rf_states.c revision 1.28 1 /* $NetBSD: rf_states.c,v 1.28 2004/02/29 22:11:54 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.28 2004/02/29 22:11:54 oster Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48
49 #ifndef RF_DEBUG_STATES
50 #define RF_DEBUG_STATES 0
51 #endif
52
53 /* prototypes for some of the available states.
54
55 States must:
56
57 - not block.
58
59 - either schedule rf_ContinueRaidAccess as a callback and return
60 RF_TRUE, or complete all of their work and return RF_FALSE.
61
62 - increment desc->state when they have finished their work.
63 */
64
65 #if RF_DEBUG_STATES
66 static char *
67 StateName(RF_AccessState_t state)
68 {
69 switch (state) {
70 case rf_QuiesceState:return "QuiesceState";
71 case rf_MapState:
72 return "MapState";
73 case rf_LockState:
74 return "LockState";
75 case rf_CreateDAGState:
76 return "CreateDAGState";
77 case rf_ExecuteDAGState:
78 return "ExecuteDAGState";
79 case rf_ProcessDAGState:
80 return "ProcessDAGState";
81 case rf_CleanupState:
82 return "CleanupState";
83 case rf_LastState:
84 return "LastState";
85 case rf_IncrAccessesCountState:
86 return "IncrAccessesCountState";
87 case rf_DecrAccessesCountState:
88 return "DecrAccessesCountState";
89 default:
90 return "!!! UnnamedState !!!";
91 }
92 }
93 #endif
94
95 void
96 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
97 {
98 int suspended = RF_FALSE;
99 int current_state_index = desc->state;
100 RF_AccessState_t current_state = desc->states[current_state_index];
101 #if RF_DEBUG_STATES
102 int unit = desc->raidPtr->raidid;
103 #endif
104
105 do {
106
107 current_state_index = desc->state;
108 current_state = desc->states[current_state_index];
109
110 switch (current_state) {
111
112 case rf_QuiesceState:
113 suspended = rf_State_Quiesce(desc);
114 break;
115 case rf_IncrAccessesCountState:
116 suspended = rf_State_IncrAccessCount(desc);
117 break;
118 case rf_MapState:
119 suspended = rf_State_Map(desc);
120 break;
121 case rf_LockState:
122 suspended = rf_State_Lock(desc);
123 break;
124 case rf_CreateDAGState:
125 suspended = rf_State_CreateDAG(desc);
126 break;
127 case rf_ExecuteDAGState:
128 suspended = rf_State_ExecuteDAG(desc);
129 break;
130 case rf_ProcessDAGState:
131 suspended = rf_State_ProcessDAG(desc);
132 break;
133 case rf_CleanupState:
134 suspended = rf_State_Cleanup(desc);
135 break;
136 case rf_DecrAccessesCountState:
137 suspended = rf_State_DecrAccessCount(desc);
138 break;
139 case rf_LastState:
140 suspended = rf_State_LastState(desc);
141 break;
142 }
143
144 /* after this point, we cannot dereference desc since
145 * desc may have been freed. desc is only freed in
146 * LastState, so if we renter this function or loop
147 * back up, desc should be valid. */
148
149 #if RF_DEBUG_STATES
150 if (rf_printStatesDebug) {
151 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
152 unit, StateName(current_state),
153 current_state_index, (long) desc,
154 suspended ? "callback scheduled" : "looping");
155 }
156 #endif
157 } while (!suspended && current_state != rf_LastState);
158
159 return;
160 }
161
162
163 void
164 rf_ContinueDagAccess(RF_DagList_t *dagList)
165 {
166 #if RF_ACC_TRACE > 0
167 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
168 RF_Etimer_t timer;
169 #endif
170 RF_RaidAccessDesc_t *desc;
171 RF_DagHeader_t *dag_h;
172 int i;
173
174 desc = dagList->desc;
175
176 #if RF_ACC_TRACE > 0
177 timer = tracerec->timer;
178 RF_ETIMER_STOP(timer);
179 RF_ETIMER_EVAL(timer);
180 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
181 RF_ETIMER_START(tracerec->timer);
182 #endif
183
184 /* skip to dag which just finished */
185 dag_h = dagList->dags;
186 for (i = 0; i < dagList->numDagsDone; i++) {
187 dag_h = dag_h->next;
188 }
189
190 /* check to see if retry is required */
191 if (dag_h->status == rf_rollBackward) {
192 /* when a dag fails, mark desc status as bad and allow
193 * all other dags in the desc to execute to
194 * completion. then, free all dags and start over */
195 desc->status = 1; /* bad status */
196 #if 0
197 printf("raid%d: DAG failure: %c addr 0x%lx "
198 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
199 desc->raidPtr->raidid, desc->type,
200 (long) desc->raidAddress,
201 (long) desc->raidAddress, (int) desc->numBlocks,
202 (int) desc->numBlocks,
203 (unsigned long) (desc->bufPtr), desc->state);
204 #endif
205 }
206 dagList->numDagsDone++;
207 rf_ContinueRaidAccess(desc);
208 }
209
210 int
211 rf_State_LastState(RF_RaidAccessDesc_t *desc)
212 {
213 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
214 RF_CBParam_t callbackArg;
215
216 callbackArg.p = desc->callbackArg;
217
218 /*
219 * If this is not an async request, wake up the caller
220 */
221 if (desc->async_flag == 0)
222 wakeup(desc->bp);
223
224 /*
225 * That's all the IO for this one... unbusy the 'disk'.
226 */
227
228 rf_disk_unbusy(desc);
229
230 /*
231 * Wakeup any requests waiting to go.
232 */
233
234 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
235 ((RF_Raid_t *) desc->raidPtr)->openings++;
236 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
237
238 /* wake up any pending IO */
239 raidstart(((RF_Raid_t *) desc->raidPtr));
240
241 /* printf("Calling biodone on 0x%x\n",desc->bp); */
242 biodone(desc->bp); /* access came through ioctl */
243
244 if (callbackFunc)
245 callbackFunc(callbackArg);
246 rf_FreeRaidAccDesc(desc);
247
248 return RF_FALSE;
249 }
250
251 int
252 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
253 {
254 RF_Raid_t *raidPtr;
255
256 raidPtr = desc->raidPtr;
257 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
258 * below */
259 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
260 raidPtr->accs_in_flight++; /* used to detect quiescence */
261 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
262
263 desc->state++;
264 return RF_FALSE;
265 }
266
267 int
268 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
269 {
270 RF_Raid_t *raidPtr;
271
272 raidPtr = desc->raidPtr;
273
274 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
275 raidPtr->accs_in_flight--;
276 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
277 rf_SignalQuiescenceLock(raidPtr);
278 }
279 rf_UpdateUserStats(raidPtr, RF_ETIMER_VAL_US(desc->timer), desc->numBlocks);
280 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
281
282 desc->state++;
283 return RF_FALSE;
284 }
285
286 int
287 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
288 {
289 #if RF_ACC_TRACE > 0
290 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
291 RF_Etimer_t timer;
292 #endif
293 int suspended = RF_FALSE;
294 RF_Raid_t *raidPtr;
295
296 raidPtr = desc->raidPtr;
297
298 #if RF_ACC_TRACE > 0
299 RF_ETIMER_START(timer);
300 RF_ETIMER_START(desc->timer);
301 #endif
302
303 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
304 if (raidPtr->accesses_suspended) {
305 RF_CallbackDesc_t *cb;
306 cb = rf_AllocCallbackDesc();
307
308 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
309 cb->callbackArg.p = (void *) desc;
310 cb->next = raidPtr->quiesce_wait_list;
311 raidPtr->quiesce_wait_list = cb;
312 suspended = RF_TRUE;
313 }
314 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
315
316 #if RF_ACC_TRACE > 0
317 RF_ETIMER_STOP(timer);
318 RF_ETIMER_EVAL(timer);
319 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
320 #endif
321
322 #if RF_DEBUG_QUIESCE
323 if (suspended && rf_quiesceDebug)
324 printf("Stalling access due to quiescence lock\n");
325 #endif
326 desc->state++;
327 return suspended;
328 }
329
330 int
331 rf_State_Map(RF_RaidAccessDesc_t *desc)
332 {
333 RF_Raid_t *raidPtr = desc->raidPtr;
334 #if RF_ACC_TRACE > 0
335 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
336 RF_Etimer_t timer;
337
338 RF_ETIMER_START(timer);
339 #endif
340
341 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
342 desc->bufPtr, RF_DONT_REMAP)))
343 RF_PANIC();
344
345 #if RF_ACC_TRACE > 0
346 RF_ETIMER_STOP(timer);
347 RF_ETIMER_EVAL(timer);
348 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
349 #endif
350
351 desc->state++;
352 return RF_FALSE;
353 }
354
355 int
356 rf_State_Lock(RF_RaidAccessDesc_t *desc)
357 {
358 #if RF_ACC_TRACE > 0
359 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
360 RF_Etimer_t timer;
361 #endif
362 RF_Raid_t *raidPtr = desc->raidPtr;
363 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
364 RF_AccessStripeMap_t *asm_p;
365 int suspended = RF_FALSE;
366
367 #if RF_ACC_TRACE > 0
368 RF_ETIMER_START(timer);
369 #endif
370 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
371 RF_StripeNum_t lastStripeID = -1;
372
373 /* acquire each lock that we don't already hold */
374 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
375 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
376 if (!rf_suppressLocksAndLargeWrites &&
377 asm_p->parityInfo &&
378 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
379 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
380 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
381 /* locks must be acquired hierarchically */
382 RF_ASSERT(asm_p->stripeID > lastStripeID);
383 lastStripeID = asm_p->stripeID;
384
385 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
386 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
387 raidPtr->Layout.dataSectorsPerStripe);
388 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
389 &asm_p->lockReqDesc)) {
390 suspended = RF_TRUE;
391 break;
392 }
393 }
394 if (desc->type == RF_IO_TYPE_WRITE &&
395 raidPtr->status == rf_rs_reconstructing) {
396 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
397 int val;
398
399 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
400 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
401 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
402 if (val == 0) {
403 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
404 } else {
405 suspended = RF_TRUE;
406 break;
407 }
408 } else {
409 if (rf_pssDebug) {
410 printf("raid%d: skipping force/block because already done, psid %ld\n",
411 desc->raidPtr->raidid,
412 (long) asm_p->stripeID);
413 }
414 }
415 } else {
416 if (rf_pssDebug) {
417 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
418 desc->raidPtr->raidid,
419 (long) asm_p->stripeID);
420 }
421 }
422 }
423 #if RF_ACC_TRACE > 0
424 RF_ETIMER_STOP(timer);
425 RF_ETIMER_EVAL(timer);
426 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
427 #endif
428 if (suspended)
429 return (RF_TRUE);
430 }
431 desc->state++;
432 return (RF_FALSE);
433 }
434 /*
435 * the following three states create, execute, and post-process dags
436 * the error recovery unit is a single dag.
437 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
438 * in some tricky cases, multiple dags per stripe are created
439 * - dags within a parity stripe are executed sequentially (arbitrary order)
440 * - dags for distinct parity stripes are executed concurrently
441 *
442 * repeat until all dags complete successfully -or- dag selection fails
443 *
444 * while !done
445 * create dag(s) (SelectAlgorithm)
446 * if dag
447 * execute dag (DispatchDAG)
448 * if dag successful
449 * done (SUCCESS)
450 * else
451 * !done (RETRY - start over with new dags)
452 * else
453 * done (FAIL)
454 */
455 int
456 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
457 {
458 #if RF_ACC_TRACE > 0
459 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
460 RF_Etimer_t timer;
461 #endif
462 RF_DagHeader_t *dag_h;
463 RF_DagList_t *dagList;
464 struct buf *bp;
465 int i, selectStatus;
466
467 /* generate a dag for the access, and fire it off. When the dag
468 * completes, we'll get re-invoked in the next state. */
469 #if RF_ACC_TRACE > 0
470 RF_ETIMER_START(timer);
471 #endif
472 /* SelectAlgorithm returns one or more dags */
473 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
474 #if RF_DEBUG_VALIDATE_DAG
475 if (rf_printDAGsDebug) {
476 dagList = desc->dagList;
477 for (i = 0; i < desc->numStripes; i++) {
478 rf_PrintDAGList(dagList.dags);
479 dagList = dagList->next;
480 }
481 }
482 #endif /* RF_DEBUG_VALIDATE_DAG */
483 #if RF_ACC_TRACE > 0
484 RF_ETIMER_STOP(timer);
485 RF_ETIMER_EVAL(timer);
486 /* update time to create all dags */
487 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
488 #endif
489
490 desc->status = 0; /* good status */
491
492 if (selectStatus) {
493 /* failed to create a dag */
494 /* this happens when there are too many faults or incomplete
495 * dag libraries */
496 printf("raid%d: failed to create a dag. "
497 "Too many component failures.\n",
498 desc->raidPtr->raidid);
499
500 desc->status = 1; /* bad status */
501 /* skip straight to rf_State_Cleanup() */
502 desc->state = rf_CleanupState;
503 bp = (struct buf *)desc->bp;
504 bp->b_flags |= B_ERROR;
505 bp->b_error = EIO;
506 } else {
507 /* bind dags to desc */
508 dagList = desc->dagList;
509 for (i = 0; i < desc->numStripes; i++) {
510 dag_h = dagList->dags;
511 while (dag_h) {
512 dag_h->bp = (struct buf *) desc->bp;
513 #if RF_ACC_TRACE > 0
514 dag_h->tracerec = tracerec;
515 #endif
516 dag_h = dag_h->next;
517 }
518 dagList = dagList->next;
519 }
520 desc->flags |= RF_DAG_DISPATCH_RETURNED;
521 desc->state++; /* next state should be rf_State_ExecuteDAG */
522 }
523 return RF_FALSE;
524 }
525
526
527
528 /* the access has an list of dagLists, one dagList per parity stripe.
529 * fire the first dag in each parity stripe (dagList).
530 * dags within a stripe (dagList) must be executed sequentially
531 * - this preserves atomic parity update
532 * dags for independents parity groups (stripes) are fired concurrently */
533
534 int
535 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
536 {
537 int i;
538 RF_DagHeader_t *dag_h;
539 RF_DagList_t *dagList;
540
541 /* next state is always rf_State_ProcessDAG important to do
542 * this before firing the first dag (it may finish before we
543 * leave this routine) */
544 desc->state++;
545
546 /* sweep dag array, a stripe at a time, firing the first dag
547 * in each stripe */
548 dagList = desc->dagList;
549 for (i = 0; i < desc->numStripes; i++) {
550 RF_ASSERT(dagList->numDags > 0);
551 RF_ASSERT(dagList->numDagsDone == 0);
552 RF_ASSERT(dagList->numDagsFired == 0);
553 #if RF_ACC_TRACE > 0
554 RF_ETIMER_START(dagList->tracerec.timer);
555 #endif
556 /* fire first dag in this stripe */
557 dag_h = dagList->dags;
558 RF_ASSERT(dag_h);
559 dagList->numDagsFired++;
560 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
561 dagList = dagList->next;
562 }
563
564 /* the DAG will always call the callback, even if there was no
565 * blocking, so we are always suspended in this state */
566 return RF_TRUE;
567 }
568
569
570
571 /* rf_State_ProcessDAG is entered when a dag completes.
572 * first, check to all dags in the access have completed
573 * if not, fire as many dags as possible */
574
575 int
576 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
577 {
578 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
579 RF_Raid_t *raidPtr = desc->raidPtr;
580 RF_DagHeader_t *dag_h;
581 int i, j, done = RF_TRUE;
582 RF_DagList_t *dagList, *temp;
583 RF_Etimer_t timer;
584
585 /* check to see if this is the last dag */
586 dagList = desc->dagList;
587 for (i = 0; i < desc->numStripes; i++) {
588 if (dagList->numDags != dagList->numDagsDone)
589 done = RF_FALSE;
590 dagList = dagList->next;
591 }
592
593 if (done) {
594 if (desc->status) {
595 /* a dag failed, retry */
596 RF_ETIMER_START(timer);
597 /* free all dags */
598 dagList = desc->dagList;
599 for (i = 0; i < desc->numStripes; i++) {
600 rf_FreeDAG(dagList->dags);
601 temp = dagList;
602 dagList = dagList->next;
603 }
604 rf_MarkFailuresInASMList(raidPtr, asmh);
605 /* back up to rf_State_CreateDAG */
606 desc->state = desc->state - 2;
607 return RF_FALSE;
608 } else {
609 /* move on to rf_State_Cleanup */
610 desc->state++;
611 }
612 return RF_FALSE;
613 } else {
614 /* more dags to execute */
615 /* see if any are ready to be fired. if so, fire them */
616 /* don't fire the initial dag in a list, it's fired in
617 * rf_State_ExecuteDAG */
618 dagList = desc->dagList;
619 for (i = 0; i < desc->numStripes; i++) {
620 if ((dagList->numDagsDone < dagList->numDags)
621 && (dagList->numDagsDone == dagList->numDagsFired)
622 && (dagList->numDagsFired > 0)) {
623 #if RF_ACC_TRACE > 0
624 RF_ETIMER_START(dagList->tracerec.timer);
625 #endif
626 /* fire next dag in this stripe */
627 /* first, skip to next dag awaiting execution */
628 dag_h = dagList->dags;
629 for (j = 0; j < dagList->numDagsDone; j++)
630 dag_h = dag_h->next;
631 dagList->numDagsFired++;
632 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
633 dagList);
634 }
635 dagList = dagList->next;
636 }
637 return RF_TRUE;
638 }
639 }
640 /* only make it this far if all dags complete successfully */
641 int
642 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
643 {
644 #if RF_ACC_TRACE > 0
645 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
646 RF_Etimer_t timer;
647 #endif
648 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
649 RF_Raid_t *raidPtr = desc->raidPtr;
650 RF_AccessStripeMap_t *asm_p;
651 RF_DagList_t *dagList;
652 int i;
653
654 desc->state++;
655
656 #if RF_ACC_TRACE > 0
657 timer = tracerec->timer;
658 RF_ETIMER_STOP(timer);
659 RF_ETIMER_EVAL(timer);
660 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
661
662 /* the RAID I/O is complete. Clean up. */
663 tracerec->specific.user.dag_retry_us = 0;
664
665 RF_ETIMER_START(timer);
666 #endif
667 /* free all dags */
668 dagList = desc->dagList;
669 for (i = 0; i < desc->numStripes; i++) {
670 rf_FreeDAG(dagList->dags);
671 dagList = dagList->next;
672 }
673 #if RF_ACC_TRACE > 0
674 RF_ETIMER_STOP(timer);
675 RF_ETIMER_EVAL(timer);
676 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
677
678 RF_ETIMER_START(timer);
679 #endif
680 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
681 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
682 if (!rf_suppressLocksAndLargeWrites &&
683 asm_p->parityInfo &&
684 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
685 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
686 rf_ReleaseStripeLock(raidPtr->lockTable,
687 asm_p->stripeID,
688 &asm_p->lockReqDesc);
689 }
690 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
691 rf_UnblockRecon(raidPtr, asm_p);
692 }
693 }
694 }
695 #if RF_ACC_TRACE > 0
696 RF_ETIMER_STOP(timer);
697 RF_ETIMER_EVAL(timer);
698 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
699
700 RF_ETIMER_START(timer);
701 #endif
702 rf_FreeAccessStripeMap(asmh);
703 #if RF_ACC_TRACE > 0
704 RF_ETIMER_STOP(timer);
705 RF_ETIMER_EVAL(timer);
706 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
707
708 RF_ETIMER_STOP(desc->timer);
709 RF_ETIMER_EVAL(desc->timer);
710
711 timer = desc->tracerec.tot_timer;
712 RF_ETIMER_STOP(timer);
713 RF_ETIMER_EVAL(timer);
714 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
715
716 rf_LogTraceRec(raidPtr, tracerec);
717 #endif
718 desc->flags |= RF_DAG_ACCESS_COMPLETE;
719
720 return RF_FALSE;
721 }
722