rf_states.c revision 1.30 1 /* $NetBSD: rf_states.c,v 1.30 2004/03/13 02:00:15 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.30 2004/03/13 02:00:15 oster Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48
49 #ifndef RF_DEBUG_STATES
50 #define RF_DEBUG_STATES 0
51 #endif
52
53 /* prototypes for some of the available states.
54
55 States must:
56
57 - not block.
58
59 - either schedule rf_ContinueRaidAccess as a callback and return
60 RF_TRUE, or complete all of their work and return RF_FALSE.
61
62 - increment desc->state when they have finished their work.
63 */
64
65 #if RF_DEBUG_STATES
66 static char *
67 StateName(RF_AccessState_t state)
68 {
69 switch (state) {
70 case rf_QuiesceState:return "QuiesceState";
71 case rf_MapState:
72 return "MapState";
73 case rf_LockState:
74 return "LockState";
75 case rf_CreateDAGState:
76 return "CreateDAGState";
77 case rf_ExecuteDAGState:
78 return "ExecuteDAGState";
79 case rf_ProcessDAGState:
80 return "ProcessDAGState";
81 case rf_CleanupState:
82 return "CleanupState";
83 case rf_LastState:
84 return "LastState";
85 case rf_IncrAccessesCountState:
86 return "IncrAccessesCountState";
87 case rf_DecrAccessesCountState:
88 return "DecrAccessesCountState";
89 default:
90 return "!!! UnnamedState !!!";
91 }
92 }
93 #endif
94
95 void
96 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
97 {
98 int suspended = RF_FALSE;
99 int current_state_index = desc->state;
100 RF_AccessState_t current_state = desc->states[current_state_index];
101 #if RF_DEBUG_STATES
102 int unit = desc->raidPtr->raidid;
103 #endif
104
105 do {
106
107 current_state_index = desc->state;
108 current_state = desc->states[current_state_index];
109
110 switch (current_state) {
111
112 case rf_QuiesceState:
113 suspended = rf_State_Quiesce(desc);
114 break;
115 case rf_IncrAccessesCountState:
116 suspended = rf_State_IncrAccessCount(desc);
117 break;
118 case rf_MapState:
119 suspended = rf_State_Map(desc);
120 break;
121 case rf_LockState:
122 suspended = rf_State_Lock(desc);
123 break;
124 case rf_CreateDAGState:
125 suspended = rf_State_CreateDAG(desc);
126 break;
127 case rf_ExecuteDAGState:
128 suspended = rf_State_ExecuteDAG(desc);
129 break;
130 case rf_ProcessDAGState:
131 suspended = rf_State_ProcessDAG(desc);
132 break;
133 case rf_CleanupState:
134 suspended = rf_State_Cleanup(desc);
135 break;
136 case rf_DecrAccessesCountState:
137 suspended = rf_State_DecrAccessCount(desc);
138 break;
139 case rf_LastState:
140 suspended = rf_State_LastState(desc);
141 break;
142 }
143
144 /* after this point, we cannot dereference desc since
145 * desc may have been freed. desc is only freed in
146 * LastState, so if we renter this function or loop
147 * back up, desc should be valid. */
148
149 #if RF_DEBUG_STATES
150 if (rf_printStatesDebug) {
151 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
152 unit, StateName(current_state),
153 current_state_index, (long) desc,
154 suspended ? "callback scheduled" : "looping");
155 }
156 #endif
157 } while (!suspended && current_state != rf_LastState);
158
159 return;
160 }
161
162
163 void
164 rf_ContinueDagAccess(RF_DagList_t *dagList)
165 {
166 #if RF_ACC_TRACE > 0
167 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
168 RF_Etimer_t timer;
169 #endif
170 RF_RaidAccessDesc_t *desc;
171 RF_DagHeader_t *dag_h;
172 int i;
173
174 desc = dagList->desc;
175
176 #if RF_ACC_TRACE > 0
177 timer = tracerec->timer;
178 RF_ETIMER_STOP(timer);
179 RF_ETIMER_EVAL(timer);
180 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
181 RF_ETIMER_START(tracerec->timer);
182 #endif
183
184 /* skip to dag which just finished */
185 dag_h = dagList->dags;
186 for (i = 0; i < dagList->numDagsDone; i++) {
187 dag_h = dag_h->next;
188 }
189
190 /* check to see if retry is required */
191 if (dag_h->status == rf_rollBackward) {
192 /* when a dag fails, mark desc status as bad and allow
193 * all other dags in the desc to execute to
194 * completion. then, free all dags and start over */
195 desc->status = 1; /* bad status */
196 #if 0
197 printf("raid%d: DAG failure: %c addr 0x%lx "
198 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
199 desc->raidPtr->raidid, desc->type,
200 (long) desc->raidAddress,
201 (long) desc->raidAddress, (int) desc->numBlocks,
202 (int) desc->numBlocks,
203 (unsigned long) (desc->bufPtr), desc->state);
204 #endif
205 }
206 dagList->numDagsDone++;
207 rf_ContinueRaidAccess(desc);
208 }
209
210 int
211 rf_State_LastState(RF_RaidAccessDesc_t *desc)
212 {
213 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
214 RF_CBParam_t callbackArg;
215
216 callbackArg.p = desc->callbackArg;
217
218 /*
219 * If this is not an async request, wake up the caller
220 */
221 if (desc->async_flag == 0)
222 wakeup(desc->bp);
223
224 /*
225 * That's all the IO for this one... unbusy the 'disk'.
226 */
227
228 rf_disk_unbusy(desc);
229
230 /*
231 * Wakeup any requests waiting to go.
232 */
233
234 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
235 ((RF_Raid_t *) desc->raidPtr)->openings++;
236 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
237
238 /* wake up any pending IO */
239 raidstart(((RF_Raid_t *) desc->raidPtr));
240
241 /* printf("Calling biodone on 0x%x\n",desc->bp); */
242 biodone(desc->bp); /* access came through ioctl */
243
244 if (callbackFunc)
245 callbackFunc(callbackArg);
246 rf_FreeRaidAccDesc(desc);
247
248 return RF_FALSE;
249 }
250
251 int
252 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
253 {
254 RF_Raid_t *raidPtr;
255
256 raidPtr = desc->raidPtr;
257 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
258 * below */
259 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
260 raidPtr->accs_in_flight++; /* used to detect quiescence */
261 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
262
263 desc->state++;
264 return RF_FALSE;
265 }
266
267 int
268 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
269 {
270 RF_Raid_t *raidPtr;
271
272 raidPtr = desc->raidPtr;
273
274 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
275 raidPtr->accs_in_flight--;
276 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
277 rf_SignalQuiescenceLock(raidPtr);
278 }
279 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
280
281 desc->state++;
282 return RF_FALSE;
283 }
284
285 int
286 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
287 {
288 #if RF_ACC_TRACE > 0
289 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
290 RF_Etimer_t timer;
291 #endif
292 int suspended = RF_FALSE;
293 RF_Raid_t *raidPtr;
294
295 raidPtr = desc->raidPtr;
296
297 #if RF_ACC_TRACE > 0
298 RF_ETIMER_START(timer);
299 RF_ETIMER_START(desc->timer);
300 #endif
301
302 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
303 if (raidPtr->accesses_suspended) {
304 RF_CallbackDesc_t *cb;
305 cb = rf_AllocCallbackDesc();
306
307 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
308 cb->callbackArg.p = (void *) desc;
309 cb->next = raidPtr->quiesce_wait_list;
310 raidPtr->quiesce_wait_list = cb;
311 suspended = RF_TRUE;
312 }
313 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
314
315 #if RF_ACC_TRACE > 0
316 RF_ETIMER_STOP(timer);
317 RF_ETIMER_EVAL(timer);
318 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
319 #endif
320
321 #if RF_DEBUG_QUIESCE
322 if (suspended && rf_quiesceDebug)
323 printf("Stalling access due to quiescence lock\n");
324 #endif
325 desc->state++;
326 return suspended;
327 }
328
329 int
330 rf_State_Map(RF_RaidAccessDesc_t *desc)
331 {
332 RF_Raid_t *raidPtr = desc->raidPtr;
333 #if RF_ACC_TRACE > 0
334 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
335 RF_Etimer_t timer;
336
337 RF_ETIMER_START(timer);
338 #endif
339
340 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
341 desc->bufPtr, RF_DONT_REMAP)))
342 RF_PANIC();
343
344 #if RF_ACC_TRACE > 0
345 RF_ETIMER_STOP(timer);
346 RF_ETIMER_EVAL(timer);
347 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
348 #endif
349
350 desc->state++;
351 return RF_FALSE;
352 }
353
354 int
355 rf_State_Lock(RF_RaidAccessDesc_t *desc)
356 {
357 #if RF_ACC_TRACE > 0
358 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
359 RF_Etimer_t timer;
360 #endif
361 RF_Raid_t *raidPtr = desc->raidPtr;
362 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
363 RF_AccessStripeMap_t *asm_p;
364 int suspended = RF_FALSE;
365
366 #if RF_ACC_TRACE > 0
367 RF_ETIMER_START(timer);
368 #endif
369 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
370 RF_StripeNum_t lastStripeID = -1;
371
372 /* acquire each lock that we don't already hold */
373 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
374 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
375 if (!rf_suppressLocksAndLargeWrites &&
376 asm_p->parityInfo &&
377 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
378 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
379 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
380 /* locks must be acquired hierarchically */
381 RF_ASSERT(asm_p->stripeID > lastStripeID);
382 lastStripeID = asm_p->stripeID;
383
384 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
385 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
386 raidPtr->Layout.dataSectorsPerStripe);
387 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
388 &asm_p->lockReqDesc)) {
389 suspended = RF_TRUE;
390 break;
391 }
392 }
393 if (desc->type == RF_IO_TYPE_WRITE &&
394 raidPtr->status == rf_rs_reconstructing) {
395 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
396 int val;
397
398 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
399 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
400 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
401 if (val == 0) {
402 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
403 } else {
404 suspended = RF_TRUE;
405 break;
406 }
407 } else {
408 #if RF_DEBUG_PSS > 0
409 if (rf_pssDebug) {
410 printf("raid%d: skipping force/block because already done, psid %ld\n",
411 desc->raidPtr->raidid,
412 (long) asm_p->stripeID);
413 }
414 #endif
415 }
416 } else {
417 #if RF_DEBUG_PSS > 0
418 if (rf_pssDebug) {
419 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
420 desc->raidPtr->raidid,
421 (long) asm_p->stripeID);
422 }
423 #endif
424 }
425 }
426 #if RF_ACC_TRACE > 0
427 RF_ETIMER_STOP(timer);
428 RF_ETIMER_EVAL(timer);
429 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
430 #endif
431 if (suspended)
432 return (RF_TRUE);
433 }
434 desc->state++;
435 return (RF_FALSE);
436 }
437 /*
438 * the following three states create, execute, and post-process dags
439 * the error recovery unit is a single dag.
440 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
441 * in some tricky cases, multiple dags per stripe are created
442 * - dags within a parity stripe are executed sequentially (arbitrary order)
443 * - dags for distinct parity stripes are executed concurrently
444 *
445 * repeat until all dags complete successfully -or- dag selection fails
446 *
447 * while !done
448 * create dag(s) (SelectAlgorithm)
449 * if dag
450 * execute dag (DispatchDAG)
451 * if dag successful
452 * done (SUCCESS)
453 * else
454 * !done (RETRY - start over with new dags)
455 * else
456 * done (FAIL)
457 */
458 int
459 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
460 {
461 #if RF_ACC_TRACE > 0
462 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
463 RF_Etimer_t timer;
464 #endif
465 RF_DagHeader_t *dag_h;
466 RF_DagList_t *dagList;
467 struct buf *bp;
468 int i, selectStatus;
469
470 /* generate a dag for the access, and fire it off. When the dag
471 * completes, we'll get re-invoked in the next state. */
472 #if RF_ACC_TRACE > 0
473 RF_ETIMER_START(timer);
474 #endif
475 /* SelectAlgorithm returns one or more dags */
476 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
477 #if RF_DEBUG_VALIDATE_DAG
478 if (rf_printDAGsDebug) {
479 dagList = desc->dagList;
480 for (i = 0; i < desc->numStripes; i++) {
481 rf_PrintDAGList(dagList.dags);
482 dagList = dagList->next;
483 }
484 }
485 #endif /* RF_DEBUG_VALIDATE_DAG */
486 #if RF_ACC_TRACE > 0
487 RF_ETIMER_STOP(timer);
488 RF_ETIMER_EVAL(timer);
489 /* update time to create all dags */
490 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
491 #endif
492
493 desc->status = 0; /* good status */
494
495 if (selectStatus) {
496 /* failed to create a dag */
497 /* this happens when there are too many faults or incomplete
498 * dag libraries */
499 printf("raid%d: failed to create a dag. "
500 "Too many component failures.\n",
501 desc->raidPtr->raidid);
502
503 desc->status = 1; /* bad status */
504 /* skip straight to rf_State_Cleanup() */
505 desc->state = rf_CleanupState;
506 bp = (struct buf *)desc->bp;
507 bp->b_flags |= B_ERROR;
508 bp->b_error = EIO;
509 } else {
510 /* bind dags to desc */
511 dagList = desc->dagList;
512 for (i = 0; i < desc->numStripes; i++) {
513 dag_h = dagList->dags;
514 while (dag_h) {
515 dag_h->bp = (struct buf *) desc->bp;
516 #if RF_ACC_TRACE > 0
517 dag_h->tracerec = tracerec;
518 #endif
519 dag_h = dag_h->next;
520 }
521 dagList = dagList->next;
522 }
523 desc->flags |= RF_DAG_DISPATCH_RETURNED;
524 desc->state++; /* next state should be rf_State_ExecuteDAG */
525 }
526 return RF_FALSE;
527 }
528
529
530
531 /* the access has an list of dagLists, one dagList per parity stripe.
532 * fire the first dag in each parity stripe (dagList).
533 * dags within a stripe (dagList) must be executed sequentially
534 * - this preserves atomic parity update
535 * dags for independents parity groups (stripes) are fired concurrently */
536
537 int
538 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
539 {
540 int i;
541 RF_DagHeader_t *dag_h;
542 RF_DagList_t *dagList;
543
544 /* next state is always rf_State_ProcessDAG important to do
545 * this before firing the first dag (it may finish before we
546 * leave this routine) */
547 desc->state++;
548
549 /* sweep dag array, a stripe at a time, firing the first dag
550 * in each stripe */
551 dagList = desc->dagList;
552 for (i = 0; i < desc->numStripes; i++) {
553 RF_ASSERT(dagList->numDags > 0);
554 RF_ASSERT(dagList->numDagsDone == 0);
555 RF_ASSERT(dagList->numDagsFired == 0);
556 #if RF_ACC_TRACE > 0
557 RF_ETIMER_START(dagList->tracerec.timer);
558 #endif
559 /* fire first dag in this stripe */
560 dag_h = dagList->dags;
561 RF_ASSERT(dag_h);
562 dagList->numDagsFired++;
563 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
564 dagList = dagList->next;
565 }
566
567 /* the DAG will always call the callback, even if there was no
568 * blocking, so we are always suspended in this state */
569 return RF_TRUE;
570 }
571
572
573
574 /* rf_State_ProcessDAG is entered when a dag completes.
575 * first, check to all dags in the access have completed
576 * if not, fire as many dags as possible */
577
578 int
579 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
580 {
581 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
582 RF_Raid_t *raidPtr = desc->raidPtr;
583 RF_DagHeader_t *dag_h;
584 int i, j, done = RF_TRUE;
585 RF_DagList_t *dagList, *temp;
586 RF_Etimer_t timer;
587
588 /* check to see if this is the last dag */
589 dagList = desc->dagList;
590 for (i = 0; i < desc->numStripes; i++) {
591 if (dagList->numDags != dagList->numDagsDone)
592 done = RF_FALSE;
593 dagList = dagList->next;
594 }
595
596 if (done) {
597 if (desc->status) {
598 /* a dag failed, retry */
599 RF_ETIMER_START(timer);
600 /* free all dags */
601 dagList = desc->dagList;
602 for (i = 0; i < desc->numStripes; i++) {
603 rf_FreeDAG(dagList->dags);
604 temp = dagList;
605 dagList = dagList->next;
606 }
607 rf_MarkFailuresInASMList(raidPtr, asmh);
608 /* back up to rf_State_CreateDAG */
609 desc->state = desc->state - 2;
610 return RF_FALSE;
611 } else {
612 /* move on to rf_State_Cleanup */
613 desc->state++;
614 }
615 return RF_FALSE;
616 } else {
617 /* more dags to execute */
618 /* see if any are ready to be fired. if so, fire them */
619 /* don't fire the initial dag in a list, it's fired in
620 * rf_State_ExecuteDAG */
621 dagList = desc->dagList;
622 for (i = 0; i < desc->numStripes; i++) {
623 if ((dagList->numDagsDone < dagList->numDags)
624 && (dagList->numDagsDone == dagList->numDagsFired)
625 && (dagList->numDagsFired > 0)) {
626 #if RF_ACC_TRACE > 0
627 RF_ETIMER_START(dagList->tracerec.timer);
628 #endif
629 /* fire next dag in this stripe */
630 /* first, skip to next dag awaiting execution */
631 dag_h = dagList->dags;
632 for (j = 0; j < dagList->numDagsDone; j++)
633 dag_h = dag_h->next;
634 dagList->numDagsFired++;
635 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
636 dagList);
637 }
638 dagList = dagList->next;
639 }
640 return RF_TRUE;
641 }
642 }
643 /* only make it this far if all dags complete successfully */
644 int
645 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
646 {
647 #if RF_ACC_TRACE > 0
648 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
649 RF_Etimer_t timer;
650 #endif
651 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
652 RF_Raid_t *raidPtr = desc->raidPtr;
653 RF_AccessStripeMap_t *asm_p;
654 RF_DagList_t *dagList;
655 int i;
656
657 desc->state++;
658
659 #if RF_ACC_TRACE > 0
660 timer = tracerec->timer;
661 RF_ETIMER_STOP(timer);
662 RF_ETIMER_EVAL(timer);
663 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
664
665 /* the RAID I/O is complete. Clean up. */
666 tracerec->specific.user.dag_retry_us = 0;
667
668 RF_ETIMER_START(timer);
669 #endif
670 /* free all dags */
671 dagList = desc->dagList;
672 for (i = 0; i < desc->numStripes; i++) {
673 rf_FreeDAG(dagList->dags);
674 dagList = dagList->next;
675 }
676 #if RF_ACC_TRACE > 0
677 RF_ETIMER_STOP(timer);
678 RF_ETIMER_EVAL(timer);
679 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
680
681 RF_ETIMER_START(timer);
682 #endif
683 if (!(raidPtr->Layout.map->flags & RF_NO_STRIPE_LOCKS)) {
684 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
685 if (!rf_suppressLocksAndLargeWrites &&
686 asm_p->parityInfo &&
687 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
688 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
689 rf_ReleaseStripeLock(raidPtr->lockTable,
690 asm_p->stripeID,
691 &asm_p->lockReqDesc);
692 }
693 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
694 rf_UnblockRecon(raidPtr, asm_p);
695 }
696 }
697 }
698 #if RF_ACC_TRACE > 0
699 RF_ETIMER_STOP(timer);
700 RF_ETIMER_EVAL(timer);
701 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
702
703 RF_ETIMER_START(timer);
704 #endif
705 rf_FreeAccessStripeMap(asmh);
706 #if RF_ACC_TRACE > 0
707 RF_ETIMER_STOP(timer);
708 RF_ETIMER_EVAL(timer);
709 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
710
711 RF_ETIMER_STOP(desc->timer);
712 RF_ETIMER_EVAL(desc->timer);
713
714 timer = desc->tracerec.tot_timer;
715 RF_ETIMER_STOP(timer);
716 RF_ETIMER_EVAL(timer);
717 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
718
719 rf_LogTraceRec(raidPtr, tracerec);
720 #endif
721 desc->flags |= RF_DAG_ACCESS_COMPLETE;
722
723 return RF_FALSE;
724 }
725