rf_states.c revision 1.32 1 /* $NetBSD: rf_states.c,v 1.32 2004/03/20 17:30:40 oster Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.32 2004/03/20 17:30:40 oster Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48
49 #ifndef RF_DEBUG_STATES
50 #define RF_DEBUG_STATES 0
51 #endif
52
53 /* prototypes for some of the available states.
54
55 States must:
56
57 - not block.
58
59 - either schedule rf_ContinueRaidAccess as a callback and return
60 RF_TRUE, or complete all of their work and return RF_FALSE.
61
62 - increment desc->state when they have finished their work.
63 */
64
65 #if RF_DEBUG_STATES
66 static char *
67 StateName(RF_AccessState_t state)
68 {
69 switch (state) {
70 case rf_QuiesceState:return "QuiesceState";
71 case rf_MapState:
72 return "MapState";
73 case rf_LockState:
74 return "LockState";
75 case rf_CreateDAGState:
76 return "CreateDAGState";
77 case rf_ExecuteDAGState:
78 return "ExecuteDAGState";
79 case rf_ProcessDAGState:
80 return "ProcessDAGState";
81 case rf_CleanupState:
82 return "CleanupState";
83 case rf_LastState:
84 return "LastState";
85 case rf_IncrAccessesCountState:
86 return "IncrAccessesCountState";
87 case rf_DecrAccessesCountState:
88 return "DecrAccessesCountState";
89 default:
90 return "!!! UnnamedState !!!";
91 }
92 }
93 #endif
94
95 void
96 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
97 {
98 int suspended = RF_FALSE;
99 int current_state_index = desc->state;
100 RF_AccessState_t current_state = desc->states[current_state_index];
101 #if RF_DEBUG_STATES
102 int unit = desc->raidPtr->raidid;
103 #endif
104
105 do {
106
107 current_state_index = desc->state;
108 current_state = desc->states[current_state_index];
109
110 switch (current_state) {
111
112 case rf_QuiesceState:
113 suspended = rf_State_Quiesce(desc);
114 break;
115 case rf_IncrAccessesCountState:
116 suspended = rf_State_IncrAccessCount(desc);
117 break;
118 case rf_MapState:
119 suspended = rf_State_Map(desc);
120 break;
121 case rf_LockState:
122 suspended = rf_State_Lock(desc);
123 break;
124 case rf_CreateDAGState:
125 suspended = rf_State_CreateDAG(desc);
126 break;
127 case rf_ExecuteDAGState:
128 suspended = rf_State_ExecuteDAG(desc);
129 break;
130 case rf_ProcessDAGState:
131 suspended = rf_State_ProcessDAG(desc);
132 break;
133 case rf_CleanupState:
134 suspended = rf_State_Cleanup(desc);
135 break;
136 case rf_DecrAccessesCountState:
137 suspended = rf_State_DecrAccessCount(desc);
138 break;
139 case rf_LastState:
140 suspended = rf_State_LastState(desc);
141 break;
142 }
143
144 /* after this point, we cannot dereference desc since
145 * desc may have been freed. desc is only freed in
146 * LastState, so if we renter this function or loop
147 * back up, desc should be valid. */
148
149 #if RF_DEBUG_STATES
150 if (rf_printStatesDebug) {
151 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
152 unit, StateName(current_state),
153 current_state_index, (long) desc,
154 suspended ? "callback scheduled" : "looping");
155 }
156 #endif
157 } while (!suspended && current_state != rf_LastState);
158
159 return;
160 }
161
162
163 void
164 rf_ContinueDagAccess(RF_DagList_t *dagList)
165 {
166 #if RF_ACC_TRACE > 0
167 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
168 RF_Etimer_t timer;
169 #endif
170 RF_RaidAccessDesc_t *desc;
171 RF_DagHeader_t *dag_h;
172 int i;
173
174 desc = dagList->desc;
175
176 #if RF_ACC_TRACE > 0
177 timer = tracerec->timer;
178 RF_ETIMER_STOP(timer);
179 RF_ETIMER_EVAL(timer);
180 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
181 RF_ETIMER_START(tracerec->timer);
182 #endif
183
184 /* skip to dag which just finished */
185 dag_h = dagList->dags;
186 for (i = 0; i < dagList->numDagsDone; i++) {
187 dag_h = dag_h->next;
188 }
189
190 /* check to see if retry is required */
191 if (dag_h->status == rf_rollBackward) {
192 /* when a dag fails, mark desc status as bad and allow
193 * all other dags in the desc to execute to
194 * completion. then, free all dags and start over */
195 desc->status = 1; /* bad status */
196 #if 0
197 printf("raid%d: DAG failure: %c addr 0x%lx "
198 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
199 desc->raidPtr->raidid, desc->type,
200 (long) desc->raidAddress,
201 (long) desc->raidAddress, (int) desc->numBlocks,
202 (int) desc->numBlocks,
203 (unsigned long) (desc->bufPtr), desc->state);
204 #endif
205 }
206 dagList->numDagsDone++;
207 rf_ContinueRaidAccess(desc);
208 }
209
210 int
211 rf_State_LastState(RF_RaidAccessDesc_t *desc)
212 {
213 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
214 RF_CBParam_t callbackArg;
215
216 callbackArg.p = desc->callbackArg;
217
218 /*
219 * If this is not an async request, wake up the caller
220 */
221 if (desc->async_flag == 0)
222 wakeup(desc->bp);
223
224 /*
225 * That's all the IO for this one... unbusy the 'disk'.
226 */
227
228 rf_disk_unbusy(desc);
229
230 /*
231 * Wakeup any requests waiting to go.
232 */
233
234 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
235 ((RF_Raid_t *) desc->raidPtr)->openings++;
236 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
237
238 /* wake up any pending IO */
239 raidstart(((RF_Raid_t *) desc->raidPtr));
240
241 /* printf("Calling biodone on 0x%x\n",desc->bp); */
242 biodone(desc->bp); /* access came through ioctl */
243
244 if (callbackFunc)
245 callbackFunc(callbackArg);
246 rf_FreeRaidAccDesc(desc);
247
248 return RF_FALSE;
249 }
250
251 int
252 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
253 {
254 RF_Raid_t *raidPtr;
255
256 raidPtr = desc->raidPtr;
257 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
258 * below */
259 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
260 raidPtr->accs_in_flight++; /* used to detect quiescence */
261 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
262
263 desc->state++;
264 return RF_FALSE;
265 }
266
267 int
268 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
269 {
270 RF_Raid_t *raidPtr;
271
272 raidPtr = desc->raidPtr;
273
274 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
275 raidPtr->accs_in_flight--;
276 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
277 rf_SignalQuiescenceLock(raidPtr);
278 }
279 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
280
281 desc->state++;
282 return RF_FALSE;
283 }
284
285 int
286 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
287 {
288 #if RF_ACC_TRACE > 0
289 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
290 RF_Etimer_t timer;
291 #endif
292 RF_CallbackDesc_t *cb;
293 RF_Raid_t *raidPtr;
294 int suspended = RF_FALSE;
295 int need_cb, used_cb;
296
297 raidPtr = desc->raidPtr;
298
299 #if RF_ACC_TRACE > 0
300 RF_ETIMER_START(timer);
301 RF_ETIMER_START(desc->timer);
302 #endif
303
304 need_cb = 0;
305 used_cb = 0;
306 cb = NULL;
307
308 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
309 /* Do an initial check to see if we might need a callback structure */
310 if (raidPtr->accesses_suspended) {
311 need_cb = 1;
312 }
313 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
314
315 if (need_cb) {
316 /* create a callback if we might need it...
317 and we likely do. */
318 cb = rf_AllocCallbackDesc();
319 }
320
321 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
322 if (raidPtr->accesses_suspended) {
323 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
324 cb->callbackArg.p = (void *) desc;
325 cb->next = raidPtr->quiesce_wait_list;
326 raidPtr->quiesce_wait_list = cb;
327 suspended = RF_TRUE;
328 used_cb = 1;
329 }
330 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
331
332 if ((need_cb == 1) && (used_cb == 0)) {
333 rf_FreeCallbackDesc(cb);
334 }
335
336 #if RF_ACC_TRACE > 0
337 RF_ETIMER_STOP(timer);
338 RF_ETIMER_EVAL(timer);
339 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
340 #endif
341
342 #if RF_DEBUG_QUIESCE
343 if (suspended && rf_quiesceDebug)
344 printf("Stalling access due to quiescence lock\n");
345 #endif
346 desc->state++;
347 return suspended;
348 }
349
350 int
351 rf_State_Map(RF_RaidAccessDesc_t *desc)
352 {
353 RF_Raid_t *raidPtr = desc->raidPtr;
354 #if RF_ACC_TRACE > 0
355 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
356 RF_Etimer_t timer;
357
358 RF_ETIMER_START(timer);
359 #endif
360
361 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
362 desc->bufPtr, RF_DONT_REMAP)))
363 RF_PANIC();
364
365 #if RF_ACC_TRACE > 0
366 RF_ETIMER_STOP(timer);
367 RF_ETIMER_EVAL(timer);
368 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
369 #endif
370
371 desc->state++;
372 return RF_FALSE;
373 }
374
375 int
376 rf_State_Lock(RF_RaidAccessDesc_t *desc)
377 {
378 #if RF_ACC_TRACE > 0
379 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
380 RF_Etimer_t timer;
381 #endif
382 RF_Raid_t *raidPtr = desc->raidPtr;
383 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
384 RF_AccessStripeMap_t *asm_p;
385 RF_StripeNum_t lastStripeID = -1;
386 int suspended = RF_FALSE;
387
388 #if RF_ACC_TRACE > 0
389 RF_ETIMER_START(timer);
390 #endif
391
392 /* acquire each lock that we don't already hold */
393 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
394 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
395 if (!rf_suppressLocksAndLargeWrites &&
396 asm_p->parityInfo &&
397 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
398 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
399 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
400 /* locks must be acquired hierarchically */
401 RF_ASSERT(asm_p->stripeID > lastStripeID);
402 lastStripeID = asm_p->stripeID;
403
404 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
405 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
406 raidPtr->Layout.dataSectorsPerStripe);
407 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
408 &asm_p->lockReqDesc)) {
409 suspended = RF_TRUE;
410 break;
411 }
412 }
413 if (desc->type == RF_IO_TYPE_WRITE &&
414 raidPtr->status == rf_rs_reconstructing) {
415 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
416 int val;
417
418 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
419 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
420 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
421 if (val == 0) {
422 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
423 } else {
424 suspended = RF_TRUE;
425 break;
426 }
427 } else {
428 #if RF_DEBUG_PSS > 0
429 if (rf_pssDebug) {
430 printf("raid%d: skipping force/block because already done, psid %ld\n",
431 desc->raidPtr->raidid,
432 (long) asm_p->stripeID);
433 }
434 #endif
435 }
436 } else {
437 #if RF_DEBUG_PSS > 0
438 if (rf_pssDebug) {
439 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
440 desc->raidPtr->raidid,
441 (long) asm_p->stripeID);
442 }
443 #endif
444 }
445 }
446 #if RF_ACC_TRACE > 0
447 RF_ETIMER_STOP(timer);
448 RF_ETIMER_EVAL(timer);
449 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
450 #endif
451 if (suspended)
452 return (RF_TRUE);
453
454 desc->state++;
455 return (RF_FALSE);
456 }
457 /*
458 * the following three states create, execute, and post-process dags
459 * the error recovery unit is a single dag.
460 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
461 * in some tricky cases, multiple dags per stripe are created
462 * - dags within a parity stripe are executed sequentially (arbitrary order)
463 * - dags for distinct parity stripes are executed concurrently
464 *
465 * repeat until all dags complete successfully -or- dag selection fails
466 *
467 * while !done
468 * create dag(s) (SelectAlgorithm)
469 * if dag
470 * execute dag (DispatchDAG)
471 * if dag successful
472 * done (SUCCESS)
473 * else
474 * !done (RETRY - start over with new dags)
475 * else
476 * done (FAIL)
477 */
478 int
479 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
480 {
481 #if RF_ACC_TRACE > 0
482 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
483 RF_Etimer_t timer;
484 #endif
485 RF_DagHeader_t *dag_h;
486 RF_DagList_t *dagList;
487 struct buf *bp;
488 int i, selectStatus;
489
490 /* generate a dag for the access, and fire it off. When the dag
491 * completes, we'll get re-invoked in the next state. */
492 #if RF_ACC_TRACE > 0
493 RF_ETIMER_START(timer);
494 #endif
495 /* SelectAlgorithm returns one or more dags */
496 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
497 #if RF_DEBUG_VALIDATE_DAG
498 if (rf_printDAGsDebug) {
499 dagList = desc->dagList;
500 for (i = 0; i < desc->numStripes; i++) {
501 rf_PrintDAGList(dagList.dags);
502 dagList = dagList->next;
503 }
504 }
505 #endif /* RF_DEBUG_VALIDATE_DAG */
506 #if RF_ACC_TRACE > 0
507 RF_ETIMER_STOP(timer);
508 RF_ETIMER_EVAL(timer);
509 /* update time to create all dags */
510 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
511 #endif
512
513 desc->status = 0; /* good status */
514
515 if (selectStatus) {
516 /* failed to create a dag */
517 /* this happens when there are too many faults or incomplete
518 * dag libraries */
519 printf("raid%d: failed to create a dag. "
520 "Too many component failures.\n",
521 desc->raidPtr->raidid);
522
523 desc->status = 1; /* bad status */
524 /* skip straight to rf_State_Cleanup() */
525 desc->state = rf_CleanupState;
526 bp = (struct buf *)desc->bp;
527 bp->b_flags |= B_ERROR;
528 bp->b_error = EIO;
529 } else {
530 /* bind dags to desc */
531 dagList = desc->dagList;
532 for (i = 0; i < desc->numStripes; i++) {
533 dag_h = dagList->dags;
534 while (dag_h) {
535 dag_h->bp = (struct buf *) desc->bp;
536 #if RF_ACC_TRACE > 0
537 dag_h->tracerec = tracerec;
538 #endif
539 dag_h = dag_h->next;
540 }
541 dagList = dagList->next;
542 }
543 desc->flags |= RF_DAG_DISPATCH_RETURNED;
544 desc->state++; /* next state should be rf_State_ExecuteDAG */
545 }
546 return RF_FALSE;
547 }
548
549
550
551 /* the access has an list of dagLists, one dagList per parity stripe.
552 * fire the first dag in each parity stripe (dagList).
553 * dags within a stripe (dagList) must be executed sequentially
554 * - this preserves atomic parity update
555 * dags for independents parity groups (stripes) are fired concurrently */
556
557 int
558 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
559 {
560 int i;
561 RF_DagHeader_t *dag_h;
562 RF_DagList_t *dagList;
563
564 /* next state is always rf_State_ProcessDAG important to do
565 * this before firing the first dag (it may finish before we
566 * leave this routine) */
567 desc->state++;
568
569 /* sweep dag array, a stripe at a time, firing the first dag
570 * in each stripe */
571 dagList = desc->dagList;
572 for (i = 0; i < desc->numStripes; i++) {
573 RF_ASSERT(dagList->numDags > 0);
574 RF_ASSERT(dagList->numDagsDone == 0);
575 RF_ASSERT(dagList->numDagsFired == 0);
576 #if RF_ACC_TRACE > 0
577 RF_ETIMER_START(dagList->tracerec.timer);
578 #endif
579 /* fire first dag in this stripe */
580 dag_h = dagList->dags;
581 RF_ASSERT(dag_h);
582 dagList->numDagsFired++;
583 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
584 dagList = dagList->next;
585 }
586
587 /* the DAG will always call the callback, even if there was no
588 * blocking, so we are always suspended in this state */
589 return RF_TRUE;
590 }
591
592
593
594 /* rf_State_ProcessDAG is entered when a dag completes.
595 * first, check to all dags in the access have completed
596 * if not, fire as many dags as possible */
597
598 int
599 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
600 {
601 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
602 RF_Raid_t *raidPtr = desc->raidPtr;
603 RF_DagHeader_t *dag_h;
604 int i, j, done = RF_TRUE;
605 RF_DagList_t *dagList, *temp;
606 RF_Etimer_t timer;
607
608 /* check to see if this is the last dag */
609 dagList = desc->dagList;
610 for (i = 0; i < desc->numStripes; i++) {
611 if (dagList->numDags != dagList->numDagsDone)
612 done = RF_FALSE;
613 dagList = dagList->next;
614 }
615
616 if (done) {
617 if (desc->status) {
618 /* a dag failed, retry */
619 RF_ETIMER_START(timer);
620 /* free all dags */
621 dagList = desc->dagList;
622 for (i = 0; i < desc->numStripes; i++) {
623 rf_FreeDAG(dagList->dags);
624 temp = dagList;
625 dagList = dagList->next;
626 }
627 rf_MarkFailuresInASMList(raidPtr, asmh);
628 /* back up to rf_State_CreateDAG */
629 desc->state = desc->state - 2;
630 return RF_FALSE;
631 } else {
632 /* move on to rf_State_Cleanup */
633 desc->state++;
634 }
635 return RF_FALSE;
636 } else {
637 /* more dags to execute */
638 /* see if any are ready to be fired. if so, fire them */
639 /* don't fire the initial dag in a list, it's fired in
640 * rf_State_ExecuteDAG */
641 dagList = desc->dagList;
642 for (i = 0; i < desc->numStripes; i++) {
643 if ((dagList->numDagsDone < dagList->numDags)
644 && (dagList->numDagsDone == dagList->numDagsFired)
645 && (dagList->numDagsFired > 0)) {
646 #if RF_ACC_TRACE > 0
647 RF_ETIMER_START(dagList->tracerec.timer);
648 #endif
649 /* fire next dag in this stripe */
650 /* first, skip to next dag awaiting execution */
651 dag_h = dagList->dags;
652 for (j = 0; j < dagList->numDagsDone; j++)
653 dag_h = dag_h->next;
654 dagList->numDagsFired++;
655 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
656 dagList);
657 }
658 dagList = dagList->next;
659 }
660 return RF_TRUE;
661 }
662 }
663 /* only make it this far if all dags complete successfully */
664 int
665 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
666 {
667 #if RF_ACC_TRACE > 0
668 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
669 RF_Etimer_t timer;
670 #endif
671 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
672 RF_Raid_t *raidPtr = desc->raidPtr;
673 RF_AccessStripeMap_t *asm_p;
674 RF_DagList_t *dagList;
675 int i;
676
677 desc->state++;
678
679 #if RF_ACC_TRACE > 0
680 timer = tracerec->timer;
681 RF_ETIMER_STOP(timer);
682 RF_ETIMER_EVAL(timer);
683 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
684
685 /* the RAID I/O is complete. Clean up. */
686 tracerec->specific.user.dag_retry_us = 0;
687
688 RF_ETIMER_START(timer);
689 #endif
690 /* free all dags */
691 dagList = desc->dagList;
692 for (i = 0; i < desc->numStripes; i++) {
693 rf_FreeDAG(dagList->dags);
694 dagList = dagList->next;
695 }
696 #if RF_ACC_TRACE > 0
697 RF_ETIMER_STOP(timer);
698 RF_ETIMER_EVAL(timer);
699 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
700
701 RF_ETIMER_START(timer);
702 #endif
703 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
704 if (!rf_suppressLocksAndLargeWrites &&
705 asm_p->parityInfo &&
706 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
707 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
708 rf_ReleaseStripeLock(raidPtr->lockTable,
709 asm_p->stripeID,
710 &asm_p->lockReqDesc);
711 }
712 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
713 rf_UnblockRecon(raidPtr, asm_p);
714 }
715 }
716 #if RF_ACC_TRACE > 0
717 RF_ETIMER_STOP(timer);
718 RF_ETIMER_EVAL(timer);
719 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
720
721 RF_ETIMER_START(timer);
722 #endif
723 rf_FreeAccessStripeMap(asmh);
724 #if RF_ACC_TRACE > 0
725 RF_ETIMER_STOP(timer);
726 RF_ETIMER_EVAL(timer);
727 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
728
729 RF_ETIMER_STOP(desc->timer);
730 RF_ETIMER_EVAL(desc->timer);
731
732 timer = desc->tracerec.tot_timer;
733 RF_ETIMER_STOP(timer);
734 RF_ETIMER_EVAL(timer);
735 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
736
737 rf_LogTraceRec(raidPtr, tracerec);
738 #endif
739 desc->flags |= RF_DAG_ACCESS_COMPLETE;
740
741 return RF_FALSE;
742 }
743