rf_states.c revision 1.40.24.1 1 /* $NetBSD: rf_states.c,v 1.40.24.1 2008/05/25 19:10:20 bouyer Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.40.24.1 2008/05/25 19:10:20 bouyer Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48
49 #ifndef RF_DEBUG_STATES
50 #define RF_DEBUG_STATES 0
51 #endif
52
53 /* prototypes for some of the available states.
54
55 States must:
56
57 - not block.
58
59 - either schedule rf_ContinueRaidAccess as a callback and return
60 RF_TRUE, or complete all of their work and return RF_FALSE.
61
62 - increment desc->state when they have finished their work.
63 */
64
65 #if RF_DEBUG_STATES
66 static char *
67 StateName(RF_AccessState_t state)
68 {
69 switch (state) {
70 case rf_QuiesceState:return "QuiesceState";
71 case rf_MapState:
72 return "MapState";
73 case rf_LockState:
74 return "LockState";
75 case rf_CreateDAGState:
76 return "CreateDAGState";
77 case rf_ExecuteDAGState:
78 return "ExecuteDAGState";
79 case rf_ProcessDAGState:
80 return "ProcessDAGState";
81 case rf_CleanupState:
82 return "CleanupState";
83 case rf_LastState:
84 return "LastState";
85 case rf_IncrAccessesCountState:
86 return "IncrAccessesCountState";
87 case rf_DecrAccessesCountState:
88 return "DecrAccessesCountState";
89 default:
90 return "!!! UnnamedState !!!";
91 }
92 }
93 #endif
94
95 void
96 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
97 {
98 int suspended = RF_FALSE;
99 int current_state_index = desc->state;
100 RF_AccessState_t current_state = desc->states[current_state_index];
101 #if RF_DEBUG_STATES
102 int unit = desc->raidPtr->raidid;
103 #endif
104
105 do {
106
107 current_state_index = desc->state;
108 current_state = desc->states[current_state_index];
109
110 switch (current_state) {
111
112 case rf_QuiesceState:
113 suspended = rf_State_Quiesce(desc);
114 break;
115 case rf_IncrAccessesCountState:
116 suspended = rf_State_IncrAccessCount(desc);
117 break;
118 case rf_MapState:
119 suspended = rf_State_Map(desc);
120 break;
121 case rf_LockState:
122 suspended = rf_State_Lock(desc);
123 break;
124 case rf_CreateDAGState:
125 suspended = rf_State_CreateDAG(desc);
126 break;
127 case rf_ExecuteDAGState:
128 suspended = rf_State_ExecuteDAG(desc);
129 break;
130 case rf_ProcessDAGState:
131 suspended = rf_State_ProcessDAG(desc);
132 break;
133 case rf_CleanupState:
134 suspended = rf_State_Cleanup(desc);
135 break;
136 case rf_DecrAccessesCountState:
137 suspended = rf_State_DecrAccessCount(desc);
138 break;
139 case rf_LastState:
140 suspended = rf_State_LastState(desc);
141 break;
142 }
143
144 /* after this point, we cannot dereference desc since
145 * desc may have been freed. desc is only freed in
146 * LastState, so if we renter this function or loop
147 * back up, desc should be valid. */
148
149 #if RF_DEBUG_STATES
150 if (rf_printStatesDebug) {
151 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
152 unit, StateName(current_state),
153 current_state_index, (long) desc,
154 suspended ? "callback scheduled" : "looping");
155 }
156 #endif
157 } while (!suspended && current_state != rf_LastState);
158
159 return;
160 }
161
162
163 void
164 rf_ContinueDagAccess(RF_DagList_t *dagList)
165 {
166 #if RF_ACC_TRACE > 0
167 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
168 RF_Etimer_t timer;
169 #endif
170 RF_RaidAccessDesc_t *desc;
171 RF_DagHeader_t *dag_h;
172 int i;
173
174 desc = dagList->desc;
175
176 #if RF_ACC_TRACE > 0
177 timer = tracerec->timer;
178 RF_ETIMER_STOP(timer);
179 RF_ETIMER_EVAL(timer);
180 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
181 RF_ETIMER_START(tracerec->timer);
182 #endif
183
184 /* skip to dag which just finished */
185 dag_h = dagList->dags;
186 for (i = 0; i < dagList->numDagsDone; i++) {
187 dag_h = dag_h->next;
188 }
189
190 /* check to see if retry is required */
191 if (dag_h->status == rf_rollBackward) {
192 /* when a dag fails, mark desc status as bad and allow
193 * all other dags in the desc to execute to
194 * completion. then, free all dags and start over */
195 desc->status = 1; /* bad status */
196 #if 0
197 printf("raid%d: DAG failure: %c addr 0x%lx "
198 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
199 desc->raidPtr->raidid, desc->type,
200 (long) desc->raidAddress,
201 (long) desc->raidAddress, (int) desc->numBlocks,
202 (int) desc->numBlocks,
203 (unsigned long) (desc->bufPtr), desc->state);
204 #endif
205 }
206 dagList->numDagsDone++;
207 rf_ContinueRaidAccess(desc);
208 }
209
210 int
211 rf_State_LastState(RF_RaidAccessDesc_t *desc)
212 {
213 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
214 RF_CBParam_t callbackArg;
215
216 callbackArg.p = desc->callbackArg;
217
218 /*
219 * If this is not an async request, wake up the caller
220 */
221 if (desc->async_flag == 0)
222 wakeup(desc->bp);
223
224 /*
225 * That's all the IO for this one... unbusy the 'disk'.
226 */
227
228 rf_disk_unbusy(desc);
229
230 /*
231 * Wakeup any requests waiting to go.
232 */
233
234 RF_LOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
235 ((RF_Raid_t *) desc->raidPtr)->openings++;
236 RF_UNLOCK_MUTEX(((RF_Raid_t *) desc->raidPtr)->mutex);
237
238 wakeup(&(desc->raidPtr->iodone));
239
240 /* printf("Calling biodone on 0x%x\n",desc->bp); */
241 biodone(desc->bp); /* access came through ioctl */
242
243 if (callbackFunc)
244 callbackFunc(callbackArg);
245 rf_FreeRaidAccDesc(desc);
246
247 return RF_FALSE;
248 }
249
250 int
251 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
252 {
253 RF_Raid_t *raidPtr;
254
255 raidPtr = desc->raidPtr;
256 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
257 * below */
258 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
259 raidPtr->accs_in_flight++; /* used to detect quiescence */
260 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
261
262 desc->state++;
263 return RF_FALSE;
264 }
265
266 int
267 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
268 {
269 RF_Raid_t *raidPtr;
270
271 raidPtr = desc->raidPtr;
272
273 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
274 raidPtr->accs_in_flight--;
275 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
276 rf_SignalQuiescenceLock(raidPtr);
277 }
278 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
279
280 desc->state++;
281 return RF_FALSE;
282 }
283
284 int
285 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
286 {
287 #if RF_ACC_TRACE > 0
288 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
289 RF_Etimer_t timer;
290 #endif
291 RF_CallbackDesc_t *cb;
292 RF_Raid_t *raidPtr;
293 int suspended = RF_FALSE;
294 int need_cb, used_cb;
295
296 raidPtr = desc->raidPtr;
297
298 #if RF_ACC_TRACE > 0
299 RF_ETIMER_START(timer);
300 RF_ETIMER_START(desc->timer);
301 #endif
302
303 need_cb = 0;
304 used_cb = 0;
305 cb = NULL;
306
307 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
308 /* Do an initial check to see if we might need a callback structure */
309 if (raidPtr->accesses_suspended) {
310 need_cb = 1;
311 }
312 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
313
314 if (need_cb) {
315 /* create a callback if we might need it...
316 and we likely do. */
317 cb = rf_AllocCallbackDesc();
318 }
319
320 RF_LOCK_MUTEX(raidPtr->access_suspend_mutex);
321 if (raidPtr->accesses_suspended) {
322 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
323 cb->callbackArg.p = (void *) desc;
324 cb->next = raidPtr->quiesce_wait_list;
325 raidPtr->quiesce_wait_list = cb;
326 suspended = RF_TRUE;
327 used_cb = 1;
328 }
329 RF_UNLOCK_MUTEX(raidPtr->access_suspend_mutex);
330
331 if ((need_cb == 1) && (used_cb == 0)) {
332 rf_FreeCallbackDesc(cb);
333 }
334
335 #if RF_ACC_TRACE > 0
336 RF_ETIMER_STOP(timer);
337 RF_ETIMER_EVAL(timer);
338 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
339 #endif
340
341 #if RF_DEBUG_QUIESCE
342 if (suspended && rf_quiesceDebug)
343 printf("Stalling access due to quiescence lock\n");
344 #endif
345 desc->state++;
346 return suspended;
347 }
348
349 int
350 rf_State_Map(RF_RaidAccessDesc_t *desc)
351 {
352 RF_Raid_t *raidPtr = desc->raidPtr;
353 #if RF_ACC_TRACE > 0
354 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
355 RF_Etimer_t timer;
356
357 RF_ETIMER_START(timer);
358 #endif
359
360 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
361 desc->bufPtr, RF_DONT_REMAP)))
362 RF_PANIC();
363
364 #if RF_ACC_TRACE > 0
365 RF_ETIMER_STOP(timer);
366 RF_ETIMER_EVAL(timer);
367 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
368 #endif
369
370 desc->state++;
371 return RF_FALSE;
372 }
373
374 int
375 rf_State_Lock(RF_RaidAccessDesc_t *desc)
376 {
377 #if RF_ACC_TRACE > 0
378 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
379 RF_Etimer_t timer;
380 #endif
381 RF_Raid_t *raidPtr = desc->raidPtr;
382 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
383 RF_AccessStripeMap_t *asm_p;
384 RF_StripeNum_t lastStripeID = -1;
385 int suspended = RF_FALSE;
386
387 #if RF_ACC_TRACE > 0
388 RF_ETIMER_START(timer);
389 #endif
390
391 /* acquire each lock that we don't already hold */
392 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
393 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
394 if (!rf_suppressLocksAndLargeWrites &&
395 asm_p->parityInfo &&
396 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
397 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
398 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
399 /* locks must be acquired hierarchically */
400 RF_ASSERT(asm_p->stripeID > lastStripeID);
401 lastStripeID = asm_p->stripeID;
402
403 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
404 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
405 raidPtr->Layout.dataSectorsPerStripe);
406 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
407 &asm_p->lockReqDesc)) {
408 suspended = RF_TRUE;
409 break;
410 }
411 }
412 if (desc->type == RF_IO_TYPE_WRITE &&
413 raidPtr->status == rf_rs_reconstructing) {
414 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
415 int val;
416
417 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
418 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
419 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
420 if (val == 0) {
421 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
422 } else {
423 suspended = RF_TRUE;
424 break;
425 }
426 } else {
427 #if RF_DEBUG_PSS > 0
428 if (rf_pssDebug) {
429 printf("raid%d: skipping force/block because already done, psid %ld\n",
430 desc->raidPtr->raidid,
431 (long) asm_p->stripeID);
432 }
433 #endif
434 }
435 } else {
436 #if RF_DEBUG_PSS > 0
437 if (rf_pssDebug) {
438 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
439 desc->raidPtr->raidid,
440 (long) asm_p->stripeID);
441 }
442 #endif
443 }
444 }
445 #if RF_ACC_TRACE > 0
446 RF_ETIMER_STOP(timer);
447 RF_ETIMER_EVAL(timer);
448 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
449 #endif
450 if (suspended)
451 return (RF_TRUE);
452
453 desc->state++;
454 return (RF_FALSE);
455 }
456 /*
457 * the following three states create, execute, and post-process dags
458 * the error recovery unit is a single dag.
459 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
460 * in some tricky cases, multiple dags per stripe are created
461 * - dags within a parity stripe are executed sequentially (arbitrary order)
462 * - dags for distinct parity stripes are executed concurrently
463 *
464 * repeat until all dags complete successfully -or- dag selection fails
465 *
466 * while !done
467 * create dag(s) (SelectAlgorithm)
468 * if dag
469 * execute dag (DispatchDAG)
470 * if dag successful
471 * done (SUCCESS)
472 * else
473 * !done (RETRY - start over with new dags)
474 * else
475 * done (FAIL)
476 */
477 int
478 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
479 {
480 #if RF_ACC_TRACE > 0
481 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
482 RF_Etimer_t timer;
483 #endif
484 RF_DagHeader_t *dag_h;
485 RF_DagList_t *dagList;
486 struct buf *bp;
487 int i, selectStatus;
488
489 /* generate a dag for the access, and fire it off. When the dag
490 * completes, we'll get re-invoked in the next state. */
491 #if RF_ACC_TRACE > 0
492 RF_ETIMER_START(timer);
493 #endif
494 /* SelectAlgorithm returns one or more dags */
495 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
496 #if RF_DEBUG_VALIDATE_DAG
497 if (rf_printDAGsDebug) {
498 dagList = desc->dagList;
499 for (i = 0; i < desc->numStripes; i++) {
500 rf_PrintDAGList(dagList.dags);
501 dagList = dagList->next;
502 }
503 }
504 #endif /* RF_DEBUG_VALIDATE_DAG */
505 #if RF_ACC_TRACE > 0
506 RF_ETIMER_STOP(timer);
507 RF_ETIMER_EVAL(timer);
508 /* update time to create all dags */
509 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
510 #endif
511
512 desc->status = 0; /* good status */
513
514 if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) {
515 /* failed to create a dag */
516 /* this happens when there are too many faults or incomplete
517 * dag libraries */
518 if (selectStatus) {
519 printf("raid%d: failed to create a dag. "
520 "Too many component failures.\n",
521 desc->raidPtr->raidid);
522 } else {
523 printf("raid%d: IO failed after %d retries.\n",
524 desc->raidPtr->raidid, RF_RETRY_THRESHOLD);
525 }
526
527 desc->status = 1; /* bad status */
528 /* skip straight to rf_State_Cleanup() */
529 desc->state = rf_CleanupState;
530 bp = (struct buf *)desc->bp;
531 bp->b_flags |= B_ERROR;
532 bp->b_error = EIO;
533 bp->b_resid = bp->b_bcount;
534 } else {
535 /* bind dags to desc */
536 dagList = desc->dagList;
537 for (i = 0; i < desc->numStripes; i++) {
538 dag_h = dagList->dags;
539 while (dag_h) {
540 dag_h->bp = (struct buf *) desc->bp;
541 #if RF_ACC_TRACE > 0
542 dag_h->tracerec = tracerec;
543 #endif
544 dag_h = dag_h->next;
545 }
546 dagList = dagList->next;
547 }
548 desc->flags |= RF_DAG_DISPATCH_RETURNED;
549 desc->state++; /* next state should be rf_State_ExecuteDAG */
550 }
551 return RF_FALSE;
552 }
553
554
555
556 /* the access has an list of dagLists, one dagList per parity stripe.
557 * fire the first dag in each parity stripe (dagList).
558 * dags within a stripe (dagList) must be executed sequentially
559 * - this preserves atomic parity update
560 * dags for independents parity groups (stripes) are fired concurrently */
561
562 int
563 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
564 {
565 int i;
566 RF_DagHeader_t *dag_h;
567 RF_DagList_t *dagList;
568
569 /* next state is always rf_State_ProcessDAG important to do
570 * this before firing the first dag (it may finish before we
571 * leave this routine) */
572 desc->state++;
573
574 /* sweep dag array, a stripe at a time, firing the first dag
575 * in each stripe */
576 dagList = desc->dagList;
577 for (i = 0; i < desc->numStripes; i++) {
578 RF_ASSERT(dagList->numDags > 0);
579 RF_ASSERT(dagList->numDagsDone == 0);
580 RF_ASSERT(dagList->numDagsFired == 0);
581 #if RF_ACC_TRACE > 0
582 RF_ETIMER_START(dagList->tracerec.timer);
583 #endif
584 /* fire first dag in this stripe */
585 dag_h = dagList->dags;
586 RF_ASSERT(dag_h);
587 dagList->numDagsFired++;
588 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
589 dagList = dagList->next;
590 }
591
592 /* the DAG will always call the callback, even if there was no
593 * blocking, so we are always suspended in this state */
594 return RF_TRUE;
595 }
596
597
598
599 /* rf_State_ProcessDAG is entered when a dag completes.
600 * first, check to all dags in the access have completed
601 * if not, fire as many dags as possible */
602
603 int
604 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
605 {
606 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
607 RF_Raid_t *raidPtr = desc->raidPtr;
608 RF_DagHeader_t *dag_h;
609 int i, j, done = RF_TRUE;
610 RF_DagList_t *dagList, *temp;
611
612 /* check to see if this is the last dag */
613 dagList = desc->dagList;
614 for (i = 0; i < desc->numStripes; i++) {
615 if (dagList->numDags != dagList->numDagsDone)
616 done = RF_FALSE;
617 dagList = dagList->next;
618 }
619
620 if (done) {
621 if (desc->status) {
622 /* a dag failed, retry */
623 /* free all dags */
624 dagList = desc->dagList;
625 for (i = 0; i < desc->numStripes; i++) {
626 rf_FreeDAG(dagList->dags);
627 temp = dagList;
628 dagList = dagList->next;
629 rf_FreeDAGList(temp);
630 }
631 desc->dagList = NULL;
632
633 rf_MarkFailuresInASMList(raidPtr, asmh);
634
635 /* note the retry so that we'll bail in
636 rf_State_CreateDAG() once we've retired
637 the IO RF_RETRY_THRESHOLD times */
638
639 desc->numRetries++;
640
641 /* back up to rf_State_CreateDAG */
642 desc->state = desc->state - 2;
643 return RF_FALSE;
644 } else {
645 /* move on to rf_State_Cleanup */
646 desc->state++;
647 }
648 return RF_FALSE;
649 } else {
650 /* more dags to execute */
651 /* see if any are ready to be fired. if so, fire them */
652 /* don't fire the initial dag in a list, it's fired in
653 * rf_State_ExecuteDAG */
654 dagList = desc->dagList;
655 for (i = 0; i < desc->numStripes; i++) {
656 if ((dagList->numDagsDone < dagList->numDags)
657 && (dagList->numDagsDone == dagList->numDagsFired)
658 && (dagList->numDagsFired > 0)) {
659 #if RF_ACC_TRACE > 0
660 RF_ETIMER_START(dagList->tracerec.timer);
661 #endif
662 /* fire next dag in this stripe */
663 /* first, skip to next dag awaiting execution */
664 dag_h = dagList->dags;
665 for (j = 0; j < dagList->numDagsDone; j++)
666 dag_h = dag_h->next;
667 dagList->numDagsFired++;
668 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
669 dagList);
670 }
671 dagList = dagList->next;
672 }
673 return RF_TRUE;
674 }
675 }
676 /* only make it this far if all dags complete successfully */
677 int
678 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
679 {
680 #if RF_ACC_TRACE > 0
681 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
682 RF_Etimer_t timer;
683 #endif
684 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
685 RF_Raid_t *raidPtr = desc->raidPtr;
686 RF_AccessStripeMap_t *asm_p;
687 RF_DagList_t *dagList;
688 int i;
689
690 desc->state++;
691
692 #if RF_ACC_TRACE > 0
693 timer = tracerec->timer;
694 RF_ETIMER_STOP(timer);
695 RF_ETIMER_EVAL(timer);
696 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
697
698 /* the RAID I/O is complete. Clean up. */
699 tracerec->specific.user.dag_retry_us = 0;
700
701 RF_ETIMER_START(timer);
702 #endif
703 /* free all dags */
704 dagList = desc->dagList;
705 for (i = 0; i < desc->numStripes; i++) {
706 rf_FreeDAG(dagList->dags);
707 dagList = dagList->next;
708 }
709 #if RF_ACC_TRACE > 0
710 RF_ETIMER_STOP(timer);
711 RF_ETIMER_EVAL(timer);
712 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
713
714 RF_ETIMER_START(timer);
715 #endif
716 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
717 if (!rf_suppressLocksAndLargeWrites &&
718 asm_p->parityInfo &&
719 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
720 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
721 rf_ReleaseStripeLock(raidPtr->lockTable,
722 asm_p->stripeID,
723 &asm_p->lockReqDesc);
724 }
725 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
726 rf_UnblockRecon(raidPtr, asm_p);
727 }
728 }
729 #if RF_ACC_TRACE > 0
730 RF_ETIMER_STOP(timer);
731 RF_ETIMER_EVAL(timer);
732 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
733
734 RF_ETIMER_START(timer);
735 #endif
736 rf_FreeAccessStripeMap(asmh);
737 #if RF_ACC_TRACE > 0
738 RF_ETIMER_STOP(timer);
739 RF_ETIMER_EVAL(timer);
740 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
741
742 RF_ETIMER_STOP(desc->timer);
743 RF_ETIMER_EVAL(desc->timer);
744
745 timer = desc->tracerec.tot_timer;
746 RF_ETIMER_STOP(timer);
747 RF_ETIMER_EVAL(timer);
748 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
749
750 rf_LogTraceRec(raidPtr, tracerec);
751 #endif
752 desc->flags |= RF_DAG_ACCESS_COMPLETE;
753
754 return RF_FALSE;
755 }
756