timer;
347 int suspended = RF_FALSE;
348
349 RF_ETIMER_START(timer);
350 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
351 RF_StripeNum_t lastStripeID = -1;
352
353 /* acquire each lock that we don't already hold */
354 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
355 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
356 if (!rf_suppressLocksAndLargeWrites &&
357 asm_p->parityInfo &&
358 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
359 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
360 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
361 /* locks must be acquired hierarchically */
362 RF_ASSERT(asm_p->stripeID > lastStripeID);
363 lastStripeID = asm_p->stripeID;
364
365 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
366 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
367 raidPtr->Layout.dataSectorsPerStripe);
368 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
369 &asm_p->lockReqDesc)) {
370 suspended = RF_TRUE;
371 break;
372 }
373 }
374 if (desc->type == RF_IO_TYPE_WRITE &&
375 raidPtr->status == rf_rs_reconstructing) {
376 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
377 int val;
378
379 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
380 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
381 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
382 if (val == 0) {
383 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
384 } else {
385 suspended = RF_TRUE;
386 break;
387 }
388 } else {
389 if (rf_pssDebug) {
390 printf("raid%d: skipping force/block because already done, psid %ld\n",
391 desc->raidPtr->raidid,
392 (long) asm_p->stripeID);
393 }
394 }
395 } else {
396 if (rf_pssDebug) {
397 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
398 desc->raidPtr->raidid,
399 (long) asm_p->stripeID);
400 }
401 }
402 }
403
404 RF_ETIMER_STOP(timer);
405 RF_ETIMER_EVAL(timer);
406 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
407
408 if (suspended)
409 return (RF_TRUE);
410 }
411 desc->state++;
412 return (RF_FALSE);
413 }
414 /*
415 * the following three states create, execute, and post-process dags
416 * the error recovery unit is a single dag.
417 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
418 * in some tricky cases, multiple dags per stripe are created
419 * - dags within a parity stripe are executed sequentially (arbitrary order)
420 * - dags for distinct parity stripes are executed concurrently
421 *
422 * repeat until all dags complete successfully -or- dag selection fails
423 *
424 * while !done
425 * create dag(s) (SelectAlgorithm)
426 * if dag
427 * execute dag (DispatchDAG)
428 * if dag successful
429 * done (SUCCESS)
430 * else
431 * !done (RETRY - start over with new dags)
432 * else
433 * done (FAIL)
434 */
435 int
436 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
437 {
438 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
439 RF_Etimer_t timer;
440 RF_DagHeader_t *dag_h;
441 int i, selectStatus;
442
443 /* generate a dag for the access, and fire it off. When the dag
444 * completes, we'll get re-invoked in the next state. */
445 RF_ETIMER_START(timer);
446 /* SelectAlgorithm returns one or more dags */
447 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
448 #if RF_DEBUG_VALIDATE_DAG
449 if (rf_printDAGsDebug)
450 for (i = 0; i < desc->numStripes; i++)
451 rf_PrintDAGList(desc->dagArray[i].dags);
452 #endif /* RF_DEBUG_VALIDATE_DAG */
453 RF_ETIMER_STOP(timer);
454 RF_ETIMER_EVAL(timer);
455 /* update time to create all dags */
456 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
457
458 desc->status = 0; /* good status */
459
460 if (selectStatus) {
461 /* failed to create a dag */
462 /* this happens when there are too many faults or incomplete
463 * dag libraries */
464 printf("[Failed to create a DAG]\n");
465 RF_PANIC();
466 } else {
467 /* bind dags to desc */
468 for (i = 0; i < desc->numStripes; i++) {
469 dag_h = desc->dagArray[i].dags;
470 while (dag_h) {
471 dag_h->bp = (struct buf *) desc->bp;
472 dag_h->tracerec = tracerec;
473 dag_h = dag_h->next;
474 }
475 }
476 desc->flags |= RF_DAG_DISPATCH_RETURNED;
477 desc->state++; /* next state should be rf_State_ExecuteDAG */
478 }
479 return RF_FALSE;
480 }
481
482
483
484 /* the access has an array of dagLists, one dagList per parity stripe.
485 * fire the first dag in each parity stripe (dagList).
486 * dags within a stripe (dagList) must be executed sequentially
487 * - this preserves atomic parity update
488 * dags for independents parity groups (stripes) are fired concurrently */
489
490 int
491 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
492 {
493 int i;
494 RF_DagHeader_t *dag_h;
495 RF_DagList_t *dagArray = desc->dagArray;
496
497 /* next state is always rf_State_ProcessDAG important to do
498 * this before firing the first dag (it may finish before we
499 * leave this routine) */
500 desc->state++;
501
502 /* sweep dag array, a stripe at a time, firing the first dag
503 * in each stripe */
504 for (i = 0; i < desc->numStripes; i++) {
505 RF_ASSERT(dagArray[i].numDags > 0);
506 RF_ASSERT(dagArray[i].numDagsDone == 0);
507 RF_ASSERT(dagArray[i].numDagsFired == 0);
508 RF_ETIMER_START(dagArray[i].tracerec.timer);
509 /* fire first dag in this stripe */
510 dag_h = dagArray[i].dags;
511 RF_ASSERT(dag_h);
512 dagArray[i].numDagsFired++;
513 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, &dagArray[i]);
514 }
515
516 /* the DAG will always call the callback, even if there was no
517 * blocking, so we are always suspended in this state */
518 return RF_TRUE;
519 }
520
521
522
523 /* rf_State_ProcessDAG is entered when a dag completes.
524 * first, check to all dags in the access have completed
525 * if not, fire as many dags as possible */
526
527 int
528 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
529 {
530 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
531 RF_Raid_t *raidPtr = desc->raidPtr;
532 RF_DagHeader_t *dag_h;
533 int i, j, done = RF_TRUE;
534 RF_DagList_t *dagArray = desc->dagArray;
535 RF_Etimer_t timer;
536
537 /* check to see if this is the last dag */
538 for (i = 0; i < desc->numStripes; i++)
539 if (dagArray[i].numDags != dagArray[i].numDagsDone)
540 done = RF_FALSE;
541
542 if (done) {
543 if (desc->status) {
544 /* a dag failed, retry */
545 RF_ETIMER_START(timer);
546 /* free all dags */
547 for (i = 0; i < desc->numStripes; i++) {
548 rf_FreeDAG(desc->dagArray[i].dags);
549 }
550 rf_MarkFailuresInASMList(raidPtr, asmh);
551 /* back up to rf_State_CreateDAG */
552 desc->state = desc->state - 2;
553 return RF_FALSE;
554 } else {
555 /* move on to rf_State_Cleanup */
556 desc->state++;
557 }
558 return RF_FALSE;
559 } else {
560 /* more dags to execute */
561 /* see if any are ready to be fired. if so, fire them */
562 /* don't fire the initial dag in a list, it's fired in
563 * rf_State_ExecuteDAG */
564 for (i = 0; i < desc->numStripes; i++) {
565 if ((dagArray[i].numDagsDone < dagArray[i].numDags)
566 && (dagArray[i].numDagsDone == dagArray[i].numDagsFired)
567 && (dagArray[i].numDagsFired > 0)) {
568 RF_ETIMER_START(dagArray[i].tracerec.timer);
569 /* fire next dag in this stripe */
570 /* first, skip to next dag awaiting execution */
571 dag_h = dagArray[i].dags;
572 for (j = 0; j < dagArray[i].numDagsDone; j++)
573 dag_h = dag_h->next;
574 dagArray[i].numDagsFired++;
575 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
576 &dagArray[i]);
577 }
578 }
579 return RF_TRUE;
580 }
581 }
582 /* only make it this far if all dags complete successfully */
583 int
584 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
585 {
586 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
587 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
588 RF_Raid_t *raidPtr = desc->raidPtr;
589 RF_AccessStripeMap_t *asm_p;
590 RF_DagHeader_t *dag_h;
591 RF_Etimer_t timer;
592 int i;
593
594 desc->state++;
595
596 timer = tracerec->timer;
597 RF_ETIMER_STOP(timer);
598 RF_ETIMER_EVAL(timer);
599 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
600
601 /* the RAID I/O is complete. Clean up. */
602 tracerec->specific.user.dag_retry_us = 0;
603
604 RF_ETIMER_START(timer);
605 if (desc->flags & RF_DAG_RETURN_DAG) {
606 /* copy dags into paramDAG */
607 *(desc->paramDAG) = desc->dagArray[0].dags;
608 dag_h = *(desc->paramDAG);
609 for (i = 1; i < desc->numStripes; i++) {
610 /* concatenate dags from remaining stripes */
611 RF_ASSERT(dag_h);
612 while (dag_h->next)
613 dag_h = dag_h->next;
614 dag_h->next = desc->dagArray[i].dags;
615 }
616 } else {
617 /* free all dags */
618 for (i = 0; i < desc->numStripes; i++) {
619 rf_FreeDAG(desc->dagArray[i].dags);
620 }
621 }
622
623 RF_ETIMER_STOP(timer);
624 RF_ETIMER_EVAL(timer);
625 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
626
627 RF_ETIMER_START(timer);
628 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
629 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
630 if (!rf_suppressLocksAndLargeWrites &&
631 asm_p->parityInfo &&
632 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
633 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
634 rf_ReleaseStripeLock(raidPtr->lockTable,
635 asm_p->stripeID,
636 &asm_p->lockReqDesc);
637 }
638 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
639 rf_UnblockRecon(raidPtr, asm_p);
640 }
641 }
642 }
643 RF_ETIMER_STOP(timer);
644 RF_ETIMER_EVAL(timer);
645 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
646
647 RF_ETIMER_START(timer);
648 if (desc->flags & RF_DAG_RETURN_ASM)
649 *(desc->paramASM) = asmh;
650 else
651 rf_FreeAccessStripeMap(asmh);
652 RF_ETIMER_STOP(timer);
653 RF_ETIMER_EVAL(timer);
654 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
655
656 RF_ETIMER_STOP(desc->timer);
657 RF_ETIMER_EVAL(desc->timer);
658
659 timer = desc->tracerec.tot_timer;
660 RF_ETIMER_STOP(timer);
661 RF_ETIMER_EVAL(timer);
662 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
663
664 rf_LogTraceRec(raidPtr, tracerec);
665
666 desc->flags |= RF_DAG_ACCESS_COMPLETE;
667
668 return RF_FALSE;
669 }
670