rf_states.c revision 1.44.4.1 1 /* $NetBSD: rf_states.c,v 1.44.4.1 2011/05/31 03:04:54 rmind Exp $ */
2 /*
3 * Copyright (c) 1995 Carnegie-Mellon University.
4 * All rights reserved.
5 *
6 * Author: Mark Holland, William V. Courtright II, Robby Findler
7 *
8 * Permission to use, copy, modify and distribute this software and
9 * its documentation is hereby granted, provided that both the copyright
10 * notice and this permission notice appear in all copies of the
11 * software, derivative works or modified versions, and any portions
12 * thereof, and that both notices appear in supporting documentation.
13 *
14 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17 *
18 * Carnegie Mellon requests users of this software to return to
19 *
20 * Software Distribution Coordinator or Software.Distribution (at) CS.CMU.EDU
21 * School of Computer Science
22 * Carnegie Mellon University
23 * Pittsburgh PA 15213-3890
24 *
25 * any improvements or extensions that they make and grant Carnegie the
26 * rights to redistribute these changes.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.44.4.1 2011/05/31 03:04:54 rmind Exp $");
31
32 #include <sys/errno.h>
33
34 #include "rf_archs.h"
35 #include "rf_threadstuff.h"
36 #include "rf_raid.h"
37 #include "rf_dag.h"
38 #include "rf_desc.h"
39 #include "rf_aselect.h"
40 #include "rf_general.h"
41 #include "rf_states.h"
42 #include "rf_dagutils.h"
43 #include "rf_driver.h"
44 #include "rf_engine.h"
45 #include "rf_map.h"
46 #include "rf_etimer.h"
47 #include "rf_kintf.h"
48 #include "rf_paritymap.h"
49
50 #ifndef RF_DEBUG_STATES
51 #define RF_DEBUG_STATES 0
52 #endif
53
54 /* prototypes for some of the available states.
55
56 States must:
57
58 - not block.
59
60 - either schedule rf_ContinueRaidAccess as a callback and return
61 RF_TRUE, or complete all of their work and return RF_FALSE.
62
63 - increment desc->state when they have finished their work.
64 */
65
66 #if RF_DEBUG_STATES
67 static char *
68 StateName(RF_AccessState_t state)
69 {
70 switch (state) {
71 case rf_QuiesceState:return "QuiesceState";
72 case rf_MapState:
73 return "MapState";
74 case rf_LockState:
75 return "LockState";
76 case rf_CreateDAGState:
77 return "CreateDAGState";
78 case rf_ExecuteDAGState:
79 return "ExecuteDAGState";
80 case rf_ProcessDAGState:
81 return "ProcessDAGState";
82 case rf_CleanupState:
83 return "CleanupState";
84 case rf_LastState:
85 return "LastState";
86 case rf_IncrAccessesCountState:
87 return "IncrAccessesCountState";
88 case rf_DecrAccessesCountState:
89 return "DecrAccessesCountState";
90 default:
91 return "!!! UnnamedState !!!";
92 }
93 }
94 #endif
95
96 void
97 rf_ContinueRaidAccess(RF_RaidAccessDesc_t *desc)
98 {
99 int suspended = RF_FALSE;
100 int current_state_index = desc->state;
101 RF_AccessState_t current_state = desc->states[current_state_index];
102 #if RF_DEBUG_STATES
103 int unit = desc->raidPtr->raidid;
104 #endif
105
106 do {
107
108 current_state_index = desc->state;
109 current_state = desc->states[current_state_index];
110
111 switch (current_state) {
112
113 case rf_QuiesceState:
114 suspended = rf_State_Quiesce(desc);
115 break;
116 case rf_IncrAccessesCountState:
117 suspended = rf_State_IncrAccessCount(desc);
118 break;
119 case rf_MapState:
120 suspended = rf_State_Map(desc);
121 break;
122 case rf_LockState:
123 suspended = rf_State_Lock(desc);
124 break;
125 case rf_CreateDAGState:
126 suspended = rf_State_CreateDAG(desc);
127 break;
128 case rf_ExecuteDAGState:
129 suspended = rf_State_ExecuteDAG(desc);
130 break;
131 case rf_ProcessDAGState:
132 suspended = rf_State_ProcessDAG(desc);
133 break;
134 case rf_CleanupState:
135 suspended = rf_State_Cleanup(desc);
136 break;
137 case rf_DecrAccessesCountState:
138 suspended = rf_State_DecrAccessCount(desc);
139 break;
140 case rf_LastState:
141 suspended = rf_State_LastState(desc);
142 break;
143 }
144
145 /* after this point, we cannot dereference desc since
146 * desc may have been freed. desc is only freed in
147 * LastState, so if we renter this function or loop
148 * back up, desc should be valid. */
149
150 #if RF_DEBUG_STATES
151 if (rf_printStatesDebug) {
152 printf("raid%d: State: %-24s StateIndex: %3i desc: 0x%ld %s\n",
153 unit, StateName(current_state),
154 current_state_index, (long) desc,
155 suspended ? "callback scheduled" : "looping");
156 }
157 #endif
158 } while (!suspended && current_state != rf_LastState);
159
160 return;
161 }
162
163
164 void
165 rf_ContinueDagAccess(RF_DagList_t *dagList)
166 {
167 #if RF_ACC_TRACE > 0
168 RF_AccTraceEntry_t *tracerec = &(dagList->desc->tracerec);
169 RF_Etimer_t timer;
170 #endif
171 RF_RaidAccessDesc_t *desc;
172 RF_DagHeader_t *dag_h;
173 int i;
174
175 desc = dagList->desc;
176
177 #if RF_ACC_TRACE > 0
178 timer = tracerec->timer;
179 RF_ETIMER_STOP(timer);
180 RF_ETIMER_EVAL(timer);
181 tracerec->specific.user.exec_us = RF_ETIMER_VAL_US(timer);
182 RF_ETIMER_START(tracerec->timer);
183 #endif
184
185 /* skip to dag which just finished */
186 dag_h = dagList->dags;
187 for (i = 0; i < dagList->numDagsDone; i++) {
188 dag_h = dag_h->next;
189 }
190
191 /* check to see if retry is required */
192 if (dag_h->status == rf_rollBackward) {
193 /* when a dag fails, mark desc status as bad and allow
194 * all other dags in the desc to execute to
195 * completion. then, free all dags and start over */
196 desc->status = 1; /* bad status */
197 #if 0
198 printf("raid%d: DAG failure: %c addr 0x%lx "
199 "(%ld) nblk 0x%x (%d) buf 0x%lx state %d\n",
200 desc->raidPtr->raidid, desc->type,
201 (long) desc->raidAddress,
202 (long) desc->raidAddress, (int) desc->numBlocks,
203 (int) desc->numBlocks,
204 (unsigned long) (desc->bufPtr), desc->state);
205 #endif
206 }
207 dagList->numDagsDone++;
208 rf_ContinueRaidAccess(desc);
209 }
210
211 int
212 rf_State_LastState(RF_RaidAccessDesc_t *desc)
213 {
214 void (*callbackFunc) (RF_CBParam_t) = desc->callbackFunc;
215 RF_CBParam_t callbackArg;
216
217 callbackArg.p = desc->callbackArg;
218
219 /*
220 * We don't support non-async IO.
221 */
222 KASSERT(desc->async_flag);
223
224 /*
225 * That's all the IO for this one... unbusy the 'disk'.
226 */
227
228 rf_disk_unbusy(desc);
229
230 /*
231 * Wakeup any requests waiting to go.
232 */
233
234 rf_lock_mutex2(desc->raidPtr->mutex);
235 desc->raidPtr->openings++;
236 rf_unlock_mutex2(desc->raidPtr->mutex);
237
238 rf_lock_mutex2(desc->raidPtr->iodone_lock);
239 rf_signal_cond2(desc->raidPtr->iodone_cv);
240 rf_unlock_mutex2(desc->raidPtr->iodone_lock);
241
242 /*
243 * The parity_map hook has to go here, because the iodone
244 * callback goes straight into the kintf layer.
245 */
246 if (desc->raidPtr->parity_map != NULL &&
247 desc->type == RF_IO_TYPE_WRITE)
248 rf_paritymap_end(desc->raidPtr->parity_map,
249 desc->raidAddress, desc->numBlocks);
250
251 /* printf("Calling biodone on 0x%x\n",desc->bp); */
252 biodone(desc->bp); /* access came through ioctl */
253
254 if (callbackFunc)
255 callbackFunc(callbackArg);
256 rf_FreeRaidAccDesc(desc);
257
258 return RF_FALSE;
259 }
260
261 int
262 rf_State_IncrAccessCount(RF_RaidAccessDesc_t *desc)
263 {
264 RF_Raid_t *raidPtr;
265
266 raidPtr = desc->raidPtr;
267 /* Bummer. We have to do this to be 100% safe w.r.t. the increment
268 * below */
269 rf_lock_mutex2(raidPtr->access_suspend_mutex);
270 raidPtr->accs_in_flight++; /* used to detect quiescence */
271 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
272
273 desc->state++;
274 return RF_FALSE;
275 }
276
277 int
278 rf_State_DecrAccessCount(RF_RaidAccessDesc_t *desc)
279 {
280 RF_Raid_t *raidPtr;
281
282 raidPtr = desc->raidPtr;
283
284 rf_lock_mutex2(raidPtr->access_suspend_mutex);
285 raidPtr->accs_in_flight--;
286 if (raidPtr->accesses_suspended && raidPtr->accs_in_flight == 0) {
287 rf_SignalQuiescenceLock(raidPtr);
288 }
289 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
290
291 desc->state++;
292 return RF_FALSE;
293 }
294
295 int
296 rf_State_Quiesce(RF_RaidAccessDesc_t *desc)
297 {
298 #if RF_ACC_TRACE > 0
299 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
300 RF_Etimer_t timer;
301 #endif
302 RF_CallbackDesc_t *cb;
303 RF_Raid_t *raidPtr;
304 int suspended = RF_FALSE;
305 int need_cb, used_cb;
306
307 raidPtr = desc->raidPtr;
308
309 #if RF_ACC_TRACE > 0
310 RF_ETIMER_START(timer);
311 RF_ETIMER_START(desc->timer);
312 #endif
313
314 need_cb = 0;
315 used_cb = 0;
316 cb = NULL;
317
318 rf_lock_mutex2(raidPtr->access_suspend_mutex);
319 /* Do an initial check to see if we might need a callback structure */
320 if (raidPtr->accesses_suspended) {
321 need_cb = 1;
322 }
323 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
324
325 if (need_cb) {
326 /* create a callback if we might need it...
327 and we likely do. */
328 cb = rf_AllocCallbackDesc();
329 }
330
331 rf_lock_mutex2(raidPtr->access_suspend_mutex);
332 if (raidPtr->accesses_suspended) {
333 cb->callbackFunc = (void (*) (RF_CBParam_t)) rf_ContinueRaidAccess;
334 cb->callbackArg.p = (void *) desc;
335 cb->next = raidPtr->quiesce_wait_list;
336 raidPtr->quiesce_wait_list = cb;
337 suspended = RF_TRUE;
338 used_cb = 1;
339 }
340 rf_unlock_mutex2(raidPtr->access_suspend_mutex);
341
342 if ((need_cb == 1) && (used_cb == 0)) {
343 rf_FreeCallbackDesc(cb);
344 }
345
346 #if RF_ACC_TRACE > 0
347 RF_ETIMER_STOP(timer);
348 RF_ETIMER_EVAL(timer);
349 tracerec->specific.user.suspend_ovhd_us += RF_ETIMER_VAL_US(timer);
350 #endif
351
352 #if RF_DEBUG_QUIESCE
353 if (suspended && rf_quiesceDebug)
354 printf("Stalling access due to quiescence lock\n");
355 #endif
356 desc->state++;
357 return suspended;
358 }
359
360 int
361 rf_State_Map(RF_RaidAccessDesc_t *desc)
362 {
363 RF_Raid_t *raidPtr = desc->raidPtr;
364 #if RF_ACC_TRACE > 0
365 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
366 RF_Etimer_t timer;
367
368 RF_ETIMER_START(timer);
369 #endif
370
371 if (!(desc->asmap = rf_MapAccess(raidPtr, desc->raidAddress, desc->numBlocks,
372 desc->bufPtr, RF_DONT_REMAP)))
373 RF_PANIC();
374
375 #if RF_ACC_TRACE > 0
376 RF_ETIMER_STOP(timer);
377 RF_ETIMER_EVAL(timer);
378 tracerec->specific.user.map_us = RF_ETIMER_VAL_US(timer);
379 #endif
380
381 desc->state++;
382 return RF_FALSE;
383 }
384
385 int
386 rf_State_Lock(RF_RaidAccessDesc_t *desc)
387 {
388 #if RF_ACC_TRACE > 0
389 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
390 RF_Etimer_t timer;
391 #endif
392 RF_Raid_t *raidPtr = desc->raidPtr;
393 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
394 RF_AccessStripeMap_t *asm_p;
395 RF_StripeNum_t lastStripeID = -1;
396 int suspended = RF_FALSE;
397
398 #if RF_ACC_TRACE > 0
399 RF_ETIMER_START(timer);
400 #endif
401
402 /* acquire each lock that we don't already hold */
403 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
404 RF_ASSERT(RF_IO_IS_R_OR_W(desc->type));
405 if (!rf_suppressLocksAndLargeWrites &&
406 asm_p->parityInfo &&
407 !(desc->flags & RF_DAG_SUPPRESS_LOCKS) &&
408 !(asm_p->flags & RF_ASM_FLAGS_LOCK_TRIED)) {
409 asm_p->flags |= RF_ASM_FLAGS_LOCK_TRIED;
410 /* locks must be acquired hierarchically */
411 RF_ASSERT(asm_p->stripeID > lastStripeID);
412 lastStripeID = asm_p->stripeID;
413
414 RF_INIT_LOCK_REQ_DESC(asm_p->lockReqDesc, desc->type,
415 (void (*) (struct buf *)) rf_ContinueRaidAccess, desc, asm_p,
416 raidPtr->Layout.dataSectorsPerStripe);
417 if (rf_AcquireStripeLock(raidPtr->lockTable, asm_p->stripeID,
418 &asm_p->lockReqDesc)) {
419 suspended = RF_TRUE;
420 break;
421 }
422 }
423 if (desc->type == RF_IO_TYPE_WRITE &&
424 raidPtr->status == rf_rs_reconstructing) {
425 if (!(asm_p->flags & RF_ASM_FLAGS_FORCE_TRIED)) {
426 int val;
427
428 asm_p->flags |= RF_ASM_FLAGS_FORCE_TRIED;
429 val = rf_ForceOrBlockRecon(raidPtr, asm_p,
430 (void (*) (RF_Raid_t *, void *)) rf_ContinueRaidAccess, desc);
431 if (val == 0) {
432 asm_p->flags |= RF_ASM_FLAGS_RECON_BLOCKED;
433 } else {
434 suspended = RF_TRUE;
435 break;
436 }
437 } else {
438 #if RF_DEBUG_PSS > 0
439 if (rf_pssDebug) {
440 printf("raid%d: skipping force/block because already done, psid %ld\n",
441 desc->raidPtr->raidid,
442 (long) asm_p->stripeID);
443 }
444 #endif
445 }
446 } else {
447 #if RF_DEBUG_PSS > 0
448 if (rf_pssDebug) {
449 printf("raid%d: skipping force/block because not write or not under recon, psid %ld\n",
450 desc->raidPtr->raidid,
451 (long) asm_p->stripeID);
452 }
453 #endif
454 }
455 }
456 #if RF_ACC_TRACE > 0
457 RF_ETIMER_STOP(timer);
458 RF_ETIMER_EVAL(timer);
459 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
460 #endif
461 if (suspended)
462 return (RF_TRUE);
463
464 desc->state++;
465 return (RF_FALSE);
466 }
467 /*
468 * the following three states create, execute, and post-process dags
469 * the error recovery unit is a single dag.
470 * by default, SelectAlgorithm creates an array of dags, one per parity stripe
471 * in some tricky cases, multiple dags per stripe are created
472 * - dags within a parity stripe are executed sequentially (arbitrary order)
473 * - dags for distinct parity stripes are executed concurrently
474 *
475 * repeat until all dags complete successfully -or- dag selection fails
476 *
477 * while !done
478 * create dag(s) (SelectAlgorithm)
479 * if dag
480 * execute dag (DispatchDAG)
481 * if dag successful
482 * done (SUCCESS)
483 * else
484 * !done (RETRY - start over with new dags)
485 * else
486 * done (FAIL)
487 */
488 int
489 rf_State_CreateDAG(RF_RaidAccessDesc_t *desc)
490 {
491 #if RF_ACC_TRACE > 0
492 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
493 RF_Etimer_t timer;
494 #endif
495 RF_DagHeader_t *dag_h;
496 RF_DagList_t *dagList;
497 struct buf *bp;
498 int i, selectStatus;
499
500 /* generate a dag for the access, and fire it off. When the dag
501 * completes, we'll get re-invoked in the next state. */
502 #if RF_ACC_TRACE > 0
503 RF_ETIMER_START(timer);
504 #endif
505 /* SelectAlgorithm returns one or more dags */
506 selectStatus = rf_SelectAlgorithm(desc, desc->flags | RF_DAG_SUPPRESS_LOCKS);
507 #if RF_DEBUG_VALIDATE_DAG
508 if (rf_printDAGsDebug) {
509 dagList = desc->dagList;
510 for (i = 0; i < desc->numStripes; i++) {
511 rf_PrintDAGList(dagList->dags);
512 dagList = dagList->next;
513 }
514 }
515 #endif /* RF_DEBUG_VALIDATE_DAG */
516 #if RF_ACC_TRACE > 0
517 RF_ETIMER_STOP(timer);
518 RF_ETIMER_EVAL(timer);
519 /* update time to create all dags */
520 tracerec->specific.user.dag_create_us = RF_ETIMER_VAL_US(timer);
521 #endif
522
523 desc->status = 0; /* good status */
524
525 if (selectStatus || (desc->numRetries > RF_RETRY_THRESHOLD)) {
526 /* failed to create a dag */
527 /* this happens when there are too many faults or incomplete
528 * dag libraries */
529 if (selectStatus) {
530 printf("raid%d: failed to create a dag. "
531 "Too many component failures.\n",
532 desc->raidPtr->raidid);
533 } else {
534 printf("raid%d: IO failed after %d retries.\n",
535 desc->raidPtr->raidid, RF_RETRY_THRESHOLD);
536 }
537
538 desc->status = 1; /* bad status */
539 /* skip straight to rf_State_Cleanup() */
540 desc->state = rf_CleanupState;
541 bp = (struct buf *)desc->bp;
542 bp->b_error = EIO;
543 bp->b_resid = bp->b_bcount;
544 } else {
545 /* bind dags to desc */
546 dagList = desc->dagList;
547 for (i = 0; i < desc->numStripes; i++) {
548 dag_h = dagList->dags;
549 while (dag_h) {
550 dag_h->bp = (struct buf *) desc->bp;
551 #if RF_ACC_TRACE > 0
552 dag_h->tracerec = tracerec;
553 #endif
554 dag_h = dag_h->next;
555 }
556 dagList = dagList->next;
557 }
558 desc->flags |= RF_DAG_DISPATCH_RETURNED;
559 desc->state++; /* next state should be rf_State_ExecuteDAG */
560 }
561 return RF_FALSE;
562 }
563
564
565
566 /* the access has an list of dagLists, one dagList per parity stripe.
567 * fire the first dag in each parity stripe (dagList).
568 * dags within a stripe (dagList) must be executed sequentially
569 * - this preserves atomic parity update
570 * dags for independents parity groups (stripes) are fired concurrently */
571
572 int
573 rf_State_ExecuteDAG(RF_RaidAccessDesc_t *desc)
574 {
575 int i;
576 RF_DagHeader_t *dag_h;
577 RF_DagList_t *dagList;
578
579 /* next state is always rf_State_ProcessDAG important to do
580 * this before firing the first dag (it may finish before we
581 * leave this routine) */
582 desc->state++;
583
584 /* sweep dag array, a stripe at a time, firing the first dag
585 * in each stripe */
586 dagList = desc->dagList;
587 for (i = 0; i < desc->numStripes; i++) {
588 RF_ASSERT(dagList->numDags > 0);
589 RF_ASSERT(dagList->numDagsDone == 0);
590 RF_ASSERT(dagList->numDagsFired == 0);
591 #if RF_ACC_TRACE > 0
592 RF_ETIMER_START(dagList->tracerec.timer);
593 #endif
594 /* fire first dag in this stripe */
595 dag_h = dagList->dags;
596 RF_ASSERT(dag_h);
597 dagList->numDagsFired++;
598 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess, dagList);
599 dagList = dagList->next;
600 }
601
602 /* the DAG will always call the callback, even if there was no
603 * blocking, so we are always suspended in this state */
604 return RF_TRUE;
605 }
606
607
608
609 /* rf_State_ProcessDAG is entered when a dag completes.
610 * first, check to all dags in the access have completed
611 * if not, fire as many dags as possible */
612
613 int
614 rf_State_ProcessDAG(RF_RaidAccessDesc_t *desc)
615 {
616 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
617 RF_Raid_t *raidPtr = desc->raidPtr;
618 RF_DagHeader_t *dag_h;
619 int i, j, done = RF_TRUE;
620 RF_DagList_t *dagList, *temp;
621
622 /* check to see if this is the last dag */
623 dagList = desc->dagList;
624 for (i = 0; i < desc->numStripes; i++) {
625 if (dagList->numDags != dagList->numDagsDone)
626 done = RF_FALSE;
627 dagList = dagList->next;
628 }
629
630 if (done) {
631 if (desc->status) {
632 /* a dag failed, retry */
633 /* free all dags */
634 dagList = desc->dagList;
635 for (i = 0; i < desc->numStripes; i++) {
636 rf_FreeDAG(dagList->dags);
637 temp = dagList;
638 dagList = dagList->next;
639 rf_FreeDAGList(temp);
640 }
641 desc->dagList = NULL;
642
643 rf_MarkFailuresInASMList(raidPtr, asmh);
644
645 /* note the retry so that we'll bail in
646 rf_State_CreateDAG() once we've retired
647 the IO RF_RETRY_THRESHOLD times */
648
649 desc->numRetries++;
650
651 /* back up to rf_State_CreateDAG */
652 desc->state = desc->state - 2;
653 return RF_FALSE;
654 } else {
655 /* move on to rf_State_Cleanup */
656 desc->state++;
657 }
658 return RF_FALSE;
659 } else {
660 /* more dags to execute */
661 /* see if any are ready to be fired. if so, fire them */
662 /* don't fire the initial dag in a list, it's fired in
663 * rf_State_ExecuteDAG */
664 dagList = desc->dagList;
665 for (i = 0; i < desc->numStripes; i++) {
666 if ((dagList->numDagsDone < dagList->numDags)
667 && (dagList->numDagsDone == dagList->numDagsFired)
668 && (dagList->numDagsFired > 0)) {
669 #if RF_ACC_TRACE > 0
670 RF_ETIMER_START(dagList->tracerec.timer);
671 #endif
672 /* fire next dag in this stripe */
673 /* first, skip to next dag awaiting execution */
674 dag_h = dagList->dags;
675 for (j = 0; j < dagList->numDagsDone; j++)
676 dag_h = dag_h->next;
677 dagList->numDagsFired++;
678 rf_DispatchDAG(dag_h, (void (*) (void *)) rf_ContinueDagAccess,
679 dagList);
680 }
681 dagList = dagList->next;
682 }
683 return RF_TRUE;
684 }
685 }
686 /* only make it this far if all dags complete successfully */
687 int
688 rf_State_Cleanup(RF_RaidAccessDesc_t *desc)
689 {
690 #if RF_ACC_TRACE > 0
691 RF_AccTraceEntry_t *tracerec = &desc->tracerec;
692 RF_Etimer_t timer;
693 #endif
694 RF_AccessStripeMapHeader_t *asmh = desc->asmap;
695 RF_Raid_t *raidPtr = desc->raidPtr;
696 RF_AccessStripeMap_t *asm_p;
697 RF_DagList_t *dagList;
698 int i;
699
700 desc->state++;
701
702 #if RF_ACC_TRACE > 0
703 timer = tracerec->timer;
704 RF_ETIMER_STOP(timer);
705 RF_ETIMER_EVAL(timer);
706 tracerec->specific.user.dag_retry_us = RF_ETIMER_VAL_US(timer);
707
708 /* the RAID I/O is complete. Clean up. */
709 tracerec->specific.user.dag_retry_us = 0;
710
711 RF_ETIMER_START(timer);
712 #endif
713 /* free all dags */
714 dagList = desc->dagList;
715 for (i = 0; i < desc->numStripes; i++) {
716 rf_FreeDAG(dagList->dags);
717 dagList = dagList->next;
718 }
719 #if RF_ACC_TRACE > 0
720 RF_ETIMER_STOP(timer);
721 RF_ETIMER_EVAL(timer);
722 tracerec->specific.user.cleanup_us = RF_ETIMER_VAL_US(timer);
723
724 RF_ETIMER_START(timer);
725 #endif
726 for (asm_p = asmh->stripeMap; asm_p; asm_p = asm_p->next) {
727 if (!rf_suppressLocksAndLargeWrites &&
728 asm_p->parityInfo &&
729 !(desc->flags & RF_DAG_SUPPRESS_LOCKS)) {
730 RF_ASSERT_VALID_LOCKREQ(&asm_p->lockReqDesc);
731 rf_ReleaseStripeLock(raidPtr->lockTable,
732 asm_p->stripeID,
733 &asm_p->lockReqDesc);
734 }
735 if (asm_p->flags & RF_ASM_FLAGS_RECON_BLOCKED) {
736 rf_UnblockRecon(raidPtr, asm_p);
737 }
738 }
739 #if RF_ACC_TRACE > 0
740 RF_ETIMER_STOP(timer);
741 RF_ETIMER_EVAL(timer);
742 tracerec->specific.user.lock_us += RF_ETIMER_VAL_US(timer);
743
744 RF_ETIMER_START(timer);
745 #endif
746 rf_FreeAccessStripeMap(asmh);
747 #if RF_ACC_TRACE > 0
748 RF_ETIMER_STOP(timer);
749 RF_ETIMER_EVAL(timer);
750 tracerec->specific.user.cleanup_us += RF_ETIMER_VAL_US(timer);
751
752 RF_ETIMER_STOP(desc->timer);
753 RF_ETIMER_EVAL(desc->timer);
754
755 timer = desc->tracerec.tot_timer;
756 RF_ETIMER_STOP(timer);
757 RF_ETIMER_EVAL(timer);
758 desc->tracerec.total_us = RF_ETIMER_VAL_US(timer);
759
760 rf_LogTraceRec(raidPtr, tracerec);
761 #endif
762 desc->flags |= RF_DAG_ACCESS_COMPLETE;
763
764 return RF_FALSE;
765 }
766